
Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Programming WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

THIRD EDITION

Programming WCF Services

Juval Löwy

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Download from Library of Wow! eBook <www.wowebook.com>

Programming WCF Services, Third Edition
by Juval Löwy

Copyright © 2010 Juval Löwy. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Hendrickson and Laurel Ruma
Production Editor: Teresa Elsey
Proofreader: Teresa Elsey

Indexer: Newgen North America, Inc.
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2007: First Edition.
November 2008: Second Edition.
August 2010: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming WCF Services, Third Edition, the image of an angelfish, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80548-7

[M]

1281631550

Download from Library of Wow! eBook <www.wowebook.com>

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

To my family

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Table of Contents

Foreword . xvii

Preface . xxi

1. WCF Essentials . 1
What Is WCF? 1
Services 2

Service Execution Boundaries 3
WCF and Location Transparency 4

Addresses 4
TCP Addresses 5
HTTP Addresses 6
IPC Addresses 6
MSMQ Addresses 7
Service Bus Addresses 7

Contracts 7
The Service Contract 8

Hosting 11
IIS 5/6 Hosting 12
Self-Hosting 13
WAS Hosting 19
Custom Hosting in IIS/WAS 19
Windows Server AppFabric 20
Choosing a Host 22

Bindings 24
The Common Bindings 25
Choosing a Binding 26
Additional Bindings 27
Using a Binding 29

Endpoints 29
Administrative Endpoint Configuration 30

vii

Download from Library of Wow! eBook <www.wowebook.com>

Programmatic Endpoint Configuration 34
Default Endpoints 36

Metadata Exchange 39
Metadata over HTTP-GET 39
The Metadata Exchange Endpoint 42
The Metadata Explorer 49

More on Behavior Configuration 51
Client-Side Programming 53

Generating the Proxy 53
Administrative Client Configuration 57
Programmatic Client Configuration 64
The WCF-Provided Test Client 64

Programmatic Versus Administrative Configuration 67
WCF Architecture 67

Host Architecture 69
Working with Channels 70

The InProcFactory Class 71
Transport-Level Sessions 75

Transport Session and Binding 76
Transport Session Termination 76

Reliability 77
Bindings, Reliability, and Ordered Messages 78
Configuring Reliability 79
Requiring Ordered Delivery 80

2. Service Contracts . 83
Operation Overloading 83
Contract Inheritance 86

Client-Side Contract Hierarchy 87
Service Contract Factoring and Design 90

Contract Factoring 90
Factoring Metrics 93

Contract Queries 95
Programmatic Metadata Processing 95
The MetadataHelper Class 98

3. Data Contracts . 103
Serialization 103

.NET Serialization 105
The WCF Formatters 107
Data Contract via Serialization 110

Data Contract Attributes 111
Importing a Data Contract 113

viii | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Data Contracts and the Serializable Attribute 116
Inferred Data Contracts 117
Composite Data Contracts 118
Data Contract Events 119
Shared Data Contracts 123

Data Contract Hierarchy 123
Known Types 124
Service Known Types 126
Multiple Known Types 128
Configuring Known Types 129
Data Contract Resolvers 129
Objects and Interfaces 141

Data Contract Equivalence 143
Serialization Order 144

Versioning 146
New Members 146
Missing Members 147
Versioning Round-Trip 151

Enumerations 154
Delegates and Data Contracts 155
Generics 156
Collections 160

Concrete Collections 160
Custom Collections 162
The CollectionDataContract Attribute 163
Referencing a Collection 164
Dictionaries 165

4. Instance Management . 169
Behaviors 169
Per-Call Services 171

Benefits of Per-Call Services 171
Configuring Per-Call Services 172
Per-Call Services and Transport Sessions 173
Designing Per-Call Services 174
Choosing Per-Call Services 177

Per-Session Services 177
Configuring Private Sessions 178
Sessions and Reliability 182
The Session ID 184
Session Termination 185

Singleton Service 185
Initializing a Singleton 187

Table of Contents | ix

Download from Library of Wow! eBook <www.wowebook.com>

Choosing a Singleton 189
Demarcating Operations 190
Instance Deactivation 193

Configuring with ReleaseInstanceMode.None 194
Configuring with ReleaseInstanceMode.BeforeCall 194
Configuring with ReleaseInstanceMode.AfterCall 195
Configuring with ReleaseInstanceMode.BeforeAndAfterCall 196
Explicit Deactivation 197
Using Instance Deactivation 198

Durable Services 198
Durable Services and Instance Management Modes 199
Instance IDs and Durable Storage 199
Explicit Instance IDs 201
Instance IDs in Headers 203
Context Bindings for Instance IDs 205
Automatic Durable Behavior 210

Throttling 217
Configuring Throttling 219

5. Operations . 225
Request-Reply Operations 225
One-Way Operations 226

Configuring One-Way Operations 226
One-Way Operations and Reliability 227
One-Way Operations and Sessionful Services 227
One-Way Operations and Exceptions 228

Callback Operations 230
The Callback Contract 231
Client Callback Setup 232
Service-Side Callback Invocation 235
Callback Connection Management 239
The Duplex Proxy and Type Safety 241
The Duplex Factory 244
Callback Contract Hierarchy 246

Events 247
Streaming 251

I/O Streams 251
Streaming and Binding 252
Streaming and Transport 253

6. Faults . 255
Error Isolation and Decoupling 255

Error Masking 256

x | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Channel Faulting 257
Fault Propagation 261

Fault Contracts 263
Fault Debugging 267
Faults and Callbacks 273

Error-Handling Extensions 276
Providing a Fault 277
Handling a Fault 280
Installing Error-Handling Extensions 282
The Host and Error Extensions 285
Callbacks and Error Extensions 289

7. Transactions . 293
The Recovery Challenge 293
Transactions 294

Transactional Resources 295
Transaction Properties 295
Transaction Management 297
Resource Managers 301

Transaction Propagation 301
Transaction Flow and Bindings 301
Transaction Flow and the Operation Contract 302
One-Way Calls 304

Transaction Protocols and Managers 305
Protocols and Bindings 306
Transaction Managers 307
Transaction Manager Promotion 310

The Transaction Class 311
The Ambient Transaction 312
Local Versus Distributed Transactions 312

Transactional Service Programming 314
Setting the Ambient Transaction 314
Transaction Propagation Modes 316
Voting and Completion 324
Transaction Isolation 327
Transaction Timeout 329

Explicit Transaction Programming 331
The TransactionScope Class 331
Transaction Flow Management 333
Non-Service Clients 340

Service State Management 342
The Transaction Boundary 343

Instance Management and Transactions 343

Table of Contents | xi

Download from Library of Wow! eBook <www.wowebook.com>

Per-Call Transactional Services 345
Per-Session Transactional Services 348
Transactional Durable Services 362
Transactional Behavior 365
Transactional Singleton Service 371
Instancing Modes and Transactions 374

Callbacks 375
Callback Transaction Modes 376
Callback Voting 378
Using Transactional Callbacks 378

8. Concurrency Management . 383
Instance Management and Concurrency 383
Service Concurrency Modes 384

ConcurrencyMode.Single 384
ConcurrencyMode.Multiple 385
ConcurrencyMode.Reentrant 389

Instances and Concurrent Access 392
Per-Call Services 392
Sessionful and Singleton Services 393

Resources and Services 393
Deadlocked Access 394
Deadlock Avoidance 395

Resource Synchronization Context 396
.NET Synchronization Contexts 397
The UI Synchronization Context 400

Service Synchronization Context 405
Hosting on the UI Thread 406
A Form as a Service 412
The UI Thread and Concurrency Management 415

Custom Service Synchronization Contexts 417
The Thread Pool Synchronizer 418
Thread Affinity 423
Priority Processing 425

Callbacks and Client Safety 429
Callbacks with ConcurrencyMode.Single 429
Callbacks with ConcurrencyMode.Multiple 430
Callbacks with ConcurrencyMode.Reentrant 431

Callbacks and Synchronization Contexts 431
Callbacks and the UI Synchronization Context 432
Callback Custom Synchronization Contexts 435

Asynchronous Calls 439
Requirements for an Asynchronous Mechanism 439

xii | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Proxy-Based Asynchronous Calls 440
Asynchronous Invocation 442
Polling or Waiting for Completion 445
Completion Callbacks 447
One-Way Asynchronous Operations 452
Asynchronous Error Handling 456
Asynchronous Calls and Transactions 457
Synchronous Versus Asynchronous Calls 457

9. Queued Services . 461
Disconnected Services and Clients 461
Queued Calls 462

Queued Calls Architecture 463
Queued Contracts 463
Configuration and Setup 464

Transactions 471
Delivery and Playback 471
Service Transaction Configuration 473
Nontransactional Queues 476

Instance Management 477
Per-Call Queued Services 478
Sessionful Queued Services 480
Singleton Service 483

Concurrency Management 484
Throttling 485

Delivery Failures 485
The Dead-Letter Queue 487
Time to Live 487
Configuring the Dead-Letter Queue 488
Processing the Dead-Letter Queue 490

Playback Failures 494
Poison Messages 495
Poison Message Handling in MSMQ 4.0 495
Poison Message Handling in MSMQ 3.0 501

Queued Versus Connected Calls 501
Requiring Queuing 502

The Response Service 504
Designing a Response Service Contract 505
Client-Side Programming 509
Queued Service-Side Programming 512
Response Service-Side Programming 514
Transactions 514

The HTTP Bridge 518

Table of Contents | xiii

Download from Library of Wow! eBook <www.wowebook.com>

Designing the Bridge 518
Transaction Configuration 519
Service-Side Configuration 520
Client-Side Configuration 522

10. Security . 525
Authentication 525
Authorization 526
Transfer Security 527

Transfer Security Modes 527
Transfer Security Mode Configuration 529
Transport Security and Credentials 532
Message Security and Credentials 533

Identity Management 533
Overall Policy 534
Scenario-Driven Approach 534
Intranet Application Scenario 535

Securing the Intranet Bindings 536
Constraining Message Protection 543
Authentication 544
Identities 547
The Security Call Context 548
Impersonation 550
Authorization 558
Identity Management 563
Callbacks 564

Internet Application Scenario 566
Securing the Internet Bindings 566
Message Protection 568
Authentication 572
Using Windows Credentials 574
Using the ASP.NET Providers 575
Identity Management 584

Business-to-Business Application Scenario 585
Securing the Business-to-Business Bindings 585
Authentication 586
Authorization 589
Identity Management 590
Host Security Configuration 591

Anonymous Application Scenario 591
Securing the Anonymous Bindings 591
Authentication 592
Authorization 592

xiv | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Identity Management 592
Callbacks 593

No Security Scenario 593
Unsecuring the Bindings 593
Authentication 594
Authorization 594
Identity Management 594
Callbacks 594

Scenarios Summary 595
Declarative Security Framework 595

The SecurityBehaviorAttribute 596
Host-Side Declarative Security 604
Client-Side Declarative Security 605

Security Auditing 612
Configuring Security Audits 613
Declarative Security Auditing 615

11. The Service Bus . 617
What Is a Relay Service? 618

The Windows Azure AppFabric Service Bus 619
Programming the Service Bus 620

Relay Service Address 620
The Service Bus Registry 623
The Service Bus Explorer 625

The Service Bus Bindings 626
The TCP Relay Binding 626
The WS 2007 Relay Binding 630
The One-Way Relay Binding 631
The Event Relay Binding 632

Cloud as Interceptor 633
Service Bus Buffers 634

Buffers Versus Queues 635
Working with Buffers 636
Sending and Retrieving Messages 642
Buffered Services 643
Response Service 652

Service Bus Authentication 657
Configuring Authentication 658
Shared Secret Authentication 659
No Authentication 663
Metadata over the Service Bus 665

Transfer Security 667
Transport Security 668

Table of Contents | xv

Download from Library of Wow! eBook <www.wowebook.com>

Message Security 669
TCP Relay Binding and Transfer Security 670
WS Relay Binding and Transfer Security 676
One-Way Relay Binding and Transfer Security 676
Bindings and Transfer Modes 677
Streamlining Transfer Security 678

A. Introduction to Service Orientation . 685

B. Headers and Contexts . 701

C. Discovery . 723

D. Publish-Subscribe Service . 775

E. Generic Interceptor . 809

F. WCF Coding Standard . 825

G. ServiceModelEx Catalog . 837

Index . 855

xvi | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Foreword

When Juval Löwy asked me to write the foreword for the first edition of this book, I
was working in a Community Program Manager role for the brand-new Windows
Communication Foundation (WCF) framework at Microsoft. WCF was the result of
a multiyear effort to write a unified communication framework for Windows. It was
also the result of a multiyear effort to create an interoperable messaging standards
framework centered around XML and the SOAP envelope model, with a common
model for addressing; a transport-independent abstraction for session management and
ordered delivery semantics; and a common model for message and session protection,
for federated authentication and authorization, and for many more capabilities. This
industry-wide standardization effort is still in progress with Microsoft and partners
across the industry, refining and updating this common messaging framework (sum-
marily nicknamed “WS-*”), more than 10 years after the SOAP 1.1 specification was
submitted as a note to W3C, which started this process.

As I write the foreword to the new edition, I’m filling an Architect role on the Windows
Azure AppFabric team at Microsoft. More precisely, I’m contributing to the architec-
ture of the service bus, a service offering that’s part of the Windows Azure Platform
and which Juval covers in Chapter 11 and the appendixes of this book. The way I
commonly describe the effort of building a commercial web services infrastructure, like
the service bus or its sibling service, Windows Azure AppFabric Access Control, is to
use the familiar iceberg analogy. The “above the water” features that the customers get
to interact with on the public protocol and API surface area make up a relatively small
portion of the overall effort. The rest, all the things beneath the waterline, quite closely
resembles a large-scale, mission-critical Enterprise application infrastructure—with the
special quality and challenge of running on a public cloud-based infrastructure.

When you create a Windows Azure account, your data and the provisioning jobs run
through WCF SOAP services. When you create a new service namespace in our system,
the messages flow between data centers using WCF SOAP services, creating resources
in the places where you ask for them to be created. Monitoring happens via WCF SOAP
services; diagnostics happens via WCF SOAP services; billing data collection, consol-
idation, and handoff happens using WCF SOAP services.

xvii

Download from Library of Wow! eBook <www.wowebook.com>

As people providing a public web service infrastructure, we’re looking to provide
equally capable messaging-centric and REST protocol heads and resource projections
across the infrastructure. Because of concerns about broad reach into browsers and
devices, the prioritization often plays out in a way that the REST protocol heads for the
public protocol surface area win out and get built first—and mostly on top of the HTTP
web programming model provided by WCF. However, there has never been any serious
debate or question in cross-team engineering discussions about the interfaces between
the various subsystems under the waterline not being SOAP-based endpoints built on
WCF. Everyone already went into the room with the assumption that they would be.

Building the backbone systems for a cross-team effort at Microsoft with several hundred
engineers and an investment volume the size of the Windows Azure Platform is at or
beyond the complexity level of many mission-critical Enterprise systems. Running such
a system and upgrading or changing parts of such a system in flight and without down-
time is not only complex, it’s an art form. You need loose coupling between subsystems,
you need a lot of flexibility and extensibility, and you need to have a clear notion of
what that other system is going to accept and return in terms of messages. What I keep
finding is that once you confront a “simpler” communications model with real-world
requirements of the sort we’ve got on the Windows Azure backbone, you almost in-
evitably end up reinventing the wheel at the protocol level and you increasingly make
the life of implementers harder.

WCF is a great technology because it deals with the complexity of flexibly intercon-
necting applications. It’s great because you can build SOAP services, building the
backbone of your systems that can interoperate with other services on other platforms
with similarly capable web services stacks, such as those built by Oracle/Sun, IBM, or
the Apache Foundation. It’s great because it allows you to build the “broad-reach”
HTTP/REST resource projection surface of your system on the same foundation.

The book you have in your hands is rightfully “the book” about the Windows Com-
munication Foundation. Continuously improving our skills at architecting and build-
ing distributed business applications is a passion that Juval and I share.

This book is going to help you learn about the “distributed” part—how to hook stuff
together and how to do so securely, reliably, and in a loosely coupled fashion—all from
Juval Löwy, one of the most prominent distributed systems experts in the world today.

xviii | Foreword

Download from Library of Wow! eBook <www.wowebook.com>

Programming WCF Services shows you in great detail what we here at Microsoft have
built as a foundation for your applications and services, and the book conveys it with
the accuracy, teaching skill, and dedication to architecture that Juval is justly renowned
for around the globe.

I’ll stop now. Turn the page. Start reading.

—Clemens Vasters
Principal Technical Lead,Windows Azure AppFabric Service Bus, Microsoft

Foreword | xix

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Preface

In August 2001, I first learned the details of a Microsoft effort to rewrite COM+ using
managed code. Nothing much happened after that. Then, during a C# 2.0 Strategic
Design Review in July 2002, the remoting program manager outlined in broad strokes
plans to rework remoting into something that developers should actually use. At the
same time, Microsoft was also working on incorporating the new security specs for web
services into the ASMX stack and actively working with others on drafting a score of
additional web services specs.

In July 2003, I was given access to a new transactional infrastructure that improved on
the deficiencies in transactional .NET programming. At the time, there was no cohesive
programming model that unified these distinct technologies. Toward the end of 2003,
I was privileged to be invited to join a small team of outside industry experts and to
participate in the strategic design review of a new development platform codenamed
Indigo. Some of the smartest and nicest people I know were part of that team. Over the
next two to three years, Indigo went through some three generations of programming
models. The final declarative, endpoint-driven object model debuted in early 2005, was
stabilized by August of that year, and was named the Windows Communication Foun-
dation (WCF). WCF was released in November 2006 as part of .NET 3.0.

As I am writing these lines in late 2010, I find it hard to believe the past four years have
gone so quickly, and that I have a third edition of the book to correspond with the third
release of WCF and .NET 4.0.

It is difficult to get a consistent answer from different people on what WCF is. To the
web service developer, it is the ultimate interoperability solution, an implementation
of a long list of industry standards. To the distributed application developer, it is the
easiest way of making remote calls and even queued calls. To the system developer, it
is the next generation of productivity-oriented features, such as transactions and host-
ing, that provide off-the-shelf plumbing for applications. To the application developer,
it is a declarative programming model for structuring applications. And to the architect,
it is a tool for building service-oriented applications. WCF is, in actuality, all of those,
simply because it was designed that way—to be the unified next generation of Micro-
soft’s disparate technologies.

xxi

Download from Library of Wow! eBook <www.wowebook.com>

To me, WCF is the next development platform, which to a large extent subsumes
raw .NET programming. All .NET developers should use WCF, regardless of their
application types, sizes, or industry domains. WCF is a fundamental technology that
provides an easy and clean way to generate services and applications in compliance
with what I regard as sound design principles. WCF was engineered from the ground
up to simplify application development and deployment and to lower the overall cost
of ownership. WCF services allow you to build service-oriented applications, from
standalone desktop applications to web-based applications and services to high-end
Enterprise applications.

How This Book Is Organized
This book covers the topics and skills you need to design and develop service-oriented
WCF-based applications, illustrating how to take advantage of built-in features such
as service hosting, instance management, concurrency management, transactions, dis-
connected queued calls, security, and the Windows Azure AppFabric Service Bus.
While the book shows you how to use these features, it focuses on the “why” and on
the rationale behind particular design decisions. You’ll learn about not only WCF pro-
gramming and the related system issues, but also relevant design options, tips, best
practices, and pitfalls. I approach almost every topic and aspect from a software engi-
neering standpoint, because my objective is to make you not just a WCF expert, but
also a better software engineer. Armed with the insights this text provides, you can
engineer your applications for maintainability, extensibility, reusability, and
productivity.

This third edition has provided me with several opportunities: first, to catch up with
WCF in .NET 4.0 with its new features such as hosting, discovery, and configuration.
Second, I wanted to present the AppFabric Service Bus, which is a fundamentally dis-
ruptive technology because of the sort of applications it allows developers to build.
Third, I have had two more years’ worth of WCF techniques, ideas, and helper classes,
as well as improvement of the ideas I had in the first and second editions. I believe this
new material will make this edition valuable even to readers of the second edition.

This book avoids many implementation details of WCF and largely confines its cov-
erage to the possibilities and practical aspects of using WCF: how to apply the tech-
nology and how to choose among the available design and programming models. It
makes the most of what .NET 4.0 and the service bus has to offer, and in some respects
is an advanced C# book as well.

In addition, the book contains many useful utilities, tools, and helper classes I have
written, collectively known as ServiceModelEx. My tools, helper classes, and attributes
aim at increasing your productivity and the quality of your WCF services. Serv-
iceModelEx is literally a small framework that sits on top of WCF and compensates for
some oversights in its design. ServiceModelEx also simplifies and automates certain
tasks. This book is as much about my tools, ideas, and techniques as it is about native

xxii | Preface

Download from Library of Wow! eBook <www.wowebook.com>

WCF, and my framework also demonstrates how you can extend WCF. Many readers
have told me that aside from the explanations in this book, ServiceModelEx is the most
valuable asset the book offers. I have also kept to my guideline that, in principle, readers
should not have to use all (or any part) of ServiceModelEx. In practice,
ServiceModelEx is your WCF power tools collection. You can also use each helper class,
utility, or framework individually, as there are few, if any, interdependencies.

During the past six years, I have published a number of WCF articles in MSDN Mag-
azine, and I wrote the WCF section of the “Foundations” column for the magazine as
well. I used these articles to seed the chapters in this book, and I am grateful to the
magazine for allowing me to do so. Even if you have read the articles, you should still
read the corresponding chapters here. The chapters are much more comprehensive, are
wider in scope (offering additional angles, techniques, and samples) and up to date,
and often tie their subjects into other chapters.

Each chapter addresses a single topic and discusses it in depth. However, the chapters
often rely on those that precede them, so you should read the book in order.

Here is a brief summary of the chapters and appendixes in this book:

Chapter 1, WCF Essentials
This first chapter starts by explaining what WCF is, then describes essential WCF
concepts and building blocks (such as addresses, contracts, bindings, endpoints,
hosting, and clients) and key concepts such as reliability and transport sessions.
The chapter includes a discussion of the WCF architecture, which is really the
linchpin of all that follows in the subsequent chapters. This chapter assumes that
you understand the basic motivation and benefit of service orientation. If that is
not the case, you should first read Appendix A. Even if you are already familiar
with the basic concepts of WCF, I recommend that you give this chapter at least a
cursory reading, not only to ensure that you have a solid foundation, but also
because some of the helper classes and terms introduced here will be used and
extended throughout the book.

Chapter 2, Service Contracts
Chapter 2 is dedicated to the topic of designing and working with service contracts.
First, it covers some useful techniques for service contract overloading and inher-
itance, as well as some advanced techniques. The chapter also discusses how to
design and factor contracts that cater to reuse, maintainability, and extensibility.
It ends by showing you how to interact programmatically with the metadata of the
exposed contracts at runtime.

Chapter 3, Data Contracts
Chapter 3 deals with how the client and the service can exchange data without ever
actually sharing the data type itself or using the same development technology. In
this chapter, you will see how to deal with some interesting real-life issues, such as
data versioning, and how to pass collections of items.

Preface | xxiii

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4, Instance Management
This chapter answers the question of which service instance handles which client’s
request. WCF supports several service instance management, activation, and life-
time management techniques, and your choices will have drastic implications for
scalability, performance, the programming model, and the business workflow.
This chapter presents the rationale behind each of the instance management
modes, offers guidelines on when and how to best use them, and also addresses
some related topics, such as durability and throttling.

Chapter 5, Operations
Chapter 5 deals with the types of operations clients can invoke on a service and
related design guidelines, such as how to improve on and extend the basic WCF
offering to support callback setup and teardown, manage callback ports and chan-
nels, and provide for type-safe duplex proxies.

Chapter 6, Faults
This chapter discusses the best practices of error handling, enabling you to decou-
ple the client’s error handling from the service’s. When required, the chapter shows
how services can report errors and exceptions back to their clients, since constructs
such as exceptions and exception handling are technology-specific and should not
transcend the service boundary. This chapter also demonstrates how you can ex-
tend and improve on WCF’s basic error-handling mechanism.

Chapter 7, Transactions
This chapter begins by explaining the motivation for transactions in general, then
discusses the many aspects of transactional services: the transaction management
architecture, transaction propagation configuration, the declarative transaction
support offered by WCF, and how clients can create transactions. The chapter ends
by discussing relevant design guidelines such as transactional service state man-
agement and instancing modes.

Chapter 8, Concurrency Management
Chapter 8 first describes the powerful yet simple declarative way WCF offers for
managing concurrency and synchronization, both for the client and the service.
The chapter then presents more advanced aspects of concurrency management,
such as callbacks, reentrancy, thread affinity, and synchronization context, best
practices and guidelines for avoiding deadlocks, and asynchronous call
management.

Chapter 9, Queued Services
Chapter 9 shows how clients can queue up calls to services, thus enabling asyn-
chronous, disconnected work. The chapter starts by showing how to set up and
configure queued services, then focuses on aspects such as transactions, instance
management, and failures and their impact on both the business model of the
service and its implementation. It also presents techniques for streamlining queues,
call management, and several original design ideas (such as a queued response
service).

xxiv | Preface

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10, Security
This chapter demystifies service-oriented security by breaking down this
multifaceted task into its basic elements, such as message transfer, authentication,
and authorization. It also demonstrates how to provide security for key scenarios
such as intranet and Internet applications. Finally, it presents my framework for
declarative WCF security, designed to automate security setup and to considerably
simplify managing security.

Chapter 11, The Service Bus
This chapter presents the Windows Azure AppFabric Service Bus. In my opinion,
the service bus is the most important technology to come out of Microsoft in recent
years. The service bus addresses the crucial connectivity issues of web services, and
it offers advantages in scalability, availability, and security. I expect that, in the
future, the service bus will be the predominant way of extending applications, even
intranet applications. WCF is the programming model of the service bus, but there
are many particular aspects, from security to buffering, that require special atten-
tion. The chapter presents the problems the service bus was designed to address,
how to use the service bus as a relay service or as an events hub or as a buffer, and
the related security model. You will also see many helper classes designed to
streamline the programming model.

Appendix A, Introduction to Service Orientation
This appendix is designed for readers who want to understand what service ori-
entation is all about: it presents my take on service orientation and puts it in a
concrete context. The appendix defines service-oriented applications (as opposed
to mere architecture) and the services themselves and examines the benefits of the
methodology. It then presents the principles of service orientation and augments
the abstract tenets with a few more practical points required by most applications.
In this appendix, I also share my perspective on where SOA and WCF are heading.

Appendix B, Headers and Contexts
This appendix introduces two distinct techniques for enabling the client to pass
out-of-band parameters to the service, resulting in a custom logical context: you
will see how to use either the message headers or the context binding to achieve
this goal. This appendix also presents my helper classes, which greatly simplify and
encapsulate the required programming. These helper classes and custom contexts
are used in several places in the book.

Appendix C, Discovery
This appendix starts by describing the basic offering of service discovery and avail-
ability announcements introduced in .NET 4.0. Discovery simplifies service and
client deployment and management, and allows for great volatility across time and
deployment sites. The appendix then shows some simple techniques and helper
classes you can use to streamline the programming model. The appendix ends with
my technique for adding discovery to the service bus in a way that mimics regular

Preface | xxv

Download from Library of Wow! eBook <www.wowebook.com>

WCF discovery, combining the power of discovery with the connectivity of the
service bus.

Appendix D, Publish-Subscribe Service
Appendix D presents several techniques for implementing a publish-subscribe
event management solution. It starts with my framework, which lets you develop
a publishing and a subscription service in, at most, one line of code. The appendix
then shows how to use the service bus for publish-subscribe and ends with a
discovery-enabled publish-subscribe solution that requires no explicit subscription
steps.

Appendix E, Generic Interceptor
This appendix presents a general-purpose extensible framework for intercepting
calls to your WCF services. It walks through the technique and thought process
behind such an extension and shows two examples of how to utilize this simple
yet powerful and useful technique.

Appendix F, WCF Coding Standard
Appendix F is basically a consolidated list of all the best practices and dos and
don’ts mentioned throughout this book. The standard is all about the “how” and
the “what,” not the “why.” The rationale behind it is found in the rest of the book.
The standard also uses the terms and helper classes discussed in this book.

Appendix G, ServiceModelEx Catalog
This final appendix presents a catalog of the 100 or so public helper types (ex-
cluding internal helper types) of ServiceModelEx mentioned in the book, arranged
by categories and techniques, with a short description of each.

Some Assumptions About the Reader
I assume that you, the reader, are an experienced developer and that you are comfort-
able with object-oriented concepts such as encapsulation and inheritance. I will take
advantage of your existing understanding of object and component technology and
terminology, and port that knowledge to WCF. You should ideally have a fair under-
standing of .NET and know C# 4.0 (including use of generics, Lambda expressions,
extension methods, and dynamic late binding). Although the book uses C# for the
most part, it is just as pertinent to Visual Basic developers.

What You Need to Use This Book
To use this book, you will need .NET 4.0 and Visual Studio 2010. For the service bus
sections, you will need the Windows Azure AppFabric SDK. Unless I explicitly mention
otherwise, the contents apply to Windows XP SP2, Windows Server 2003 SP1, Win-
dows Vista, Windows Server 2008, and Windows 7 or later. You may also install ad-
ditional Windows components, such as MSMQ and IIS.

xxvi | Preface

Download from Library of Wow! eBook <www.wowebook.com>

Conventions Used in This Book
The following typographic conventions are used in this book:

Italic
Used for technical terms, URLs, addresses, filenames, and file extensions.

Constant width
Used for code samples, statements, namespaces, classes, assemblies, interface di-
rectives, operators, attributes, and reserved words.

Constant width bold
Used for emphasis in code samples.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Whenever I wish to make a point in a code sample, I do so with the static Assert method
of the Debug class:

int number = 1+2;
Debug.Assert(number == 3);

The Assert method accepts a Boolean value and throws an exception when it is false.

The book follows the recommended naming guidelines and coding style available at
http://www.idesign.net. Whenever it deviates from that standard, it is likely the result
of space or line-length constraints. As for naming conventions, I use “Pascal casing”
for public member methods and properties; this means the first letter of each word in
the name is capitalized. For local variables and method parameters, I use “camel cas-
ing,” in which the first letter of each word in the name is capitalized, with the exception
of the first word. The names of private member variables are prefixed with m_:

class SomeClass
{
 int m_Number;

 public int Number
 {get;set};
}

Preface | xxvii

Download from Library of Wow! eBook <www.wowebook.com>

http://www.idesign.net

I use ellipses between curly braces to indicate the presence of code that is necessary but
unspecified:

class SomeClass
{...}

In the interest of clarity and space, code examples often do not contain all the using
statements needed to specify all the namespaces the examples require; instead, such
examples include only the new namespaces introduced in the preceding text.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from this book does require
permission. Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming WCF Services, Third Edition,
by Juval Löwy. Copyright 2010 Juval Löwy, 978-0-596-80548-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

How to Contact O’Reilly
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional in-
formation. You can access this page at:

http://www.oreilly.com/catalog/9780596805487/

You’ll find the code samples and all the helper classes in this book under the “Exam-
ples” link.

xxviii | Preface

Download from Library of Wow! eBook <www.wowebook.com>

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596805487/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

You can also contact the author at:

http://www.idesign.net

The author has posted a comprehensive code library on the IDesign website with more
than 150 downloads related to WCF essentials, contract design, instance management,
operations and calls, faults, transactions, concurrency, queuing, security, and the serv-
ice bus. The downloads articulate many of the code snippets in this book in a working
fashion. However, because of the large number of the downloads, the maintenance
involved, and the fact that these secondary, accompanying examples do not themselves
appear in the book, they are provided separately from the official sources.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
I would not have been able to come to terms with WCF in its early days without the
constant support of and interaction with the WCF (then Indigo) program managers. I
am especially grateful to my friend Steve Swartz, one of the WCF architects, not just
for his knowledge and insight, but also for his patience with me and those long IM
sessions. Thanks go to Yasser Shohoud, Doug Purdy, and Shy Cohen for the fascinating
strategic design reviews and to Krish Srinivasan for his almost philosophical approach
to engineering. Working with you guys has been the best part of learning WCF and a
privilege in its own right. The following WCF program managers also shared their time
and helped clarify WCF: Andy Milligan, Brian McNamara, Eugene Osovetsky, Kenny
Wolf, Kirill Gavrylyuk, Max Feingold, Michael Marucheck, Mike Vernal, and Steve
Millet. Thanks also to the group manager, Angela Mills.

Preface | xxix

Download from Library of Wow! eBook <www.wowebook.com>

mailto:bookquestions@oreilly.com
http://www.idesign.net
http://my.safaribooksonline.com/?portal=oreilly

When it comes to the third edition, a special “thank you” goes to Clemens Vasters,
who kept me in the loop with the ongoing changes to the service bus and shared his
insight and vision with me.

Outside Microsoft, I am grateful to Nicholas Paldino for his help. This is the fifth book
that Nick has reviewed for me, and by now I am hooked. I simply cannot imagine going
to print without Nick’s insight, meticulous scrutiny, and diligent help, to say nothing
about Nick’s technical competence, which is nothing short of awe-striking and hum-
bling. The books are always a superior product as a result of his editing and feedback.

Finally, to my family: my wife, Dana, who keeps encouraging me to write down my
ideas and techniques, while knowing all too well that writing a book entails precious
time away from her and the kids; and to my parents, who imparted to me the love for
engineering. I dedicate this book to my children, Abigail, Eleanor, and Adam. You all
mean the world to me.

xxx | Preface

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 1

WCF Essentials

This chapter describes the essential concepts and building blocks of Windows Com-
munication Foundation (WCF) and its architecture enabling you to build simple
services. You will learn the basic terms regarding addresses, bindings, contracts, and
endpoints; see how to host a service; learn how to write a client; understand related
topics, such as in-proc hosting, reliability, and transport sessions; and see how to utilize
WCF in Visual Studio 2010. Even if you are already familiar with the basic concepts of
WCF, I recommend that you give this chapter at least a cursory reading, not only to
ensure that you have a solid foundation, but also because some of the helper classes
and terms introduced here will be used and extended throughout the book.

What Is WCF?
WCF is a software development kit for developing and deploying services on Windows.
I will describe what a service is in the next section. But WCF is much more—it is literally
a better .NET. WCF provides a runtime environment for your services, enabling you
to expose Common Language Runtime (CLR) types as services and to consume other
services as CLR types. Although in theory you could build services without WCF, in
practice, building services is significantly easier with WCF. WCF is Microsoft’s imple-
mentation of a set of industry standards defining service interactions, type conversions,
marshaling, and the management of various protocols. Consequently, WCF provides
interoperability between services.

WCF provides developers with the essential off-the-shelf plumbing required by almost
all applications and, as such, it greatly increases productivity. The first release of WCF
(as part of .NET 3.0) provided many useful facilities for developing services, such as
hosting, service instance management, asynchronous calls, reliability, transaction man-
agement, disconnected queued calls, and security. The second release of WCF (as part
of .NET 3.5) provided additional tools and extended the original offering with addi-
tional communication options. The third release (as part of .NET 4.0) includes con-
figuration changes, a few extensions, and the new features of discovery (discussed in
Appendix C) and routers (not discussed in this book). While not directly related

1

Download from Library of Wow! eBook <www.wowebook.com>

to .NET 4.0, WCF is also extended to support the Windows Azure Platform AppFabric
Service Bus, the subject of Chapter 11.

WCF has an elegant extensibility model you can use to enrich the basic offering. In
fact, WCF itself is written using this extensibility model. This book is dedicated to
exploring these aspects and features.

WCF is part of .NET 4.0, so it can run only on operating systems that support it.
Presently, this list consists of Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, and Windows 7 or later.

Most of the WCF functionality is included in a single assembly called System.Service-
Model.dll, located in the System.ServiceModel namespace.

Services
A service is a unit of functionality exposed to the world. In that respect, it is the next
evolutionary step in the long journey from functions to objects to components to serv-
ices. Service orientation (SO) is an abstract set of principles and best practices for build-
ing service-oriented applications. Appendix A provides a concise overview and outlines
the motivation for using this methodology. The rest of this book assumes you are
familiar with these principles. A service-oriented application aggregates services into a
single logical application, similar to the way a component-oriented application aggre-
gates components and an object-oriented application aggregates objects, as shown in
Figure 1-1.

Figure 1-1. A service-oriented application

The services can be local or remote, can be developed by multiple parties using any
technology, can be versioned independently, and can even execute on different time-
lines. Inside a service, you will find concepts such as languages, technologies, platforms,
versions, and frameworks, yet between services, only prescribed communication pat-
terns are allowed.

2 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

The client of a service is merely the party consuming its functionality. The client can
be literally anything—for instance, a Windows Forms, WPF, or Silverlight class, an
ASP.NET page, or another service.

Clients and services interact by sending and receiving messages. Messages may be
transferred directly from the client to the service or be sent via an intermediary such as
the Windows Azure AppFabric Service Bus. With WCF, messages are usually SOAP
messages. These messages are independent of transport protocols—unlike web serv-
ices, WCF services may communicate over a variety of transports (not just HTTP).
WCF clients may interoperate with non-WCF services, and WCF services can interact
with non-WCF clients. That said, if you develop both the client and the service, you
can typically construct the application so that both ends require WCF in order to utilize
WCF-specific advantages.

Because the making of the service is opaque from the outside, a WCF service typically
exposes metadata describing the available functionality and possible ways of commu-
nicating with the service. The metadata is published in a predefined, technology-neutral
way, such as using WSDL (Web Services Description Language) over HTTP-GET or
an industry standard for metadata exchange over any protocol. A non-WCF client can
import the metadata to its native environment as native types. Similarly, a WCF client
can import the metadata of a non-WCF service and consume it as native CLR classes
and interfaces.

Service Execution Boundaries
With WCF, the client never interacts with a service directly, even when dealing with a
local, in-memory service. Instead, the client always uses a proxy to forward calls to the
service. The proxy exposes the same operations as the service, plus some proxy-
management methods.

WCF allows the client to communicate with a service across all execution boundaries.
On the same machine, the client can consume services in the same app domain, across
app domains in the same process, or across processes (see Figure 1-2).

Figure 1-2. Same-machine communication using WCF

Services | 3

Download from Library of Wow! eBook <www.wowebook.com>

Across machine boundaries (Figure 1-3), the client can interact with services in its
intranet or across the Internet.

Figure 1-3. Cross-machine communication using WCF

WCF and Location Transparency
In the past, distributed computing technologies such as DCOM and .NET remoting
aspired to provide the same programming model to the client regardless of whether the
object was local or remote. In the case of a local call, the client used a direct reference,
and when dealing with a remote object, the client used a proxy. The problem with
trying to use the local programming model as the remote programming model was that
there is much more to a remote call than an object with a wire. Complex issues such
as lifecycle management, reliability, state management, and security reared their heads,
making the remote programming model significantly more complex. Numerous prob-
lems arose, all because the remote object was trying to be what it is not—a local object.

WCF also strives to provide the client with the same programming model regardless of
the location of the service. However, the WCF approach is the exact opposite: it takes
the remote programming model of instantiating and using a proxy and uses it even in
the most local case. Because all interactions are done via a proxy, requiring the same
configuration and hosting, WCF maintains the same programming model for the local
and remote cases; thus, it not only enables you to switch locations without affecting
the client, but also significantly simplifies the application programming model. Another
important benefit of always using a proxy is that it enables WCF to intercept the calls
and add its value, as you will see later on.

Addresses
In WCF, every service is associated with a unique address. The address provides two
important elements: the location of the service and the transport protocol, or transport
scheme, used to communicate with the service. The location portion of the address

4 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

indicates the name of the target machine, site, or network; a communication port, pipe,
or queue; and an optional specific path, or URI (Universal Resource Identifier). A URI
can be any unique string, such as the service name or a globally unique identifier
(GUID).

WCF supports the following transport schemes:

• HTTP/HTTPS

• TCP

• IPC

• Peer network

• MSMQ

• Service bus

Addresses always have the following format:

[base address]/[optional URI]

The base address is always in this format:

[transport]://[machine or domain][:optional port]

Here are a few sample addresses:

http://localhost:8001
http://localhost:8001/MyService
net.tcp://localhost:8002/MyService
net.pipe://localhost/MyPipe
net.msmq://localhost/private/MyQueue
net.msmq://localhost/MyQueue

The way to read an address such as:

http://localhost:8001

is like this: “Using HTTP, go to the machine called localhost, where on port 8001
someone is waiting for my calls.”

If there is also a URI, as in:

 http://localhost:8001/MyService

the address will read as follows: “Using HTTP, go to the machine called localhost,
where on port 8001 someone called MyService is waiting for my calls.”

TCP Addresses
TCP addresses use net.tcp for transport and typically include a port number, as in:

net.tcp://localhost:8002/MyService

When a port number is not specified, the TCP address defaults to port 808:

net.tcp://localhost/MyService

Addresses | 5

Download from Library of Wow! eBook <www.wowebook.com>

It is possible for two TCP addresses (from the same host, as discussed later in this
chapter) to share a port:

net.tcp://localhost:8002/MyService
net.tcp://localhost:8002/MyOtherService

TCP-based addresses are used throughout this book.

You can configure TCP-based addresses from different service hosts to
share a port.

HTTP Addresses
HTTP addresses use http for transport and can also use https for secure transport. You
typically use HTTP addresses with outward-facing Internet-based services, and you can
specify a port as shown here:

http://localhost:8001

If you do not specify the port number, it defaults to 80 (and port 443 for HTTPS). As
with TCP addresses, two HTTP addresses from the same host can share a port, even
on the same machine.

HTTP-based addresses are also used throughout this book.

IPC Addresses
IPC (Inter-Process Communication) addresses use net.pipe for transport, to indicate
the use of the Windows named pipe mechanism. In WCF, services that use IPC can
only accept calls from the same machine. Consequently, you must specify either the
explicit local machine name or localhost for the machine name, followed by a unique
string for the pipe name:

net.pipe://localhost/MyPipe

You can open a named pipe only once per machine, so it is not possible for two named
pipe addresses to share a pipe name on the same machine.

IPC-based addresses are used throughout this book.

The IPC address format as provided by Microsoft is incorrect, indicating
the mechanism instead of the protocol. The correct scheme format
should have been net.ipc instead of net.pipe, much like the TCP ad-
dress uses net.tcp rather than net.socket.

6 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

MSMQ Addresses
MSMQ addresses use net.msmq for transport, to indicate the use of the Microsoft Mes-
sage Queue (MSMQ). You must specify the queue name. When you’re dealing with
private queues, you must also specify the queue type, but you can omit that for public
queues:

net.msmq://localhost/private/MyService
net.msmq://localhost/MyService

Chapter 9 is dedicated to making queued calls.

Service Bus Addresses
Windows Azure AppFabric Service Bus addresses use sb, http, or https for transport,
and must include the service bus address along with the service namespace, for
example:

sb://MyNamespace.servicebus.windows.net/

Chapter 11 covers the service bus in depth.

Contracts
In WCF, all services expose contracts. The contract is a platform-neutral and standard
way of describing what the service does. WCF defines four types of contracts:

Service contracts
Describe which operations the client can perform on the service. Service contracts
are the subject of Chapter 2, but they are used extensively in every chapter in this
book.

Data contracts
Define which data types are passed to and from the service. WCF defines implicit
contracts for built-in types such as int and string, but you can easily define explicit
opt-in data contracts for custom types. Chapter 3 is dedicated to defining and using
data contracts, and subsequent chapters make use of data contracts as required.

Fault contracts
Define which errors are raised by the service and how the service handles and
propagates errors to its clients. Chapter 6 is dedicated to defining and using fault
contracts.

Message contracts
Allow the service to interact directly with messages. Message contracts can be typed
or untyped and are useful in interoperability cases when another party has already
dictated some explicit (typically proprietary) message format. This, however, is by
no means the usual case for common WCF applications, so this book makes no
use of message contracts. Unless you are required to leverage the flexibility, power,

Contracts | 7

Download from Library of Wow! eBook <www.wowebook.com>

and extensibility of message contracts, you should avoid them, as they add no
value, but do add complexity. In many cases, the desire to use message contracts
indicates a need for a custom application context, which you can address using
custom headers (a useful alternative technique used throughout this book). For
more on message headers, see Appendix B.

The Service Contract
The ServiceContractAttribute is defined as:

[AttributeUsage(AttributeTargets.Interface|AttributeTargets.Class,
 Inherited = false)]
public sealed class ServiceContractAttribute : Attribute
{
 public string Name
 {get;set;}
 public string Namespace
 {get;set;}
 //More members
}

This attribute allows you to define a service contract. You can apply the attribute on
an interface or a class, as shown in Example 1-1.

Example 1-1. Defining and implementing a service contract

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string MyMethod(string text);

 //Will not be part of the contract
 string MyOtherMethod(string text);
}
class MyService : IMyContract
{
 public string MyMethod(string text)
 {
 return "Hello " + text;
 }
 public string MyOtherMethod(string text)
 {
 return "Cannot call this method over WCF";
 }
}

The ServiceContract attribute maps a CLR interface (or inferred interface, as you will
see later) to a technology-neutral service contract. The ServiceContract attribute ex-
poses a CLR interface (or a class) as a WCF contract independently of that type’s vis-
ibility. The type visibility has no bearing on WCF, because visibility is a CLR concept.
Applying the ServiceContract attribute on an internal interface exposes that interface

8 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

as a public service contract, ready to be consumed across the assembly boundary.
Without the ServiceContract attribute, the interface is not visible to WCF clients, in
line with the service-oriented tenet that service boundaries should be explicit. To en-
force that tenet, all contracts must explicitly opt in: only interfaces (or classes) deco-
rated with the ServiceContract attribute will be considered WCF contracts; other types
will not.

In addition, none of the members of the type will ever be part of the contract when
using the ServiceContract attribute. You must explicitly indicate to WCF which meth-
ods to expose as part of the WCF contract using the OperationContractAttribute, de-
fined as:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationContractAttribute : Attribute
{
 public string Name
 {get;set;}
 //More members
}

You can apply the OperationContract attribute only on methods, not on properties,
indexers, or events, which are CLR concepts. WCF only understands operations—
logical functions—and the OperationContract attribute exposes a contract method as
a logical operation to perform as part of the service contract. Other methods on the
interface (or class) that do not have the OperationContract attribute will not be part of
the contract. This enforces explicit service boundaries and maintains an explicit opt-
in model for the operations themselves. In addition, a contract operation cannot use
object references as parameters: only primitive types or data contracts are allowed.

Applying the ServiceContract attribute

WCF lets you apply the ServiceContract attribute on an interface or on a class. When
you apply it on an interface, some class needs to implement that interface. In general,
you use plain C# or VB to implement the interface, and nothing in the service class
code pertains to it being a WCF service:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string MyMethod();
}
class MyService : IMyContract
{
 public string MyMethod()
 {
 return "Hello WCF";
 }
}

Contracts | 9

Download from Library of Wow! eBook <www.wowebook.com>

You can use implicit or explicit interface implementation:

class MyService : IMyContract
{
 string IMyContract.MyMethod()
 {
 return "Hello WCF";
 }
}

Since the client can never use the service class directly and must always
go through a proxy, using explicit interface implementation is less im-
portant in WCF than it is in regular .NET programming.

A single class can support multiple contracts by deriving and implementing multiple
interfaces decorated with the ServiceContract attribute:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string MyMethod();
}
[ServiceContract]
interface IMyOtherContract
{
 [OperationContract]
 void MyOtherMethod();
}
class MyService : IMyContract,IMyOtherContract
{
 public string MyMethod()
 {...}
 public void MyOtherMethod()
 {...}
}

There are, however, a few implementation constraints on the service implementation
class. You should avoid parameterized constructors, because WCF will only use the
default constructor. Also, although the class can use internal properties, indexers, and
static members, no WCF client will ever be able to access them.

WCF also lets you apply the ServiceContract attribute directly on the service class,
without defining a separate contract first:

//Avoid
[ServiceContract]
class MyService
{
 [OperationContract]
 string MyMethod()
 {
 return "Hello WCF";

10 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 }
}

Under the covers, WCF will infer the contract definition. You can apply the Operation
Contract attribute on any method of the class, be it private or public.

Avoid using the ServiceContract attribute directly on the service class.
Always define a separate contract so that you can both consume it in-
dependently of the class and have other classes implement it.

Names and namespaces

You can and should define a namespace for your contract. The contract namespace
serves the same purpose in WCF as it does in .NET programming: to scope a type of
contract and reduce the overall chance of a collision. You can use the Namespace property
of the ServiceContract attribute to provide a namespace:

[ServiceContract(Namespace = "MyNamespace")]
interface IMyContract
{...}

Unspecified, the contract namespace defaults to http://tempuri.org. For outward-facing
services you typically use your company’s URL, and for intranet services, you can use
any meaningful unique name, such as MyApplication.

By default, the exposed name of the contract will be the name of the interface. However,
you can use an alias for a contract to expose a different name to the clients in the
metadata, by using the Name property of the ServiceContract attribute:

[ServiceContract(Name = "IMyContract")]
interface IMyOtherContract
{...}

Similarly, the name of the publicly exposed operation defaults to the method name,
but you can use the Name property of the OperationContract attribute to alias it to a
different publicly exposed name:

[ServiceContract]
interface IMyContract
{
 [OperationContract(Name = "SomeOperation")]
 void MyMethod(string text);
}

You will see a use for these properties in Chapter 2.

Hosting
The WCF service class cannot exist in a void. Every WCF service must be hosted in a
Windows process called the host process. A single host process can host multiple serv-
ices, and the same service type can be hosted in multiple host processes. WCF has no

Hosting | 11

Download from Library of Wow! eBook <www.wowebook.com>

http://tempuri.org

restrictions regarding whether or not the host process is also the client process, although
having a separate process promotes fault and security isolation. It is also immaterial
who provides the process and what kind of process is involved. The host can be pro-
vided by Internet Information Services (IIS), by the Windows Activation Service (WAS)
on Windows Vista or Windows Server 2008, Windows 7 or later, on the Windows
Server AppFabric, or by the developer as part of the application.

In-process (or in-proc) hosting, where the service resides in the same
process as the client, is a special case. By definition, the developer pro-
vides the host for the in-proc case.

IIS 5/6 Hosting
The main advantage of hosting a service on the Microsoft IIS web server is that the host
process is launched automatically upon the first client request, and IIS 5/6 manages the
lifecycle of the host process. The main disadvantage of IIS 5/6 hosting is that you can
only use HTTP. With IIS 5, you are further restricted to having all services use the same
port number.

Hosting in IIS is very similar to hosting a classic ASMX web service. You need to create
a virtual directory under IIS and supply an .svc file. The .svc file functions similarly to
an .asmx file and is used to identify the service code behind the file and class. Exam-
ple 1-2 shows the syntax for the .svc file.

Example 1-2. A .svc file

<%@ ServiceHost
 Language = "C#"
 Debug = "true"
 CodeBehind = "˜/App_Code/MyService.cs"
 Service = "MyService"
%>

You can even inject the service code inline in the .svc file, but that is not
advisable, as is the case with ASMX web services.

When you use IIS 5/6 hosting, the base address used for the service always has to be
the same as the address of the .svc file.

Using Visual Studio 2010

You can use Visual Studio 2010 to generate a boilerplate IIS-hosted service. From the
File menu, select New Web Site, then select WCF Service from the New Web Site dialog

12 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

box. Visual Studio 2010 creates a new website, a service code, and a matching .svc file.
You can also use the Add New Item dialog box to add another service later.

The Web.Config file

The website config file (web.config) typically lists the types you want to expose as serv-
ices. You need to use fully qualified type names, including the assembly name if the
service type comes from an unreferenced assembly:

<system.serviceModel>
 <services>
 <service name = "MyNamespace.MyService">
 ...
 </service>
 </services>
</system.serviceModel>

Instead of defining an .svc file, you can provide the service type and its address infor-
mation directly in the application web.config file in the serviceHostingEnvironment
section. In fact, you can list there as many services as you like:

<system.serviceModel>
 <serviceHostingEnvironment>
 <serviceActivations>
 <add relativeAddress = "MyService.svc" service = "MyNamespace.MyService"/>
 <add relativeAddress = "MyOtherService.svc" service = "MyOtherService"/>
 </serviceActivations>
 </serviceHostingEnvironment>
 <services>
 <service name = "MyNamespace.MyService">
 ...
 </service>
 <service name = "MyOtherService">
 ...
 </service>
 </services>
</system.serviceModel>

Self-Hosting
Self-hosting is the technique in which the developer is responsible for providing and
managing the lifecycle of the host process. Use self-hosting when you want a process
(or machine) boundary between the client and the service and when you are using the
service in-proc—that is, in the same process as the client. You can provide any Win-
dows process, such as a Windows Forms application, a WPF application, a Console
application, or a Windows NT Service. Note that the process must be running before
the client calls the service, which typically means you have to prelaunch it. This is not
an issue for NT Services or in-proc hosting. You can provide a host with only a few
lines of code. Unlike IIS 5/6, a self-hosted service can use any WCF transport protocol,
and you can take advantage of all the WCF features, including the service bus, discov-
ery, and utilize a singleton service.

Hosting | 13

Download from Library of Wow! eBook <www.wowebook.com>

As with IIS 5/6 hosting, the hosting application config file (app.config) typically lists
the types of the services you wish to host and expose to the world:

<system.serviceModel>
 <services>
 <service name = "MyNamespace.MyService">
 ...
 </service>
 </services>
</system.serviceModel>

In addition, the host process must explicitly register the service types at runtime and
open the host for client calls, which is why the host process must be running before the
client calls arrive. Creating the host is typically done in the Main() method using the
class ServiceHost, defined in Example 1-3.

Example 1-3. The ServiceHost class

public interface ICommunicationObject
{
 void Open();
 void Close();
 //More members
}
public abstract class CommunicationObject : ICommunicationObject
{...}
public abstract class ServiceHostBase : CommunicationObject,IDisposable,...
{...}
public class ServiceHost : ServiceHostBase
{
 public ServiceHost(Type serviceType,params Uri[] baseAddresses);
 //More members
}

You need to provide the constructor of ServiceHost with the service type and optionally
with default base addresses. The set of base addresses can be an empty set, and even if
you provide base addresses, you can configure the service to use different base ad-
dresses. Having a set of base addresses enables the service to accept calls on multiple
addresses and protocols and to use only a relative URI.

Note that each ServiceHost instance is associated with a particular service type, and if
the host process needs to host multiple types of services, you will need a matching
number of ServiceHost instances. By calling the Open() method on the host, you allow
calls in, and by calling the Close() method, you gracefully exit the host instance, al-
lowing calls in progress to complete while refusing future client calls even if the host
process is still running. Closing the service host is typically done when the host process
shuts down. For example, to host this service in a Windows Forms application:

[ServiceContract]
interface IMyContract
{...}
class MyService : IMyContract
{...}

14 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

you would write the following hosting code:

static void Main()
{
 ServiceHost host = new ServiceHost(typeof(MyService));

 host.Open();

 //Can do blocking calls:
 Application.Run(new MyForm());

 host.Close();
}

Opening a host loads the WCF runtime and launches worker threads to monitor in-
coming requests. The monitoring threads dispatch incoming calls to worker threads
from the I/O completion thread pool (where there are up to 1,000 threads by default).
Since worker threads are involved, you can perform blocking operations after opening
the host.

Because the host is closed gracefully, the amount of time it will take is undetermined.
By default, the host will block for 10 seconds waiting for Close() to return and will
proceed with the shutdown after that timeout has expired. Before opening the host,
you can configure a different close timeout with the CloseTimeout property of Service
HostBase:

public abstract class ServiceHostBase : ...
{
 public TimeSpan CloseTimeout
 {get;set;}
 //More members
}

For example, you can use programmatic calls to set the close timeout to 20 seconds:

ServiceHost host = new ServiceHost(...);
host.CloseTimeout = TimeSpan.FromSeconds(20);
host.Open();

You can do the same in a config file by placing the close timeout in the host section of
the service:

<system.serviceModel>
 <services>
 <service name = "MyNamespace.MyService">
 <host>
 <timeouts
 closeTimeout = "00:00:20"
 />
 </host>
 ...
 </service>
 </services>
</system.serviceModel>

Hosting | 15

Download from Library of Wow! eBook <www.wowebook.com>

Using Visual Studio 2010

Visual Studio 2010 allows you to add a WCF service to any application project by
selecting WCF Service from the Add New Item dialog box. A service added this way
is, of course, in-proc toward the host process, but out-of-proc clients can also access it.

Self-hosting and base addresses

You can launch a service host without providing any base address by omitting the base
addresses altogether:

ServiceHost host = new ServiceHost(typeof(MyService));

Do not provide a null instead of an empty list, because that will throw
an exception:

ServiceHost host;
host = new ServiceHost(typeof(MyService),null);

You can also register multiple base addresses separated by commas, as in the following
snippet, as long as the addresses do not use the same transport scheme (note the use
of the params qualifier in Example 1-3):

Uri tcpBaseAddress = new Uri("net.tcp://localhost:8001/");
Uri httpBaseAddress = new Uri("http://localhost:8002/");

ServiceHost host = new ServiceHost(typeof(MyService),
 tcpBaseAddress,httpBaseAddress);

WCF also lets you list the base addresses in the host config file:

<system.serviceModel>
 <services>
 <service name = "MyNamespace.MyService">
 <host>
 <baseAddresses>
 <add baseAddress = "net.tcp://localhost:8001/"/>
 <add baseAddress = "http://localhost:8002/"/>
 </baseAddresses>
 </host>
 ...
 </service>
 </services>
</system.serviceModel>

When you create the host, it will use whichever base addresses it finds in the config
file, plus any base addresses you provide programmatically. Take extra care to ensure
the configured base addresses and the programmatic ones do not overlap in the scheme.

16 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

On Windows Vista, Windows Server 2008, and Windows 7 (or later),
for HTTP addresses other than port 80, you will need to launch the host
process (or Visual Studio 2010 while testing or debugging) as an ad-
ministrator. Instead of doing that every time, you can instruct Windows
to reserve the port namespace for the user running the host. Do this
using the netsh.exe command-line utility. For example, to reserve the
HTTP port 8002 on the local machine, you will need to run this com-
mand at a command prompt launched as an administrator:

netsh http add urlacl url=http://+:8002/
 user="MachineOrDomain\UserName"

You can even register multiple hosts for the same type, as long as the hosts use different
base addresses:

Uri baseAddress1 = new Uri("net.tcp://localhost:8001/");
ServiceHost host1 = new ServiceHost(typeof(MyService),baseAddress1);
host1.Open();

Uri baseAddress2 = new Uri("net.tcp://localhost:8002/");
ServiceHost host2 = new ServiceHost(typeof(MyService),baseAddress2);
host2.Open();

However, with the exception of some threading issues discussed in Chapter 8, opening
multiple hosts this way offers no real advantage. In addition, opening multiple hosts
for the same type does not work with base addresses supplied in the config file and
requires use of the ServiceHost constructor.

Advanced hosting features

The ICommunicationObject interface that ServiceHost supports offers some advanced
features, listed in Example 1-4.

Example 1-4. The ICommunicationObject interface

public interface ICommunicationObject
{
 void Open();
 void Close();
 void Abort();

 event EventHandler Closed;
 event EventHandler Closing;
 event EventHandler Faulted;
 event EventHandler Opened;
 event EventHandler Opening;

Hosting | 17

Download from Library of Wow! eBook <www.wowebook.com>

 IAsyncResult BeginClose(AsyncCallback callback,object state);
 IAsyncResult BeginOpen(AsyncCallback callback,object state);
 void EndClose(IAsyncResult result);
 void EndOpen(IAsyncResult result);

 CommunicationState State
 {get;}
 //More members
}
public enum CommunicationState
{
 Created,
 Opening,
 Opened,
 Closing,
 Closed,
 Faulted
}

If opening or closing the host is a lengthy operation, you can do so asynchronously
with the BeginOpen() and BeginClose() methods. You can subscribe to hosting events
such as state changes or faults, and you can use the State property to query for the host
status. Finally, the ServiceHost class also offers the Abort() method. Abort() is an un-
graceful exit—when called, it immediately aborts all service calls in progress and shuts
down the host. Active clients will each get an exception.

The ServiceHost<T> class

You can improve on the WCF-provided ServiceHost class by defining the Service
Host<T> class, as shown in Example 1-5.

Example 1-5. The ServiceHost<T> class

public class ServiceHost<T> : ServiceHost
{
 public ServiceHost() : base(typeof(T))
 {}

 public ServiceHost(params string[] baseAddresses) : base(typeof(T),
 baseAddresses.Select(address=>new Uri(address)).ToArray())
 {}
 public ServiceHost(params Uri[] baseAddresses) : base(typeof(T),baseAddresses)
 {}
}

ServiceHost<T> provides simple constructors that do not require the service type as a
construction parameter and that can operate on raw strings instead of the cumbersome
Uri. I’ll add quite a few extensions, features, and capabilities to ServiceHost<T>
throughout this book.

18 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

WAS Hosting
The problem with hosting in IIS 5/6 is that it is a web server, not a hosting engine. It
therefore requires you to masquerade your service as a website. While ASP.NET en-
capsulates this step for you, it causes a significant increase in internal complexity, in-
volving the HTTP modules and the ASP.NET pipeline. The problem is that the more
moving parts involved, the higher the likelihood of something going wrong. As a result,
hosting in IIS 5/6 is notorious for instability and the frequent need to reset the server
or IIS 5/6. Moreover, limiting the service to using only HTTP makes IIS 5/6 ill-suited
for intranet applications.

With the next wave of Windows, Microsoft rectified this issue by providing a general-
purpose hosting engine called the Windows Activation Service (WAS). WAS is a system
service available with Windows Vista, Windows Server 2008, and Windows 7 (or later).
The WAS is a true general-purpose hosting engine. It can host websites (in fact, IIS 7
will host its websites in the WAS by default), but it can just as easily host your services,
allowing you to use any transport, such as TCP, IPC, or MSMQ. You can install and
configure the WAS separately from IIS 7. Hosting a WCF service in the WAS is designed
to look just like hosting in IIS 5/6. You need to either supply an .svc file, just as with
IIS 5/6, or provide the equivalent information in the config file. All the other develop-
ment aspects, such as support in Visual Studio 2010, remain exactly the same. Since
the WAS is a system service, you do not need to pre-launch your service host process.
When the first client call arrives, the WAS will intercept it, launch a worker process to
host your service, and forward it the call.

WAS offers many advantages over self-hosting, including application pooling, recy-
cling, idle time management, identity management, and isolation, and it is the host
process of choice when available—that is, when you can target a platform that supports
it, such as Windows Server 2008 (or later) machine for scalability, or a Windows Vista
or Windows 7 (or later) client machine for a handful of clients.

That said, self-hosted processes do offer singular advantages, such as in-proc hosting,
dealing well with unknown customer environments, and easy programmatic access to
the advanced hosting features described previously.

Custom Hosting in IIS/WAS
It is often the case that you need to interact with the host instance. While this is integral
to the use of a self-hosting solution, when using IIS 5/6 or WAS, you have no direct
access to the host. To overcome this hurdle, WCF provides a hook called a host fac-
tory. Using the Factory tag in the .svc file, you can specify a class you provide that
creates the host instance:

<%@ ServiceHost
 Language = "C#"
 Debug = "true"
 CodeBehind = "˜/App_Code/MyService.cs"

Hosting | 19

Download from Library of Wow! eBook <www.wowebook.com>

 Service = "MyService"
 Factory = "MyServiceFactory"
%>

You can also specify the host factory in the config file when not using an .svc file
explicitly:

<serviceActivations>
 <add relativeAddress = "MyService.svc"
 service = "MyService"
 factory = "MyServiceFactory"
 />
</serviceActivations>

The host factory class must derive from the ServiceHostFactory class and override the
CreateServiceHost() virtual method:

public class ServiceHostFactory : ...
{
 protected virtual ServiceHost CreateServiceHost(Type serviceType,
 Uri[] baseAddresses);
 //More members
}

For example:

class MyServiceFactory : ServiceHostFactory
{
 protected override ServiceHost CreateServiceHost(Type serviceType,
 Uri[] baseAddresses)
 {
 ServiceHost host = new ServiceHost(serviceType,baseAddresses);

 //Custom steps here

 return host;
 }
}

The CreateServiceHost() method is logically the Main() method of an
IIS or WAS hosted service, and you can use it just for that purpose.

Windows Server AppFabric
The problem with the WAS is that it is a general-purpose hosting engine. It is actually
unaware that it is hosting a WCF service or a website. It is not optimized for hosting
services. To address this issue, you can install an extension to the WAS called the
Windows Server AppFabric. Windows Server AppFabric requires IIS 7.5, that is, a ma-
chine running Windows 7, Windows Server 2008 R2, and .NET 4.0. The extension is
designed to provide additional configuration options as well as monitoring, instru-
mentation, and event tracking for both WCF services and Workflow (WF) services. In

20 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

fact, Windows Server AppFabric is geared more toward WF services, which require
support for persistence and state management correlation. Windows Server AppFabric
adds items for managing and monitoring the services, as well as WCF and WF config-
uration items, to the IIS 7 management console. Windows Server AppFabric provides
a dashboard for monitoring the running instances of WCF or WF services, and is rem-
iniscent of the MTS or COM+ Component Services Explorer of old. Windows Server
AppFabric provides health monitoring and custom diagnostics, as well as some trou-
bleshooting features for analyzing why a service call has failed.

Windows Server AppFabric also supports scripting of all the options available in the
user interface. Windows Server AppFabric offers its own events collecting system serv-
ice, which stores the events in a SQL Server database. You can provide Windows Server
AppFabric with tracing and tracking profiles at various verbosity levels. A full discus-
sion of the features of Windows Server AppFabric is beyond the scope of this chapter,
as it pertains more to administration and operations, and less to service design and
software development, which is the focus of this book.

By far, the most pertinent feature of Windows Server AppFabric for WCF developers
is the capability to auto-start services without waiting for the first client request. With-
out the Windows Server AppFabric, the WAS will launch your hosting process only
when the first client request comes in. It turns out there are a number of cases in which
this will not suffice, for example, when by design the service must be running before
the first client calls. These cases include a singleton service (discussed in Chapter 4), a
service that uses the service bus (discussed in Chapter 11), or a discovery-enabled serv-
ice (discussed in Appendix C).

When you require the service to start up independently of client calls, you can instruct
Windows Server AppFabric to do just that. Right-click the service site in the II7 console,
select Manage WCF and WF Services, and click Configure… to bring up the dialog box
shown in Figure 1-4.

Figure 1-4. Configuring Windows Server AppFabric Auto-Start

Hosting | 21

Download from Library of Wow! eBook <www.wowebook.com>

Select the Auto-Start tab and specify whether you want to start up all services in the
application or only services that opt-in to start up (the Custom option). If you choose
to opt-in individual services, you will then need to enable auto-start for each service
individually (by configuring its Auto-Start option on the properties from the Services
dashboard). This will include a directive for that service in the web.config file:

<microsoft.applicationServer>
 <hosting>
 <serviceAutoStart>
 <add relativeVirtualPath = "MyService.svc"/>
 </serviceAutoStart>
 </hosting>
</microsoft.applicationServer>

Choosing a Host
Even though WCF offers such a variety of options, from IIS 5/6, to the WAS, to the
WAS with AppFabric, to self hosting, it is easy to choose the correct host. For an In-
ternet application (that is, an application that receives calls from clients across the
Internet), follow the decision tree shown in Figure 1-5.

Figure 1-5. Choosing a host for an Internet service

22 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

If your Internet application can use the service bus and is hosted on a machine running
IIS 7.5 (.NET 4.0, Windows Server 2008 R2, or Windows 7 or later), then you should
host in Windows Server AppFabric. Otherwise, you must use self-hosting to manually
auto-start your service. If your Internet application cannot use the service bus but can
target a machine running IIS 7 (Windows Vista, Windows Server 2008, or Windows 7
or later), you should choose the WAS. Otherwise, choose IIS 6.

For an intranet application (that is, an application that receives calls from clients within
the same intranet), follow the decision tree shown in Figure 1-6.

Figure 1-6. Choosing a host for an intranet service

If your intranet application is deployed on an end user client machine and uses an
interactive user interface, or has its own deployment lifecycle and updates, use self-
hosting. If the application is deployed on a server machine running IIS 7.5, you should
host in Windows Server AppFabric. If you cannot use AppFabric and your service is a
singleton or uses WCF discovery, then you must choose self-hosting to manually
autostart your service. If you cannot use AppFabric and your service is not a singleton
and does not rely on discovery, the next question is about what kind of platform it is
running on. If the service machine is running IIS 7, you should choose the WAS. Oth-
erwise, choose self-hosting.

Hosting | 23

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Bindings
There are multiple aspects of communication with any given service, and there are many
possible communication patterns. Messages can follow a synchronous request-reply or
asynchronous fire-and-forget pattern, messages can be bidirectional, messages can be
delivered immediately or queued, and the queues can be durable or volatile. As dis-
cussed previously, there are many possible transport protocols for the messages, such
as HTTP (or HTTPS), TCP, IPC, and MSMQ. There are also a few possible message
encoding options. You can choose plain text to enable interoperability, binary encoding
to optimize performance, or the Message Transport Optimization Mechanism
(MTOM) for large payloads. Finally, there are multiple options for securing messages.
You can choose not to secure them at all, to provide transport-level security only, or
to provide message-level privacy and security, and, of course, there are numerous ways
to authenticate and authorize the clients. Message delivery might be unreliable or re-
liable end-to-end across intermediaries and dropped connections, and the messages
might be processed in the order they were sent or in the order they were received. Your
service might need to interoperate with other services or clients that are aware of only
the basic web service protocol, or with clients and services capable of using the score
of WS-* modern protocols, such as WS-Security and WS-Atomic Transactions. Your
service may need to have the capability to interoperate with any client or you may want
to restrict your service to interoperate only with another WCF service or client.

If you were to count all the possible communication and interaction options, you’d
probably find that the number of permutations is in the tens of thousands. Some of
those choices may be mutually exclusive and some may mandate other choices. Clearly,
both the client and the service must be aligned on all these options in order to com-
municate properly. Managing this level of complexity adds no business value to most
applications, and yet the productivity and quality implications of making the wrong
decisions are severe.

To simplify these choices and make them manageable, WCF groups together sets of
communication aspects in bindings. A binding is merely a consistent, canned set of
choices regarding the transport protocol, message encoding, communication pattern,
reliability, security, transaction propagation, and interoperability. All you need to do
is determine the target scenario for your service, and WCF makes a correct multidi-
mensional decision for you regarding all the aspects of the communication. Ideally, you
can extract all these “plumbing” aspects from your service code and allow the service
to focus solely on the implementation of the business logic. Bindings allow you to use
the same service logic over drastically different plumbing.

You can use the WCF-provided bindings out of the box, you can tweak their properties,
or you can write your own custom bindings from scratch. The service publishes its
choice of binding in its metadata, enabling clients to query for the type and specific
properties of the binding. This is important because the client must use the exact same

24 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

binding values as the service. A single service can support multiple bindings on separate
addresses.

The Common Bindings
WCF defines five frequently used bindings:

Basic binding
Offered by the BasicHttpBinding class, basic binding is designed to expose a WCF
service as a legacy ASMX web service so that old clients can work with new services.
The basic binding makes your service look, on the wire, like a legacy web service
that communicates over the basic web service profile. When used by clients, this
binding enables new WCF clients to work with old ASMX services.

TCP binding
Offered by the NetTcpBinding class, TCP binding uses TCP for cross-machine com-
munication on the intranet. It supports a variety of features, including reliability,
transactions, and security, and is optimized for WCF-to-WCF communication. As
a result, it requires both the client and the service to use WCF.

IPC binding
Offered by the NetNamedPipeBinding class, IPC binding uses named pipes as a
transport for same-machine communication. It is the most secure binding, since it
cannot accept calls from outside the machine. The IPC binding supports a variety
of features similar to the TCP binding. It is also the most performant binding, since
IPC is a lighter protocol than TCP.

The NetNamedPipeBinding class is inconsistently named, since the
binding naming convention is to refer to the protocol, not the com-
munication mechanism (thus, we have NetTcpBinding rather than
NetSocketBinding). The correct name for this binding should have
been NetIpcBinding. Throughout this book, I will refer to the Net
NamedPipeBinding as the IPC binding.

Web Service (WS) binding
Offered by the WSHttpBinding class, the WS binding uses HTTP or HTTPS for
transport and offers a variety of features (such as reliability, transactions, and se-
curity) over the Internet, all using the WS-* standards. This binding is designed to
interoperate with any party that supports the WS-* standards.

MSMQ binding
Offered by the NetMsmqBinding class, the MSMQ binding uses MSMQ for transport
and offers support for disconnected queued calls. Use of this binding is the subject
of Chapter 9.

Bindings | 25

Download from Library of Wow! eBook <www.wowebook.com>

Format and encoding

Each of the frequently used bindings uses a different transport scheme and encoding,
as listed in Table 1-1. Where multiple encodings are possible, the defaults are shown
in bold.

Table 1-1. Transport and encoding for common bindings

Name Transport Encoding Interoperable

BasicHttpBinding HTTP/HTTPS Text, MTOM Yes

NetTcpBinding TCP Binary No

NetNamedPipeBinding
IPC Binary No

WSHttpBinding HTTP/HTTPS Text, MTOM Yes

NetMsmqBinding MSMQ Binary No

Having text-based encoding typically enables a WCF service (or client) to communicate
over HTTP with any other service (or client), regardless of its technology and across
firewalls. Binary encoding over TCP, IPC, or MSMQ yields the best performance, but
it does so at the expense of interoperability because it mandates WCF-to-WCF com-
munication. That said, with the TCP, IPC, and MSMQ bindings, interoperability is
often not required. In the case of IPC, since the call can never leave the client machine,
the client can rest assured that the target machine is running Windows and has WCF
installed on it. In the case of the TCP binding, while your application may need to
interoperate with other applications written in other technologies, applications them-
selves do tend to be homogeneous internally. As such, as long as your application spans
only the local intranet, you can typically assume a homogeneous Windows environ-
ment without internal firewalls between machines. Finally, the MSMQ binding requires
the use of MSMQ server, which, of course, is Windows-specific.

The binary encoder the TCP, IPC, and MSMQ bindings use is propri-
etary to WCF. Do not attempt to write a custom parser for it on other
platforms. Microsoft reserves the right to change its format over time in
order to keep optimizing and evolving it.

Choosing a Binding
When choosing a binding for your service, you should follow the decision diagram
shown in Figure 1-7.

The first question you should ask yourself is whether your service needs to interact with
non-WCF clients. If the answer is yes, and those clients expect the basic web service
protocol (ASMX web services), choose the BasicHttpBinding, which exposes your WCF
service to the outside world as if it were an ASMX web service (that is, a WSI-basic
profile). The downside of this choice is that you cannot take advantage of most of the

26 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

modern WS-* protocols. If, however, the non-WCF client can understand these stand-
ards, you can instead choose the WS binding. If you can assume the client is a WCF
client and requires offline or disconnected interaction, choose the NetMsmqBinding,
which uses MSMQ for transporting the messages. If the client requires connected com-
munication but could be calling across machine boundaries, choose the
NetTcpBinding, which communicates over TCP. If the client is on the same machine as
the service, choose the NetNamedPipeBinding, which uses IPC to maximize performance.

Most bindings work well even outside their target scenarios. For exam-
ple, you can use the TCP binding for same-machine or even in-proc
communication, and you can use the basic binding for intranet WCF-
to-WCF communication. However, do try to choose a binding accord-
ing to Figure 1-7.

Additional Bindings
In addition to the five frequently used bindings described so far, WCF provides three
specializations of these bindings: the BasicHttpContextBinding, the WSHttpContext
Binding, and the NetTcpContextBinding. The context bindings (described in Appen-
dix B) all derive from their respective regular bindings, adding support for a context
protocol. The context protocol allows you to pass out-of-band parameters to the serv-
ice. You can also use the context bindings for durable services support, as described in
Chapter 4.

WCF also defines several bindings for the Windows Azure AppFabric Service Bus.
These are the subject of Chapter 11.

Figure 1-7. Choosing a binding

Bindings | 27

Download from Library of Wow! eBook <www.wowebook.com>

WCF defines six infrequently used bindings. These bindings (listed next) are each de-
signed for a specific target scenario and you cannot use them easily outside that sce-
nario. This book makes no use of these bindings, due to their somewhat esoteric nature
and the availability of better design alternatives.

WS dual binding
Offered by the WSDualHttpBinding class, this is similar to the WS binding, except
it also supports bidirectional duplex communication from the service to the client,
as discussed in Chapter 5. While this binding does use industry standards (it is
nothing more than two WSHttpBinding bindings wired up against each other to
support callbacks), there is no industry standard for setting up the callback, and
therefore the WSDualHttpBinding is not interoperable. This binding is a legacy from
the first release of WCF. The availability of the .NET service bus (described in
Chapter 11) and the NetTcpRelayBinding deprecates the WSDualHttpBinding.

Peer network binding
Offered by the NetPeerTcpBinding class, this uses peer networking as a transport:
the peer-network-enabled client and services all subscribe to the same grid and
broadcast messages to it. Peer networking is beyond the scope of this book, since
it requires an understanding of grid topology and mesh computing strategies. It is
also my experience that many who choose the peer bindings do so because they
are really after an implicit discovery mechanism or a publish-subscribe mechanism.
Appendix C discusses discovery and Appendix D offers several easy-to-use publish-
subscribe frameworks (including a discovery-based publish-subscribe framework).

Federated WS binding
Offered by the WSFederationHttpBinding class, this is a specialization of the WS
binding that offers support for federated security. Federated security is beyond the
scope of this book, since the industry presently lacks good support (both in tech-
nology and in business models) for true federated scenarios. I do expect federation
to become mainstream as time goes by.

Federated WS 2007 binding
Offered by the WS2007FederationHttpBinding class, this is an update of
WSFederationHttpBinding.

MSMQ integration binding
Offered by the MsmqIntegrationBinding class, this is the analogous queued-world
binding to the basic binding. The integration binding converts WCF messages to
and from MSMQ messages and is designed to interoperate with legacy MSMQ
clients.

WS 2007 binding
Offered by the WS2007HttpBinding class, this binding derives from the
WSHttpBinding class; it adds support for the emerging coordination standard and
updates for the transaction, security, and reliability standards.

28 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Another common binding is the WebHttpBinding, which is especially popular with social
networks in implementing a syndication feed and some loose deployment cases when
interoperating with technologies that cannot use web standards. This binding allows
your service to accept simple calls over web protocols such as HTTP-GET using the
REST/POX/JSON patterns. This WebHttpBinding binding is useful for a web-scripting
client such as an Ajax page. This book does not have any specific coverage for this
binding because, in almost all system aspects, this binding is very similar to the
BasicHttpBinding covered in this book and, more crucial, the web binding does not
offer the full power of WCF, from reliability to transactions to message security. It offers
only a limited subset and requires the developer (if needed) to compensate, often using
custom code or design. The proper use of the web binding, its target scenarios, and
resulting patterns could easily fill another book, so I chose to limit the scope in this
book to the best ways of leveraging the core features of WCF rather than how to make
do without them.

Using a Binding
Each binding offers literally dozens of configurable properties. There are three ways of
working with bindings: you can use the built-in bindings as they are, if they fit your
requirements; you can tweak and configure some of their properties, such as transaction
propagation, reliability, and security; or you can write your own custom bindings. The
most common scenario is using an existing binding mostly as it is and merely config-
uring two or three of its aspects. Application developers will hardly ever need to write
a custom binding, but framework developers may need to.

Endpoints
Every service is associated with an address that defines where the service is, a binding
that defines how to communicate with the service, and a contract that defines what the
service does. This triumvirate governing the service is easy to remember as the ABC of
the service. WCF formalizes this relationship in the form of an endpoint. The endpoint
is the fusion of the address, contract, and binding (see Figure 1-8).

Figure 1-8. The endpoint

Endpoints | 29

Download from Library of Wow! eBook <www.wowebook.com>

Every endpoint must have all three elements, and the host exposes the endpoint. Log-
ically, the endpoint is the service’s interface and is analogous to a CLR or COM inter-
face. Note the use of the traditional “lollipop” notation to denote an endpoint in
Figure 1-8.

Conceptually, even in C# or VB, there are endpoints: the address is the
memory address of the type’s virtual table, the binding is CLR, and the
contract is the interface itself. Because in classic .NET programming you
never deal with addresses or bindings, you take them for granted, and
you’ve probably gotten used to equating in your mind’s eye the interface
(which is merely a programming construct) with all that it takes to in-
terface with an object. The WCF endpoint is a true interface because it
contains all the information required to interface with the object. In
WCF, the address and the binding are not preordained and you must
specify them.

Every service must expose at least one business endpoint, and each endpoint has exactly
one contract. All endpoints on a service have unique addresses, and a single service can
expose multiple endpoints. These endpoints can use the same or different bindings and
can expose the same or different contracts. There is absolutely no relationship between
the various endpoints a service provides.

It is important to point out that nothing in the service code pertains to its endpoints,
and they are always external to the service code. You can configure endpoints either
administratively (using a config file) or programmatically.

Administrative Endpoint Configuration
Configuring an endpoint administratively requires placing the endpoint details in the
hosting process config file. For example, given this service definition:

namespace MyNamespace
{
 [ServiceContract]
 interface IMyContract
 {...}
 class MyService : IMyContract
 {...}
}

Example 1-6 shows the required entries in the config file. Under each service type, you
list its endpoints.

Example 1-6. Administrative endpoint configuration

<system.serviceModel>
 <services>
 <service name = "MyNamespace.MyService">
 <endpoint

30 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 address = "http://localhost:8000/MyService"
 binding = "wsHttpBinding"
 contract = "MyNamespace.IMyContract"
 />
 </service>
 </services>
</system.serviceModel>

When you specify the service and the contract type, you need to use fully qualified type
names. I will omit the namespace in the examples throughout the remainder of this
book, but you should use a namespace when applicable. Note that if the endpoint
provides a base address, that address scheme must be consistent with the binding, such
as HTTP with WSHttpBinding. A mismatch causes an exception at service load time.

Example 1-7 shows a config file defining a single service that exposes multiple end-
points. You can configure multiple endpoints with the same base address as long as the
URI is different.

Example 1-7. Multiple endpoints on the same service

<service name = "MyService">
 <endpoint
 address = "http://localhost:8000/MyService"
 binding = "wsHttpBinding"
 contract = "IMyContract"
 />
 <endpoint
 address = "net.tcp://localhost:8001/MyService"
 binding = "netTcpBinding"
 contract = "IMyContract"
 />
 <endpoint
 address = "net.tcp://localhost:8002/MyService"
 binding = "netTcpBinding"
 contract = "IMyOtherContract"
 />
</service>

Administrative configuration is the option of choice in the majority of cases because it
provides the flexibility to change the service address, binding, and even exposed con-
tracts without rebuilding and redeploying the service.

Using base addresses

In Example 1-7, each endpoint provided its own base address. When you provide an
explicit base address, it overrides any base address the host may have provided.

You can also have multiple endpoints use the same base address, as long as the endpoint
addresses differ in their URIs:

<service name = "MyService">
 <endpoint
 address = "net.tcp://localhost:8001/MyService"

Endpoints | 31

Download from Library of Wow! eBook <www.wowebook.com>

 binding = "netTcpBinding"
 contract = "IMyContract"
 />
 <endpoint
 address = "net.tcp://localhost:8001/MyOtherService"
 binding = "netTcpBinding"
 contract = "IMyContract"
 />
</service>

Alternatively, if the host provides a base address with a matching transport scheme,
you can leave out the address. In this case, the endpoint address will be the same as the
base address of the matching transport:

<endpoint
 binding = "wsHttpBinding"
 contract = "IMyContract"
/>

If the host does not provide a matching base address, loading the service host will fail
with an exception.

When you configure the endpoint address, you can add just the relative URI under the
base address:

<endpoint
 address = "SubAddress"
 binding = "wsHttpBinding"
 contract = "IMyContract"
/>

The endpoint address in this case will be the matching base address plus the URI and,
again, the host must provide a matching base address.

Binding configuration

You can use the config file to customize the binding used by the endpoint. To that end,
add the bindingConfiguration tag to the endpoint section and name a customized sec-
tion in the bindings section of the config file. Example 1-8 demonstrates using this
technique to enable transaction propagation. Chapter 7 explains the function of the
transactionFlow tag.

Example 1-8. Service-side binding configuration

<system.serviceModel>
 <services>
 <service name = "MyService">
 <endpoint
 address = "net.tcp://localhost:8000/MyService"
 bindingConfiguration = "TransactionalTCP"
 binding = "netTcpBinding"
 contract = "IMyContract"
 />
 <endpoint

32 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 address = "net.tcp://localhost:8001/MyService"
 bindingConfiguration = "TransactionalTCP"
 binding = "netTcpBinding"
 contract = "IMyOtherContract"
 />
 </service>
 </services>
 <bindings>
 <netTcpBinding>
 <binding name = "TransactionalTCP"
 transactionFlow = "true"
 />
 </netTcpBinding>
 </bindings>
</system.serviceModel>

As shown in Example 1-8, you can reuse the named binding configuration in multiple
endpoints simply by referring to it.

Default binding

WCF allows you to use a default binding that affects all endpoints of all services of the
application that uses the config file. A default binding is simply a nameless binding
section. For example, in the case of TCP:

<netTcpBinding>
 <binding
 transactionFlow = "true"
 />
</netTcpBinding>

The default binding implicitly configures all endpoints that do not explicitly reference
a binding configuration.

For example, using a default binding, Example 1-8 is reduced to:

<system.serviceModel>
 <services>
 <service name = "MyService">
 <endpoint
 address = "net.tcp://localhost:8000/MyService"
 binding = "netTcpBinding"
 contract = "IMyContract"
 />
 <endpoint
 address = "net.tcp://localhost:8001/MyService"
 binding = "netTcpBinding"
 contract = "IMyOtherContract"
 />
 </service>
 </services>
 <bindings>
 <netTcpBinding>
 <binding
 transactionFlow = "true"

Endpoints | 33

Download from Library of Wow! eBook <www.wowebook.com>

 />
 </netTcpBinding>
 </bindings>
</system.serviceModel>

You can only have at most one default binding configuration per binding type.

The problem with the default binding is that when you combine default bindings with
named binding configurations, as shown in Figure 1-9, the config file may become
difficult for humans to parse and understand.

Figure 1-9. Named and default binding configuration

While Figure 1-9 is a perfectly valid configuration, I recommend against mixing named
and default bindings. Either have all your binding configurations named or use only
the default configuration. Another advantage of a named configuration is that it allows
you to weave a bit of documentation via the binding configuration name as to what
that configuration is trying to achieve. Most if not all of the binding configurations in
this book are named for precisely that reason.

Programmatic Endpoint Configuration
Programmatic endpoint configuration is equivalent to administrative configuration,
but instead of resorting to a config file, you rely on programmatic calls to add endpoints
to the ServiceHost instance. Again, these calls are always outside the scope of the service
code. ServiceHost provides overloaded versions of the AddServiceEndpoint() method:

34 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

public class ServiceHost : ServiceHostBase
{
 public ServiceEndpoint AddServiceEndpoint(Type implementedContract,
 Binding binding,
 string address);
 //Additional members
}

You can provide AddServiceEndpoint() methods with either relative or absolute
addresses, just as with a config file. Example 1-9 demonstrates programmatic config-
uration of the same endpoints as in Example 1-7.

Example 1-9. Service-side programmatic endpoint configuration

ServiceHost host = new ServiceHost(typeof(MyService));

Binding wsBinding = new WSHttpBinding();
Binding tcpBinding = new NetTcpBinding();

host.AddServiceEndpoint(typeof(IMyContract),wsBinding,
 "http://localhost:8000/MyService");
host.AddServiceEndpoint(typeof(IMyContract),tcpBinding,
 "net.tcp://localhost:8001/MyService");
host.AddServiceEndpoint(typeof(IMyOtherContract),tcpBinding,
 "net.tcp://localhost:8002/MyService");

host.Open();

When you add an endpoint programmatically, the address is given as a string, the
contract as a Type, and the binding as one of the subclasses of the abstract class
Binding, as in:

public class NetTcpBinding : Binding,...
{...}

To rely on the host base address, provide an empty string if you want to use only the
base address, or just the URI to use the base address plus that URI:

Uri tcpBaseAddress = new Uri("net.tcp://localhost:8000/");

ServiceHost host = new ServiceHost(typeof(MyService),tcpBaseAddress);

Binding tcpBinding = new NetTcpBinding();

//Use base address as address
host.AddServiceEndpoint(typeof(IMyContract),tcpBinding,"");
//Add relative address
host.AddServiceEndpoint(typeof(IMyContract),tcpBinding,"MyService");
//Ignore base address
host.AddServiceEndpoint(typeof(IMyContract),tcpBinding,
 "net.tcp://localhost:8001/MyService");
host.Open();

As with administrative configuration using a config file, the host must provide a match-
ing base address; otherwise, an exception occurs. In fact, in terms of capabilities, there

Endpoints | 35

Download from Library of Wow! eBook <www.wowebook.com>

is no difference between programmatic and administrative configuration. When you
use a config file, all WCF does is parse the file and execute the appropriate program-
matic calls in its place.

Binding configuration

You can programmatically set the properties of the binding used. For example, the
following is the code required to enable transaction propagation (similar to
Example 1-8):

ServiceHost host = new ServiceHost(typeof(MyService));
NetTcpBinding tcpBinding = new NetTcpBinding();

tcpBinding.TransactionFlow = true;

host.AddServiceEndpoint(typeof(IMyContract),tcpBinding,
 "net.tcp://localhost:8000/MyService");
host.Open();

Note that when you’re dealing with specific binding properties, you typically interact
with a concrete binding subclass, such as NetTcpBinding, rather than its abstract base
class, Binding (as was done in Example 1-9).

All the binding classes also offer a constructor that takes a string, for example:

public class NetTcpBinding : Binding,...
{
 public NetTcpBinding(string configurationName);
 //More members
}

You can use that constructor to programmatically initialize a binding object based on
settings found in a particular binding section in the config file. You can also pass an
empty string to instruct WCF to use the default (nameless) binding configuration. If
the config file does not contain a default binding definition, you will encounter a
KeyNotFoundException.

Default Endpoints
If the service host does not define any endpoints (neither in config nor programmati-
cally) but does provide at least one base address, WCF will by default add endpoints
to the service. These are called the default endpoints. WCF will add an endpoint per
base address per contract, using the base address as the endpoint’s address. WCF will
infer the binding from the scheme of the base address. For HTTP, WCF will use the
basic binding. Note that the default bindings will affect the default endpoints. WCF
will also name the endpoint by concatenating the binding name and the contract name.

For example, given this service definition:

[ServiceContract]
interface IMyContract

36 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

{...}

[ServiceContract]
interface IMyOtherContract
{...}

class MyService : IMyContract,IMyOtherContract
{...}

for this hosting code:

Uri httpBaseAddress = new Uri("http://localhost:8000/");
Uri tcpBaseAddress = new Uri("net.tcp://localhost:9000/");
Uri ipcBaseAddress = new Uri("net.pipe://localhost/");

ServiceHost host = new ServiceHost(typeof(MyService),
 httpBaseAddress,tcpBaseAddress,ipcBaseAddress);
host.Open();

Assuming no config file is used to define any additional endpoints, WCF will add these
endpoints, as if they were defined in config:

<service name = "MyService">
 <endpoint name = "BasicHttpBinding_IMyContract"
 address = "http://localhost:8000/"
 binding = "basicHttpBinding"
 contract = "IMyContract"
 />
 <endpoint name = "NetTcpBinding_IMyContract"
 address = "net.tcp://localhost:9000"
 binding = "netTcpBinding"
 contract = "IMyContract"
 />
 <endpoint name = "NetNamedPipeBinding_IMyContract"
 address = "net.pipe://localhost/"
 binding = "netNamedPipeBinding"
 contract = "IMyContract"
 />

 <endpoint name = "BasicHttpBinding_IMyOtherContract"
 address = "http://localhost:8000/"
 binding = "basicHttpBinding"
 contract = "IMyOtherContract"
 />
 <endpoint name = "NetTcpBinding_IMyOtherContract"
 address = "net.tcp://localhost:9000"
 binding = "netTcpBinding"
 contract = "IMyOtherContract"
 />
 <endpoint name = "NetNamedPipeBinding_IMyOtherContract"
 address = "net.pipe://localhost/"
 binding = "netNamedPipeBinding"
 contract = "IMyOtherContract"
 />
</service>

Endpoints | 37

Download from Library of Wow! eBook <www.wowebook.com>

Note that WCF will provide the same address multiple times to different endpoints.
While this works as far as invocation (since the host monitors the incoming ports or
pipes just once and just dispatches the message internally to the correct endpoint), this
configuration will fail metadata publishing due to an internal limitation of WCF.

You can also add the default endpoints explicitly using the AddDefaultEndpoints()
method of ServiceHost:

public class ServiceHost : ...
{
 public void AddDefaultEndpoints();
 //More members
}

You can add the default endpoints even if you have added other endpoints conven-
tionally using a config file or programmatically. The only thing to watch for is conflict
with other endpoints that use the base address as their address.

Protocol mapping

For the default endpoints, WCF will infer the binding to use from the scheme of the
base address. This inferring is called protocol mapping. In the case of TCP, IPC, and
MSMQ, there is only a single mapping option. However, in the case of HTTP (or
HTTPS), WCF will default to the basic binding for mapping. If you like to rely on the
WS binding instead (as you should in most cases), you need to override the default
protocol mapping using the protocolMapping section in the config file:

<system.serviceModel>
 <protocolMapping>
 <add
 scheme = "http"
 binding = "wsHttpBinding"
 />
 </protocolMapping>
</system.serviceModel>

You can also specify a particular binding configuration to use:

<protocolMapping>
 <add
 scheme = "http"
 binding = "wsHttpBinding"
 bindingConfiguration = "..."
 />
</protocolMapping>

You must do protocol mapping administratively in the config file. There is no equiva-
lent programmatic way.

38 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Protocol mapping is the only configuration option offered by WCF in
the service model section that does not have a programmatic equivalent.

Metadata Exchange
By default, the service will not publish its metadata. However, this does not preclude
clients that have obtained the metadata via some other mechanism (such as a project
reference to a class library containing the contracts) from invoking operations on the
service.

Publishing your service’s metadata involves significant effort, since you have to convert
CLR types and binding information into WSDL or some other low-level representation,
and all that effort does not add any business value. Fortunately, the host already knows
everything there is to know about your service and its endpoints, so it can publish the
metadata for you if explicitly instructed to do so.

There are two options for publishing a service’s metadata: you can provide the metadata
over HTTP-GET, a simple text-based protocol that most platforms support, or you can
use a dedicated endpoint.

Metadata over HTTP-GET
WCF can provide the metadata for your service over HTTP-GET automatically; all you
need to do is enable it by adding an explicit service behavior. Behaviors are described
fully in subsequent chapters. For now, all you need to know is that a behavior is a local
aspect of the service, such as whether or not it wants to have the host publish its
metadata over HTTP-GET. You can add this behavior administratively or
programmatically.

Enabling metadata exchange administratively

Example 1-10 shows a host application config file where both hosted services reference
a custom behavior section that enables metadata publishing over HTTP-GET.

Example 1-10. Enabling metadata exchange behavior using a config file

<system.serviceModel>
 <services>
 <service name = "MyService" behaviorConfiguration = "MEXGET">
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8000/"/>
 </baseAddresses>
 </host>
 ...
 </service>

Metadata Exchange | 39

Download from Library of Wow! eBook <www.wowebook.com>

 <service name = "MyOtherService" behaviorConfiguration = "MEXGET">
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8001/"/>
 </baseAddresses>
 </host>
 ...
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name = "MEXGET">
 <serviceMetadata httpGetEnabled = "true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

By default, the address the clients need to use for HTTP-GET is the registered HTTP
base address of the service. If the host is not configured with an HTTP base address,
loading the service will throw an exception. You can also specify a different address (or
just a URI appended to the HTTP base address) at which to publish the metadata by
setting the httpGetUrl property of the serviceMetadata tag:

<behavior name = "MEXGET">
 <serviceMetadata httpGetEnabled = "true" httpGetUrl = "MyMEXAddress"/>
</behavior>

Once you have enabled the metadata exchange over HTTP-GET, you can navigate to
the address you configured (the HTTP base address, by default, or an explicit address)
using a browser. If all is well, you will get a confirmation page like the one shown in
Figure 1-10, letting you know that you have successfully hosted a service. The confir-
mation page is unrelated to IIS hosting, and you can use a browser to navigate to the
service address even when self-hosting.

Enabling metadata exchange programmatically

To enable metadata exchange over HTTP-GET programmatically, you first need to add
the behavior to the collection of behaviors the host maintains for the service type. The
ServiceHostBase class offers the Description property of the type ServiceDescription:

public abstract class ServiceHostBase : ...
{
 public ServiceDescription Description
 {get;}
 //More members
}

The service description, as its name implies, is the description of the service with all its
aspects and behaviors. ServiceDescription contains a property called Behaviors of the
type KeyedByTypeCollection<T>, with IServiceBehavior as the generic type parameter:

40 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

public class KeyedByTypeCollection<T> : KeyedCollection<Type,T>
{
 public U Find<U>();
 public U Remove<U>();
 //More members
}
public class ServiceDescription
{
 public KeyedByTypeCollection<IServiceBehavior> Behaviors
 {get;}

 //More members
}

IServiceBehavior is the interface that all behavior classes and attributes implement.
KeyedByTypeCollection<T> offers the generic method Find<U>(), which returns the re-
quested behavior if it is in the collection, and null otherwise. A given behavior type can
be found in the collection at most once.

Example 1-11 shows how to enable the metadata exchange behavior programmatically.

Figure 1-10. A service confirmation page

Metadata Exchange | 41

Download from Library of Wow! eBook <www.wowebook.com>

Example 1-11. Enabling the metadata exchange behavior programmatically

ServiceHost host = new ServiceHost(typeof(MyService));

ServiceMetadataBehavior metadataBehavior;
metadataBehavior = host.Description.Behaviors.Find<ServiceMetadataBehavior>();
if(metadataBehavior == null)
{
 Debug.Assert(BaseAddresses.Any(baseAddress=>baseAddress.Uri.Scheme == "http"));

 metadataBehavior = new ServiceMetadataBehavior();
 metadataBehavior.HttpGetEnabled = true;
 host.Description.Behaviors.Add(metadataBehavior);
}

host.Open();

Notice the defensive manner in which the hosting code first verifies that no metadata
behavior was provided in the config file, by calling the Find<T>() method of
KeyedByTypeCollection<I> and using ServiceMetadataBehavior as the type parameter.
ServiceMetadataBehavior is defined in the System.ServiceModel.Description
namespace:

public class ServiceMetadataBehavior : IServiceBehavior
{
 public bool HttpGetEnabled
 {get;set;}

 public Uri HttpGetUrl
 {get;set;}
 //More members
}

If the returned behavior is null, it means the config file contains no metadata behavior.
In this case, the hosting code creates a new ServiceMetadataBehavior instance, sets
HttpGetEnabled to true, and adds it to the behaviors in the service description. By
checking defensively for the presence of the behavior first, the hosting code avoids
overriding the config file and always allowing the administrator to tweak the behavior
or turn it on or off. Note also that the code asserts the presence of an HTTP base address.
The assertion uses the LINQ Any() query on an inline Lambda expression that checks
whether the base addresses collection contains an HTTP base address.

The Metadata Exchange Endpoint
Publishing metadata over HTTP-GET is merely a WCF feature; there are no guarantees
that other platforms you interact with will support it. There is, however, a standard
way of publishing metadata over a special endpoint, called the metadata exchange end-
point (sometimes referred to as the MEX endpoint). Figure 1-11 shows a service with
business endpoints and a metadata exchange endpoint. However, you typically do not
show the metadata exchange endpoint in your design diagrams.

42 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Figure 1-11. The metadata exchange endpoint

The MEX endpoint supports an industry standard for exchanging metadata, represen-
ted in WCF by the IMetadataExchange interface:

[ServiceContract(...)]
public interface IMetadataExchange
{
 [OperationContract(...)]
 Message Get(Message request);
 //More members
}

The details of this interface are inconsequential. Like most of these industry standards,
it is difficult to implement, but fortunately WCF can have the service host automatically
provide the implementation of IMetadataExchange and expose the metadata exchange
endpoint. All you need to do is designate the address and the binding to use and add
the service metadata behavior. For the bindings, WCF provides dedicated binding
transport elements for the HTTP, HTTPS, TCP, and IPC protocols. For the address,
you can provide a full address or use any of the registered base addresses. There is no
need to enable the HTTP-GET option, but there is no harm in doing so. Exam-
ple 1-12 shows a service that exposes three MEX endpoints, over HTTP, TCP, and IPC.
For demonstration purposes, the TCP and IPC MEX endpoints use relative addresses
and the HTTP endpoint uses an absolute address.

Example 1-12. Adding MEX endpoints

<services>
 <service name = "MyService" behaviorConfiguration = "MEX">
 <host>
 <baseAddresses>
 <add baseAddress = "net.tcp://localhost:8001/"/>
 <add baseAddress = "net.pipe://localhost/"/>
 </baseAddresses>
 </host>
 <endpoint
 address = "MEX"
 binding = "mexTcpBinding"
 contract = "IMetadataExchange"
 />
 <endpoint
 address = "MEX"
 binding = "mexNamedPipeBinding"
 contract = "IMetadataExchange"
 />

Metadata Exchange | 43

Download from Library of Wow! eBook <www.wowebook.com>

 <endpoint
 address = "http://localhost:8000/MEX"
 binding = "mexHttpBinding"
 contract = "IMetadataExchange"
 />
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "MEX">
 <serviceMetadata/>
 </behavior>
 </serviceBehaviors>
</behaviors>

In Example 1-12, all you have to do to have the host implement the MEX
endpoint for your service is include the serviceMetadata tag in the be-
havior. If you do not reference the behavior, the host will expect your
service to implement IMetadataExchange. While this normally adds no
value, it is the only way to provide for custom implementation of
IMetadataExchange for advanced interoperability needs.

Standard endpoints

In the vast majority of cases, a MEX endpoint always has the same three elements: the
contract is always IMetadataExchange, the binding is always the reserved binding ele-
ment, and the only variable is the address (and even that is typically just the base
address). Having developers stipulate these endpoint elements time and time again is
excessive. To streamline this and similar infrastructure endpoints, WCF provides pre-
canned definitions of several endpoint types, called standard endpoints. WCF offers
standard endpoints for metadata exchange, discovery, announcements, workflow, and
web. You can use the standard endpoints both in config and programmatically.

You can reference the desired standard endpoint with the kind tag:

<endpoint
 kind = "..."
/>

Whatever is not specified (usually the address or the binding) always defaults to some
predefined value, depending on the other fields of the endpoint. Appendix C will take
advantage of the standard discovery and announcements endpoints. In the context of
this section, you can use the kind value of mexEndpoint to define the MEX endpoint.

For example, suppose you do not specify an address and binding, like so:

<service ...
 <host>
 <baseAddresses>
 <add baseAddress = "http://..."/>
 <add baseAddress = "net.tcp://..."/>

44 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 </baseAddresses>
 </host>

 <endpoint
 kind = "mexEndpoint"
 />
 ...
</service>

WCF will add a MEX endpoint whose address is the HTTP base address. This mandates
the presence of an HTTP base address and that no other endpoint is using the base
address for its address.

You can also append a URI to the base address:

<endpoint
 kind = "mexEndpoint"
 address = "MEX"
/>

If you specify the binding, WCF will infer the correct base address to use from the
binding type, for example:

<service ...
 <host>
 <baseAddresses>
 <add baseAddress = "http://..."/>
 <add baseAddress = "net.tcp://..."/>
 </baseAddresses>
 </host>

 <endpoint
 kind = "mexEndpoint"
 binding = "mexTcpBinding"
 />
 <endpoint
 kind = "mexEndpoint"
 address = "MEX"
 binding = "mexTcpBinding"
 />
 ...
</service>

You can also specify a fully qualified address irrespective of the base address.

Note that WCF is not smart enough to infer the binding to use from the address scheme,
meaning the following configuration is invalid:

<!-- Invalid configuration -->
<endpoint
 kind = "mexEndpoint"
 address = "net.tcp://..."
/>

Metadata Exchange | 45

Download from Library of Wow! eBook <www.wowebook.com>

Adding MEX endpoints programmatically

Like any other endpoint, you can only add a metadata exchange endpoint program-
matically before opening the host. WCF does not offer a dedicated binding type for the
metadata exchange endpoint. Instead, you need to construct a custom binding that
uses the matching transport binding element and provide that binding element as a
construction parameter to an instance of a custom binding. To streamline this process,
use the MetadataExchangeBindings static helper class defined as:

public static class MetadataExchangeBindings
{
 public static Binding CreateMexHttpBinding();
 public static Binding CreateMexNamedPipeBinding();
 public static Binding CreateMexTcpBinding();

 //More members
}

Finally, call the AddServiceEndpoint() method of the host, providing it with the address,
the MEX binding, and the IMetadataExchange contract type. Example 1-13 shows the
code required to add a MEX endpoint over TCP. Note that before adding the endpoint,
you must verify the presence of the metadata behavior.

Example 1-13. Adding a TCP MEX endpoint programmatically

Uri tcpBaseAddress = new Uri("net.tcp://localhost:9000/");
ServiceHost host = new ServiceHost(typeof(MyService),tcpBaseAddress);

ServiceMetadataBehavior metadataBehavior;
metadataBehavior = host.Description.Behaviors.Find<ServiceMetadataBehavior>();
if(metadataBehavior == null)
{
 metadataBehavior = new ServiceMetadataBehavior();
 host.Description.Behaviors.Add(metadataBehavior);
}
Binding binding = MetadataExchangeBindings.CreateMexTcpBinding();
host.AddServiceEndpoint(typeof(IMetadataExchange),binding,"MEX");
host.Open();

You can also add a MEX endpoint using the standard MEX endpoint. To do so, use
the type ServiceMetadataEndpoint, defined as:

public class ServiceMetadataEndpoint : ServiceEndpoint
{
 public ServiceMetadataEndpoint();
 public ServiceMetadataEndpoint(EndpointAddress address);
 public ServiceMetadataEndpoint(Binding binding,EndpointAddress address);
}

The default constructor of ServiceMetadataEndpoint defaults to using the HTTP base
address and binding. The constructor that takes an endpoint address must receive a
fully qualified HTTP or HTTPS address:

46 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

ServiceHost host = new ServiceHost(typeof(MyService));
host.Description.Behaviors.Add(new ServiceMetadataBehavior());

EndpointAddress address = new EndpointAddress("http://localhost:8000/MEX");

ServiceEndpoint endpoint = new ServiceMetadataEndpoint(address);
host.AddServiceEndpoint(endpoint);
...
host.Open();

In addition, ServiceMetadataEndpoint will never use the host base addresses.

Streamlining with ServiceHost<T>

You can extend ServiceHost<T> to automate the code in Example 1-11 and Exam-
ple 1-13. ServiceHost<T> offers the EnableMetadataExchange() method, which you can
call to both publish metadata over HTTP-GET and add the MEX endpoints:

public class ServiceHost<T> : ServiceHost
{
 public void EnableMetadataExchange(bool enableHttpGet = true);

 public bool HasMexEndpoint
 {get;}
 public void AddAllMexEndPoints();
 //More members
}

The default EnableMetadataExchange() publishes metadata over HTTP-GET, and if no
MEX endpoint is available, EnableMetadataExchange() adds a MEX endpoint for each
registered base address scheme. Using ServiceHost<T>, Example 1-11 and Exam-
ple 1-13 are reduced to:

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.EnableMetadataExchange();
host.Open();

EnableMetadataExchange() will not override the behavior in the config file if one is
present.

ServiceHost<T> offers the HasMexEndpoint Boolean property, which returns true if the
service has any MEX endpoint (regardless of transport protocol), and the AddAllMex
EndPoints() method, which adds a MEX endpoint for each registered base address of
the scheme type of HTTP, TCP, or IPC. Example 1-14 shows the implementation of
these methods.

Example 1-14. Implementing EnableMetadataExchange and its supporting methods

public class ServiceHost<T> : ServiceHost
{
 public void EnableMetadataExchange(bool enableHttpGet = true)
 {
 if(State == CommunicationState.Opened)
 {

Metadata Exchange | 47

Download from Library of Wow! eBook <www.wowebook.com>

 throw new InvalidOperationException("Host is already opened");
 }
 ServiceMetadataBehavior metadataBehavior
 = Description.Behaviors.Find<ServiceMetadataBehavior>();

 if(metadataBehavior == null)
 {
 metadataBehavior = new ServiceMetadataBehavior();
 Description.Behaviors.Add(metadataBehavior);

 if(BaseAddresses.Any(uri=>uri.Scheme == "http"))
 {
 metadataBehavior.HttpGetEnabled = enableHttpGet;
 }
 }
 AddAllMexEndPoints();
 }
 public bool HasMexEndpoint
 {
 get
 {
 return Description.Endpoints.Any(
 endpoint=>endpoint.Contract.ContractType ==
 typeof(IMetadataExchange));
 }
 }
 public void AddAllMexEndPoints()
 {
 Debug.Assert(HasMexEndpoint == false);

 foreach(Uri baseAddress in BaseAddresses)
 {
 Binding binding = null;

 switch(baseAddress.Scheme)
 {
 case "net.tcp":
 {
 binding = MetadataExchangeBindings.CreateMexTcpBinding();
 break;
 }
 case "net.pipe":
 {...}
 case "http":
 {...}
 case "https":
 {...}
 }
 if(binding != null)
 {
 AddServiceEndpoint(typeof(IMetadataExchange),binding,"MEX");
 }
 }
 }
}

48 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

EnableMetadataExchange() verifies that the host has not been opened yet using the
State property of the CommunicationObject base class. The HasMexEndpoint property uses
the LINQ Any() query on an inline Lambda expression that checks whether a given
endpoint’s contract is indeed IMetadataExchange. Any() invokes the expression on the
endpoints in the collection, returning true when any one of the endpoints in the col-
lection satisfies the predicate (that is, if the invocation of the Lambda expression
method returned true) and false otherwise. The AddAllMexEndPoints() method iterates
over the BaseAddresses collection. For each base address found, it creates a matching
MEX binding and adds the MEX endpoint with a MEX URI under the base address.

The Metadata Explorer
The metadata exchange endpoint provides metadata that describes not just contracts
and operations, but also information about data contracts, security, transactions, reli-
ability, and faults. To visualize the metadata of a running service, I developed the
Metadata Explorer tool, which is available along with the rest of the source code for
this book. Figure 1-12 shows the Metadata Explorer reflecting the endpoints of Exam-
ple 1-7. To use the Metadata Explorer, simply provide it with the HTTP-GET address
or the metadata exchange endpoint of the running service, and it will reflect the re-
turned metadata.

Figure 1-12. The Metadata Explorer

Metadata Exchange | 49

Download from Library of Wow! eBook <www.wowebook.com>

The WCF-Provided Test Host
Visual Studio 2010 ships with a ready-made, general-purpose service host. The exe-
cutable is called WcfSvcHost.exe and after a normal installation, it is found in C:
\Program Files\Microsoft Visual Studio 10.0\Common7\IDE. For ease of use, I recom-
mend adding that location to your system’s Path variable. WcfSvcHost is a simple
command-line utility that accepts two parameters: the filename (and path) reference
to a .NET assembly containing the service class or classes, and a filename (and path)
reference to the host config file. For example:

WcfSvcHost.exe /service:MyService.dll /config:App.config

The specified service assembly can be a class library assembly (DLL) or an application
assembly (EXE). WcfSvcHost launches a new process that automatically hosts all the
service classes listed in the services section of the specified config file. These service
classes and their service contracts and data contracts need not be public types—they
can be internal. In addition, the auto-hosted services need not provide any metadata,
but they can publish metadata if you configure them to.

WcfSvcHost is a Windows Forms application that resides as a desktop tray icon. If you
click the WcfSvcHost tray icon, it will bring up a dialog box listing all the hosted serv-
ices. The dialog box also shows the status of the service and its metadata address, which
you can copy to the clipboard (perhaps for use later, when adding a reference to the
service). Closing the WcfSvcHost UI merely collapses it back to the tray. To close the
host, simply select Exit from the tray icon’s context menu. Terminating the host this
way is an ungraceful exit; WcfSvcHost will abort all calls currently in progress and the
clients are likely to receive an exception.

WcfSvcHost negates the need during development for a separate host assembly ac-
companying your service library. Developing such host projects is a repetitive task, as
these hosts typically contain the same lines of code over and over again, and they tend
to bloat the solution when you have multiple service libraries. For development and
testing purposes, you can integrate WcfSvcHost directly into your Visual Studio 2010
service library projects. In the Debug pane of the project properties, specify
WcfSvcHost.exe as the external program to start and your class library name and its
config file (the one autogenerated and autocopied to the bin folder) as arguments.

With that done, when you launch the class library it will automatically be hosted by
WcfSvcHost, with the debugger attached to that process. When you stop debugging,
Visual Studio 2010 will abort the host ungracefully.

The last feature of WcfSvcHost is its ability to automatically launch a client application
and even provide the client with optional parameters specific for that application:

WcfSvcHost.exe /service:MyService.dll /config:App.config
 /client:MyClient.exe /clientArg:123,ABC

This is useful in automated testing and even simple deployment scenarios to launch
both the host and the client.

The main advantage of using WcfSvcHost is that during development, you will not
need to develop, build, and own a separate host project. Its major drawback is that it

50 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

is only suitable for simple scenarios in which you do not require programmatic access
to the host instance before opening it or programmatic access to its event model once
it is open. Unlike hosting with IIS 5/6 or WAS, there is no equivalent service host factory
support. Consequently, there is no ability to dynamically add base addresses, configure
endpoints, throttle the calls, configure custom behaviors at the host level, and so on.
My experience with WCF is that in all but the simplest cases, eventually you will need
programmatic access to the host instance. Thus, I do not view WcfSvcHost as a full-
fledged production-worthy host, like WAS or a dedicated self-host.

More on Behavior Configuration
The service metadata behavior demonstrated in the previous section is just one of many
such ready-to-use behaviors, and you will see many examples in the subsequent chap-
ters. You can configure behaviors at the service level (as with the metadata behavior)
or at the endpoint level:

<services>
 <service name = "MyService" behaviorConfiguration = "MyServiceBehavior">
 <endpoint behaviorConfiguration = "MyEndpointBehavior"
 ...
 />
 </service>
</services>
<behaviors>
 <endpointBehaviors>
 <behavior name = "MyEndpointBehavior">
 ...
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior name = "MyServiceBehavior">
 ...
 </behavior>
 </serviceBehaviors>
</behaviors>

Similar to default bindings, WCF allows for the notion of a default behavior. A default
behavior is a nameless behavior (either a service or an endpoint level) that implicitly
affects all services or endpoints that do not explicitly reference a behavior configuration.
For example, consider the services MyService1, MyService2, and MyService3. To add the
service metadata exchange on all services in the application, you can use this config file:

<services>
 <service name = "MyService1">
 ...
 </service>
 <service name = "MyService2">
 ...
 </service>
</services>

More on Behavior Configuration | 51

Download from Library of Wow! eBook <www.wowebook.com>

<behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata/>
 </behavior>
 </serviceBehaviors>
</behaviors>

Along with this hosting code:

ServiceHost host1 = new ServiceHost(typeof(MyService1));
ServiceHost host2 = new ServiceHost(typeof(MyService2));

ServiceHost host3 = new ServiceHost(typeof(MyService3));
host3.AddServiceEndpoint(...);

host1.Open();
host2.Open();
host3.Open();

Note that the default behavior affects all services in the application that do not reference
a behavior, even those (like MyService3) that do not rely at all on the config file.

You can have at most one default service behavior and one default endpoint behavior.

As with default bindings, the problem with the default behaviors is that a config file
may get difficult for humans to parse and understand once you combine default be-
haviors with named behaviors, as shown in Figure 1-13.

Figure 1-13. Named and default behavior configuration

52 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Because of this difficulty, coupled with the side effect of implicitly affecting even serv-
ices that do not rely on the config file at all, I recommend exercising caution when
utilizing a default behavior. Only use it when you want to affect all services in the
application. Never mix and match them with named behaviors, since any service using
a named behavior will be exempt from the default behavior. In the interest of reada-
bility, most if not all of the behaviors in this book are explicitly named, except in the
rare cases in which a default behavior is required.

Client-Side Programming
To invoke operations on a service, a client first needs to import the service contract to
the client’s native representation. If the client uses WCF, the common way of invoking
operations is to use a proxy. The proxy is a CLR class that exposes a single CLR interface
representing the service contract. If the service supports several contracts (over at least
as many endpoints), the client needs one proxy per contract type. The proxy provides
the same operations as the service’s contract, but also has additional methods for man-
aging the proxy lifecycle and the connection to the service. The proxy completely en-
capsulates every aspect of the service: its location, its implementation technology and
runtime platform, and the communication transport.

Generating the Proxy
You can use Visual Studio 2010 to import the service metadata and generate a proxy.
If the service is self-hosted outside the solution, first launch the service and then select
Add Service Reference from the client project’s context menu. If the service is self-
hosted in the same solution, first launch it without the debugger, and then select the
Add Service Reference option from the context menu.

If the service is hosted in IIS 5/6 or WAS, there is no need to prelaunch the service;
simply select Add Service Reference from the client project’s context menu, and Visual
Studio will bring up the Add Service Reference dialog, shown in Figure 1-14.

For the Add Service Reference option to appear in a project’s context
menu, the project must be configured to target .NET Framework 3.0 or
later.

In the Add Service Reference dialog box, specify the service metadata address (not the
service URL, as the dialog box states) and click Go to view the available service end-
points (not Services, as labeled). Specify a namespace (such as MyService) to contain
the generated proxy, then click OK to generate the proxy and update the config file.
Use the Discover button to discover WCF services in your own solution, as long as they
are hosted either in a website project or in one of the WCF service library project types.
In the case of a website project, Visual Studio 2010 will either retrieve the metadata

Client-Side Programming | 53

Download from Library of Wow! eBook <www.wowebook.com>

from IIS or launch the ASP.NET file system–based development server. In the case of
a WCF service library, WCF will automatically launch its host (WcfSvcHost, described
in the sidebar titled “The WCF-Provided Test Host” on page 50) to get the metadata.

Click the Advanced button to bring up the settings dialog box, where you can tweak
the proxy generation options (see Figure 1-15).

The more intuitive options let you configure the visibility of the generated proxy and
contracts (public or internal), and you can generate message contracts for your data
types for advanced interoperability scenarios, where you have to comply with an ex-
isting (typically custom) message format. You can also click the Add Web Reference
button to convert the reference to an old ASMX web service reference, as long as the
service is using the basic binding.

Once you’ve added a reference, your project will have a new folder called
Service References. In it, you’ll find a service reference item for each referenced service
(see Figure 1-16).

At any point, you can right-click a reference and select Update Service Reference to
regenerate the proxy. This is possible because each service reference item also contains
a file that records the original metadata address used. You can also select Configure
Service Reference to bring up a dialog box similar to the advanced settings dialog box
used when adding a reference. The Configure Service Reference dialog box lets you
change the service metadata address, as well as the rest of the advanced proxy settings.

Figure 1-14. Generating a proxy using Visual Studio 2010

54 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Figure 1-16. The Service References folder

Figure 1-15. Advanced options for the service reference

Client-Side Programming | 55

Download from Library of Wow! eBook <www.wowebook.com>

Generating the proxy using SvcUtil

As an alternative to Visual Studio 2010, you can use the SvcUtil.exe command-line
utility to import the service metadata and generate a proxy. You need to provide SvcUtil
with the metadata exchange address and, optionally, with a proxy filename. The default
proxy filename is output.cs, but you can use the /out switch to indicate a different name.

For example, if you’re hosting the service MyService in the WAS and have enabled
metadata publishing over HTTP-GET, you can simply run this command line:

SvcUtil http://localhost/MyService/MyService.svc /out:Proxy.cs

With self-hosting, suppose that the self-hosted service has enabled metadata publishing
over HTTP-GET on the address

http://localhost:8000/

and has exposed MEX endpoints using these addresses:

http://localhost:8000/MEX
http://localhost:8001/MEX
net.tcp://localhost:8002/MEX
net.pipe://localhost/MyPipe/MEX

After launching the host, you’ll be able to use the following commands to generate the
proxy:

SvcUtil http://localhost:8000 /out:Proxy.cs
SvcUtil http://localhost:8000/MEX /out:Proxy.cs
SvcUtil http://localhost:8001/MEX /out:Proxy.cs
SvcUtil net.tcp://localhost:8002/MEX /out:Proxy.cs
SvcUtil net.pipe://localhost/MyPipe/MEX /out:Proxy.cs

The main advantage of using SvcUtil over Visual Studio 2010 is that you
can include the command line for generating the proxy as a pre-build
event.

SvcUtil offers numerous command-line switches that correspond to the options in the
Visual Studio advanced settings dialog box shown in Figure 1-15.

Regardless of whether you use Visual Studio 2010 or SvcUtil to generate the proxy,
Example 1-15 shows the imported contract and generated proxy for this service
definition:

[ServiceContract(Namespace = "MyNamespace")]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()

56 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 {...}
}

You can safely remove many of the gunk attributes the tools generate, which merely
state the defaults, so that you end up with the cleaned-up proxy shown in Example 1-15.

Example 1-15. Client proxy file

[ServiceContract(Namespace = "MyNamespace")]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

class MyContractClient : ClientBase<IMyContract>,IMyContract
{
 public MyContractClient()
 {}
 public MyContractClient(string endpointName) : base(endpointName)
 {}
 public MyContractClient(Binding binding,EndpointAddress remoteAddress) :
 base(binding,remoteAddress)
 {}

 /* Additional constructors */

 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

The most glaring aspect of the proxy class is that it has no reference to the service-
implementing class, only to the contract exposed by the service. You can use the proxy
in conjunction with a client-side config file that provides the address and the binding,
or you can use it without a config file. Note that each proxy instance points at exactly
one endpoint. The endpoint to interact with is provided to the proxy at construction
time. As mentioned previously, if the service-side contract does not provide a name-
space, it will default to the http://tempuri.org namespace.

Administrative Client Configuration
The client needs to know where the service is located and must use the same binding
as the service and, of course, import the service contract definition. In essence, this is
exactly the same information captured in the service’s endpoint. To reflect that, the
client config file can contain information about the target endpoints and even uses the
same endpoint configuration scheme as the host.

Example 1-16 shows the client configuration file required to interact with a service
whose host is configured according to Example 1-6.

Client-Side Programming | 57

Download from Library of Wow! eBook <www.wowebook.com>

http://tempuri.org

Example 1-16. Client config file

<system.serviceModel>
 <client>
 <endpoint name = "MyEndpoint"
 address = "http://localhost:8000/MyService"
 binding = "wsHttpBinding"
 contract = "IMyContract"
 />
 </client>
</system.serviceModel>

The client config file may list as many endpoints as the services it deals with support,
and the client may use any one of them. Example 1-17 shows the client config file
matching the host config file of Example 1-7. There is no relationship between the
various endpoints in the client’s config file: they could all be pointing at the same
endpoint on the service, at different endpoints on the service, at different endpoints on
different services, or any mix and match in between. Note that on the client side, you
typically name endpoints with unique names (you will see why shortly). Naming the
endpoints on the client side is optional, just as it is optional on the service side, yet on
the service side you typically do not name the endpoints, while on the client side, you
typically do.

Example 1-17. Client config file with multiple target endpoints

<system.serviceModel>
 <client>
 <endpoint name = "FirstEndpoint"
 address = "http://localhost:8000/MyService"
 binding = "wsHttpBinding"
 contract = "IMyContract"
 />
 <endpoint name = "SecondEndpoint"
 address = "net.tcp://localhost:8001/MyService"
 binding = "netTcpBinding"
 contract = "IMyContract"
 />
 <endpoint name = "ThirdEndpoint"
 address = "net.tcp://localhost:8002/MyService"
 binding = "netTcpBinding"
 contract = "IMyOtherContract"
 />
 </client>
</system.serviceModel>

Binding configuration

You can customize the client-side bindings to match the service binding in a manner
identical to the service configuration, as shown in Example 1-18.

58 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Example 1-18. Client-side binding configuration

<system.serviceModel>
 <client>
 <endpoint name = "MyEndpoint"
 address = "net.tcp://localhost:8000/MyService"
 bindingConfiguration = "TransactionalTCP"
 binding = "netTcpBinding"
 contract = "IMyContract"
 />
 </client>
 <bindings>
 <netTcpBinding>
 <binding name = "TransactionalTCP"
 transactionFlow = "true"
 />
 </netTcpBinding>
 </bindings>
</system.serviceModel>

The client can rely on a default binding configuration, just as the service does. Note
that if the config file contains both client and service sections, the default binding will
affect both.

Generating the client config file

When you add a service reference in Visual Studio 2010, it will also try to automatically
edit the client’s config file and insert the required client section describing the service’s
endpoints in it. However, in most cases Visual Studio 2010 is not smart enough to infer
the cleanest binding values and it will therefore butcher the config file by stating all the
default values for the bindings, which effectively renders the file unreadable. Visual
Studio 2010 similarly butchers the config file when updating a service reference. If you
care about maintaining the client’s config file, before adding (or updating) a reference,
you should open the file, add (or update) the reference, and then perform a single Undo
(Ctrl-Z) and manually add the config file entries in the client section.

Like Visual Studio 2010, SvcUtil also autogenerates a client-side config file called out-
put.config. You can specify a different config filename using the /config switch:

SvcUtil http://localhost:8002/MyService/ /out:Proxy.cs /config:App.Config

The config files SvcUtil produces are also unreadable, as it’s no better at inferring bind-
ing values. However, unlike with Visual Studio, with SvcUtil you can suppress
generating the config file by using the /noconfig switch:

SvcUtil http://localhost:8002/MyService/ /out:Proxy.cs /noconfig

I recommend never letting SvcUtil or Visual Studio 2010 control the config file.

Client-Side Programming | 59

Download from Library of Wow! eBook <www.wowebook.com>

In-proc configuration

With in-proc hosting, the client config file is also the service host config file, and the
same file contains both service and client entries, as shown in Example 1-19.

Example 1-19. In-proc hosting config file

<system.serviceModel>
 <services>
 <service name = "MyService">
 <endpoint
 address = "net.pipe://localhost/MyPipe"
 binding = "netNamedPipeBinding"
 contract = "IMyContract"
 />
 </service>
 </services>
 <client>
 <endpoint name = "MyEndpoint"
 address = "net.pipe://localhost/MyPipe"
 binding = "netNamedPipeBinding"
 contract = "IMyContract"
 />
 </client>
</system.serviceModel>

Note the use of the named pipe binding for in-proc hosting.

The SvcConfigEditor

WCF provides a config file editor called SvcConfigEditor.exe that can edit both host
and client configuration files (see Figure 1-17). You can launch the editor from within
Visual Studio by right-clicking on the configuration file (for either the client or the host)
and selecting Edit WCF Configuration.

Due to a limitation in the design of Visual Studio 2010, you will have to
launch the editor first from the Tools menu.

I have mixed feelings about SvcConfigEditor. On the one hand, it edits the config files
nicely and it saves developers the need to learn the configuration scheme. On the other
hand, it does not shield developers from needing to thoroughly understand WCF con-
figuration, and it’s often faster to do the light editing that’s typically required in a config
file by hand than it is using Visual Studio 2010.

60 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Working with the proxy

The proxy class derives from the class ClientBase<T>, defined as:

public abstract class ClientBase<T> : ICommunicationObject,IDisposable
{
 protected ClientBase(string endpointName);
 protected ClientBase(Binding binding,EndpointAddress remoteAddress);

 public void Open();
 public void Close();

 protected T Channel
 {get;}

 //Additional members
}

ClientBase<T> accepts a single generic type parameter identifying the service contract
that this proxy encapsulates. The Channel property of ClientBase<T> is of that type
parameter. As shown in Example 1-15, the generated subclass of ClientBase<T> simply
delegates the method call to Channel. Calling the method on the Channel property sends
the appropriate WCF message to the service.

Figure 1-17. SvcConfigEditor is used to edit both host and client config files

Client-Side Programming | 61

Download from Library of Wow! eBook <www.wowebook.com>

To use the proxy, the client first needs to instantiate a proxy object and to provide the
constructor with endpoint information: either the endpoint section name from
the config file or the endpoint address and binding objects if you’re not using a config
file. The client can then use the proxy methods to call the service and when it is done,
the client needs to close the proxy instance. For example, given the same definitions as
in Example 1-15 and Example 1-16, the client constructs the proxy, identifying the
endpoint to use from the config file, and then invokes the method and closes the proxy:

MyContractClient proxy = new MyContractClient("MyEndpoint");
proxy.MyMethod();
proxy.Close();

When specifying the endpoint name to the proxy, its constructor also verifies that the
contract configured for that endpoint matches the proxy’s type parameter. Because of
this verification ability, if exactly one endpoint is defined in the client config file for the
type of contract the proxy is using, the client can omit the endpoint name from the
proxy’s constructor:

MyContractClient proxy = new MyContractClient();
proxy.MyMethod();
proxy.Close();

The proxy will simply look up that endpoint (named or not in the config file) and use
it. However, if you use this technique when multiple (or zero) endpoints are available
for the same contract type, the proxy will throw an exception.

Closing the proxy

It is a recommended best practice to always close the proxy when the client is done
using it. Closing the proxy releases the connection held toward the service, which is
particularly important to do in the presence of a transport session (as discussed later
in this chapter). It also helps ensure the threshold for the maximum number of con-
nections on the client’s machine is not reached. Furthermore, as you will see in Chap-
ter 4, closing the proxy terminates the session with the service instance.

Instead of closing the proxy, you can use its Dispose() method. Internally, Dispose()
just calls Close(). The advantage of the Dispose() method is that you can use the
using statement to call it even in the face of exceptions:

using(MyContractClient proxy = new MyContractClient())
{
 //Any exception here automatically closes the proxy;
}

If the client is declaring the contract directly instead of the concrete proxy class, the
client can query for the presence of IDisposable:

IMyContract proxy = new MyContractClient();
proxy.MyMethod();
IDisposable disposable = proxy as IDisposable;
if(disposable != null)
{

62 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 disposable.Dispose();
}

Alternatively, the client can collapse the query inside the using statement:

IMyContract proxy = new MyContractClient();
using(proxy as IDisposable)
{
 proxy.MyMethod();
}

While the results of calling Dispose() and Close() are identical, you will
see in Chapter 6 that it is always better to call Close() than to use the
using statement.

Call timeout

Each call made by a WCF client must complete within a configurable timeout. If, for
whatever reason, the call duration exceeds the timeout, the call is aborted and the client
gets a TimeoutException. This behavior is very handy, since it offers an elegant way to
deal with deadlocks on the service side or just poor availability. In traditional .NET,
the client has to spin a worker thread and have the worker thread call the class (and
potentially hang), and the client then monitors some timed-out event that the worker
thread has to signal when done. This is obviously a complicated programming model.
The advantage of using a proxy for every call is that the proxy can do all this for you.
The exact value of the timeout is a property of the binding, and the default timeout is
one minute. To provide a different timeout, set the SendTimeout property of the abstract
Binding base class:

public abstract class Binding : ...
{
 public TimeSpan SendTimeout
 {get;set;}
 //More members
}

For example, here’s how to configure the WSHttpBinding with a five-minute call timeout:

<client>
 <endpoint
 ...
 binding = "wsHttpBinding"
 bindingConfiguration = "LongTimeout"
 ...
 />
</client>
<bindings>
 <wsHttpBinding>
 <binding name = "LongTimeout" sendTimeout = "00:05:00"/>
 </wsHttpBinding>
</bindings>

Client-Side Programming | 63

Download from Library of Wow! eBook <www.wowebook.com>

Programmatic Client Configuration
Instead of relying on a config file, the client can programmatically construct address
and binding objects matching the service endpoint and provide them to the proxy con-
structor. There is no need to provide the contract, since that was provided in the form
of the generic type parameter of the proxy. To represent the address, the client needs
to instantiate an EndpointAddress class, defined as:

public class EndpointAddress
{
 public EndpointAddress(string uri);
 //More members
}

Example 1-20 demonstrates this technique, showing the code equivalent of Exam-
ple 1-16 targeting the service in Example 1-9.

Example 1-20. Programmatic client configuration

Binding wsBinding = new WSHttpBinding();
EndpointAddress endpointAddress = new EndpointAddress(
 "http://localhost:8000/MyService");

MyContractClient proxy = new MyContractClient(wsBinding,endpointAddress);
proxy.MyMethod();
proxy.Close();

Similar to using a binding section in a config file, the client can programmatically con-
figure the binding properties:

WSHttpBinding wsBinding = new WSHttpBinding();
wsBinding.SendTimeout = TimeSpan.FromMinutes(5);
wsBinding.TransactionFlow = true;

EndpointAddress endpointAddress =
 new EndpointAddress("http://localhost:8000/MyService");

MyContractClient proxy = new MyContractClient(wsBinding,endpointAddress);
proxy.MyMethod();
proxy.Close();

Again, note the use of the concrete subclass of Binding in order to access binding-
specific properties such as the transaction flow.

The WCF-Provided Test Client
Visual Studio 2010 ships with a simple general-purpose test client for rudimentary
testing that you can use to invoke operations on most services. The test client is called
WcfTestClient.exe, and after a normal installation it is found in C:\Program Files\Mi-
crosoft Visual Studio 10.0\Common7\IDE. You can provide WcfTestClient with a single
command-line argument containing the metadata address of the service to test:

WcfTestClient.exe http://localhost:9000/

64 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

You can specify any metadata address (be it an HTTP-GET address or a metadata
exchange endpoint over HTTP, TCP, or IPC). You can also specify multiple metadata
addresses:

WcfTestClient.exe http://localhost:8000/ net.tcp://localhost:9000/MEX

You can also launch the test client without a command-line parameter. Once it’s run-
ning, you can add a new service by selecting Add Service from the File menu and spec-
ifying the metadata address in the Add Service dialog box. You can also remove a service
by right-clicking it in the services tree.

WcfTestClient is a Windows Forms application. The tree control in the left pane con-
tains the tested services and their endpoints. You can drill into an endpoint’s contract
and select an operation to display a dedicated tab for that invocation in the pane on
the right. For example, for this simple contract and implementation:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string MyMethod(int someNumber,string someText);
}
class MyService : IMyContract
{
 public string MyMethod(int someNumber,string someText)
 {
 return "Hello";
 }
}

the method tab will let you provide an integer and a string as operation parameters in
the Request section, as shown in Figure 1-18.

Figure 1-18. Using WcfTestClient

Client-Side Programming | 65

Download from Library of Wow! eBook <www.wowebook.com>

When you click the Invoke button, WcfTestClient will dispatch the call to the service
and display the returned value or out-parameters in the Response section. In case of an
exception, WcfTestClient will display the exception information in a message box and
allow you to issue additional calls. All calls are made on new proxy instances. In addi-
tion, all calls are made asynchronously so that the UI is kept responsive. However,
while the calls are asynchronous, WcfTestClient will let you dispatch only one call at
a time.

WcfTestClient functions by silently creating an assembly from a proxy file, complete
with a config file, and then loading it for use from a temporary location. If you click
the Config File item in the tree on the left, you can actually grab that config file (the
same config file generated when adding a service reference) and display the config file
in its own tab. You can even edit the config file using SvcConfigEditor.

WcfTestClient allows you to invoke operations with enumerations, composite param-
eters such as classes or structures (each of which is a composite of other classes or
structures), and even collections and arrays of parameters. Simply expand the items in
the Request section, set their values from the drop-down lists (e.g., enum values), and
invoke the call. If the operation accepts a collection or an array, you will also need to
set the length. Again, the Response pane will contain any composite returned value or
out-parameters.

As with WcfSvcHost (see the sidebar “The WCF-Provided Test Host” on page 50), you
can integrate WcfTestClient directly into your Visual Studio 2010 solution. First, add
a class library project to the solution and delete from it all references, folders, and source
files, since you have no need for those. Next, set WcfTestClient.exe as the external start
program and provide the metadata address (or addresses) of the tested service (or serv-
ices). This may be the .svc address of an IIS 5/6- or WAS-hosted project or, for that
matter, any other metadata address of a host project, whether inside or outside your
solution.

Of course, you can combine the use of WcfTestClient and WcfSvcHost in a single step
to automatically host a service in a service library and test it:

WcfSvcHost.exe /service:MyService.dll /config:App.config
 /client:WcfTestClient.exe /clientArg:http://localhost:9000/

However, with WcfSvcHost, specifying the metadata arguments is optional. By default,
WcfSvcHost will pipe into the specified client application any metadata addresses it
finds in the service config file. You should specify a service’s metadata address explicitly
only if the service (or services) does not provide its own metadata, or if you would like
the test client to use different addresses. If the service config file contains multiple
metadata endpoints for a given service, they will be provided in this precedence order:
HTTP, TCP, IPC, HTTP-GET.

You can incorporate these steps into Visual Studio 2010 for a seamless hosting and
testing experience. To do this, specify WcfSvcHost.exe as the startup program along

66 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

with the config file and specify WcfTestClient.exe as the client. When you invoke
WcfTestClient using /client, closing the test client also terminates the host.

WCF Service Libraries
Visual Studio 2010 offers several WCF project templates. The WCF Service Library
project is merely the prebuilt usage of WcfSvcHost and WcfTestClient. The main dif-
ference when using the WCF Service Library template is that there is no need to specify
the config file and specify WcfSvcHost.exe as the startup program, because the project
file will contain a new ProjectTypeGuids element for a WCF service library. The WCF
Service Library also provides you with a simple template for a service contract and its
implementation, as well as the matching config file.

Using the WCF Service Application is similar to creating a new WCF service from the
new website option in Visual Studio 2010.

The Syndication Service Library project allows you to implement an RSS feed over a
WCF endpoint. It starts off with a simple service contract that returns a feed, its im-
plementation, and a matching config file. You can host and expose your feed like any
other service. The syndicated endpoints make use of the WebHttpBinding binding.

The Workflow Service Application template allows you to implement a service as a
sequential workflow.

Programmatic Versus Administrative Configuration
The two techniques shown so far for configuring the client and the service complement
each other. Administrative configuration gives you the option to change major aspects
of the service and the client post-deployment, without the need to rebuild or redeploy.
The major downside of administrative configuration is that it is not type-safe and you
will discover configuration errors only at runtime.

Programmatic configuration is useful when the configuration decision either is com-
pletely dynamic—i.e., when it is taken at runtime based on the current input or con-
ditions—or is static and never changes, in which case you might as well hardcode it.
For example, if you are interested in hosting in-proc calls only, you can hardcode the
use of the NetNamedPipeBinding and its configuration. However, by and large, most
clients and services resort to using a config file.

WCF Architecture
So far in this chapter, I’ve covered all that is required to set up and consume simple
WCF services. However, as you’ll see in the rest of the book, WCF offers immensely
valuable support for reliability, transactions, concurrency management, security, and
instance activation, all of which rely on the WCF interception-based architecture. Hav-
ing the client interact with a proxy means that WCF is always present between the

WCF Architecture | 67

Download from Library of Wow! eBook <www.wowebook.com>

service and the client, intercepting the call and performing pre-call and post-call pro-
cessing. The interception starts when the proxy serializes the call stack frame to a
message and sends the message down a chain of channels. The channel is merely an
interceptor whose purpose is to perform a specific task. Each client-side channel does
pre-call processing of the message. The exact structure and composition of the chain
depend mostly on the binding. For example, one of the channels may be responsible
for encoding the message (binary, text, or MTOM), another for passing the security
call context, another for propagating the client transaction, another for managing the
reliable session, another for encrypting the message body (if so configured), and so on.
The last channel on the client side is the transport channel, which sends the message
over the configured transport to the host.

On the host side, the message goes through another chain of channels that perform
host-side pre-call processing of the message. The first channel on the host side is the
transport channel, which receives the message from the transport. Subsequent channels
perform various tasks, such as decryption of the message body, decoding of the mes-
sage, joining the propagated transaction, setting the security principal, managing the
session, and activating the service instance. The last channel on the host side passes
the message to the dispatcher. The dispatcher converts the message to a stack frame
and calls the service instance. This sequence is depicted in Figure 1-19.

Figure 1-19. The WCF architecture

The service has no way of knowing that it was not called by a local client. In fact, it
was called by a local client—the dispatcher. The interception both on the client and
the service sides ensures that the client and the service get the runtime environments
they require to operate properly.

The service instance executes the call and returns control to the dispatcher, which then
converts the returned values and error information (if any) into a return message. The
process is then reversed: the dispatcher passes the message through the host-side

68 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

channels to perform post-call processing, such as managing the transaction, deactivat-
ing the instance, encoding the reply, encrypting it, and so on. The returned message
then goes to the transport channel, which sends it to the client-side channels for client-
side post-call processing. This process in turn consists of tasks such as decryption,
decoding, committing or aborting the transaction, and so on. The last channel passes
the message to the proxy, which converts the returned message to a stack frame and
returns control to the client.

Most noteworthy is that almost all the points in the architecture provide hooks for
extensibility—you can provide custom channels for proprietary interaction, custom
behaviors for instance management, custom security behavior, and so on. In fact, the
standard facilities that WCF offers are all implemented using the same extensibility
model. You will see many examples and uses of extensibility throughout this book.

Host Architecture
It is also important to explore how the transition is made from a technology-neutral,
service-oriented interaction to CLR interfaces and classes. The host performs the bridg-
ing. Each .NET host process can have many app domains, and each app domain can
have zero or more service host instances. Each service host instance is dedicated to a
particular service type. Thus, when you create a host instance, you are in effect regis-
tering that service host instance with all the endpoints for that type on the host machine
that correspond to its base addresses. Each service host instance has zero or more
contexts. The context is the innermost execution scope of the service instance. A context
is associated with zero or one service instance, meaning it could also be empty (i.e., not
associated with any service instance). This architecture is shown in Figure 1-20.

Figure 1-20. The WCF host architecture

WCF Architecture | 69

Download from Library of Wow! eBook <www.wowebook.com>

The WCF context is conceptually similar to the Enterprise Services con-
text or the .NET context-bound object context.

It is the combined work of the service host and the context that exposes a native CLR
type as a service. After the message is passed through the channels, the host maps that
message to a new or existing context (and the object instance inside) and lets it process
the call.

Working with Channels
You can use channels directly to invoke operations on a service without ever resorting
to using a proxy class. The ChannelFactory<T> class (and its supporting types), shown
in Example 1-21, allows you to create a proxy on the fly.

Example 1-21. The ChannelFactory<T> class

public class ContractDescription
{
 public Type ContractType
 {get;set;}
 //More members
}

public class ServiceEndpoint
{
 public ServiceEndpoint(ContractDescription contract,Binding binding,
 EndpointAddress address);
 public EndpointAddress Address
 {get;set;}
 public Binding Binding
 {get;set;}
 public ContractDescription Contract
 {get;}
 //More members
}

public abstract class ChannelFactory : ...
{
 public ServiceEndpoint Endpoint
 {get;}
 //More members
}
public class ChannelFactory<T> : ChannelFactory,...
{
 public ChannelFactory(ServiceEndpoint endpoint);
 public ChannelFactory(string configurationName);
 public ChannelFactory(Binding binding,EndpointAddress endpointAddress);

 public static T CreateChannel(Binding binding,EndpointAddress endpointAddress);

70 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 public T CreateChannel();

 //More members
}

You need to provide the constructor of ChannelFactory<T> with the endpoint. This can
be the endpoint name from the client config file, the binding and address objects, or a
ServiceEndpoint object. Next, use the CreateChannel() method to obtain a reference to
the proxy and use its methods. Finally, close the proxy by either casting it to
IDisposable and calling the Dispose() method or casting it to ICommunicationObject
and calling the Close() method:

ChannelFactory<IMyContract> factory = new ChannelFactory<IMyContract>();

IMyContract proxy1 = factory.CreateChannel();
using(proxy1 as IDisposable)
{
 proxy1.MyMethod();
}

IMyContract proxy2 = factory.CreateChannel();
proxy2.MyMethod();
ICommunicationObject channel = proxy2 as ICommunicationObject;
Debug.Assert(channel != null);
channel.Close();

You can also use the shorthand static CreateChannel() method to create a proxy
given a binding and an address without directly constructing an instance of
ChannelFactory<T>:

Binding binding = new NetTcpBinding();
EndpointAddress address = new EndpointAddress("net.tcp://localhost:8000");

IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(binding,address);
using(proxy as IDisposable)
{
 proxy.MyMethod();
}

The InProcFactory Class
To demonstrate the power of ChannelFactory<T>, consider my static helper class InProc
Factory, defined as:

public static class InProcFactory
{
 public static I CreateInstance<S,I>() where I : class
 where S : I;
 public static void CloseProxy<I>(I instance) where I : class;
 //More members
}

Working with Channels | 71

Download from Library of Wow! eBook <www.wowebook.com>

InProcFactory is designed to streamline and automate in-proc hosting. The
CreateInstance() method takes two generic type parameters: the type of the service S
and the type of the supported contract I. CreateInstance() constrains S to derive from
I. Using InProcFactory is straightforward:

IMyContract proxy = InProcFactory.CreateInstance<MyService,IMyContract>();

proxy.MyMethod();

InProcFactory.CloseProxy(proxy);

It literally takes a service class and hoists it up as a WCF service. This is very similar to
the C# new operator, as these two lines are equivalent in their coupling to the service
type:

IMyContract proxy = InProcFactory.CreateInstance<MyService,IMyContract>();
IMyContract obj = new MyService();

In the case of C#, the compiler verifies that the type supports the requested interface
and then, in effect, casts the interface into the variable. In the absence of compiler
support, InProcFactory requires the interface type so it will know which interface type
to return.

Implementing InProcFactory<T>

All in-proc calls should use named pipes and should flow all transactions. You can use
programmatic configuration to automate the configurations of both the client and the
service, and use ChannelFactory<T> to avoid the need for a proxy. Example 1-22 shows
the implementation of InProcFactory with some of the code removed for brevity.

Example 1-22. The InProcFactory class

public static class InProcFactory
{
 static readonly string BaseAddress = "net.pipe://localhost/" + Guid.NewGuid();
 static readonly Binding Binding;
 static Dictionary<Type,Tuple<ServiceHost,EndpointAddress>> m_Hosts =
 new Dictionary<Type,Tuple<ServiceHost,EndpointAddress>>();
 static InProcFactory()
 {
 NetNamedPipeBinding binding = new NetNamedPipeBinding();
 binding.TransactionFlow = true;
 Binding = binding;
 AppDomain.CurrentDomain.ProcessExit += delegate
 {
 foreach(Tuple<ServiceHost,EndpointAddress>
 record in m_Hosts.Values)
 {
 record.Item1.Close();
 }
 };
 }

72 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

 public static I CreateInstance<S,I>() where I : class
 where S : I
 {
 EndpointAddress address = GetAddress<S,I>();
 return ChannelFactory<I>.CreateChannel(Binding,address);
 }
 static EndpointAddress GetAddress<S,I>() where I : class
 where S : class,I
 {
 Tuple<ServiceHost,EndpointAddress> record;

 if(m_Hosts.ContainsKey(typeof(S)))
 {
 hostRecord = m_Hosts[typeof(S)];
 }
 else
 {
 ServiceHost host = new ServiceHost(typeof(S));
 string address = BaseAddress + Guid.NewGuid();
 record = new Tuple<ServiceHost,EndpointAddress>(
 host,new EndpointAddress(address));
 m_Hosts[typeof(S)] = record;
 host.AddServiceEndpoint(typeof(I),Binding,address);
 host.Open();
 }
 return hostRecord;
 }
 public static void CloseProxy<I>(I instance) where I : class
 {
 ICommunicationObject proxy = instance as ICommunicationObject;
 Debug.Assert(proxy != null);
 proxy.Close();
 }
}

InProcFactory’s static constructor is called once per app domain, allocating in each
case a new unique base address using a GUID. This allows you to use InProcFactory
multiple times on the same machine, across app domains and processes.

The main challenge facing InProcFactory is that CreateInstance() can be called to in-
stantiate services of every type. For every service type, there should be a single matching
host (an instance of ServiceHost). Allocating a host instance for each call is not a good
idea. The problem is what CreateInstance() should do when it is asked to instantiate
a second object of the same type, like so:

IMyContract proxy1 = InProcFactory.CreateInstance<MyService,IMyContract>();
IMyContract proxy2 = InProcFactory.CreateInstance<MyService,IMyContract>();

The solution is for InProcFactory to internally manage a dictionary that maps service
types to a particular host instance and the endpoint address using a tuple. When
CreateInstance() is called to create an instance of a particular type, it looks in the
dictionary using a helper method called GetAddress(). If the dictionary does not already
contain the service type, this helper method creates a host instance for it. If it needs to

Working with Channels | 73

Download from Library of Wow! eBook <www.wowebook.com>

create a host, GetAddress() programmatically adds an endpoint to that host, using a
new GUID as the unique pipe name. GetAddress() stores the new host and its address
in the dictionary. CreateInstance() then uses ChannelFactory<T> to create the proxy.
In its static constructor, which is called upon the first use of the class, InProcFactory
subscribes to the process exit event using an anonymous method to close all hosts when
the process shuts down. Finally, to help the clients close the proxy, InProcFactory
provides the CloseProxy() method, which queries the proxy to ICommunicationObject
and closes it.

The WcfWrapper

If you wish to completely approximate the C# programming model you can wrap the
in-proc factory (and thus, all of WCF) with my helper base class WcfWrapper, shown in
Example 1-23:

Example 1-23. The WcfWrapper class

public abstract class WcfWrapper<S,I> : IDisposable,ICommunicationObject
 where I : class
 where S : class,I
{
 protected I Proxy
 {get;private set;}

 protected WcfWrapper()
 {
 Proxy = InProcFactory.CreateInstance<S,I>();
 }

 public void Dispose()
 {
 Close();
 }

 public void Close()
 {
 InProcFactory.CloseProxy(Proxy);
 }

 void ICommunicationObject.Close()
 {
 (Proxy as ICommunicationObject).Close();
 }
 //Rest of ICommunicationObject
}

Using WcfWrapper<S,I> is simple—derive from it and the contract and implement the
operations on the contract by delegating to the Proxy property. For example, for this
service definition:

[ServiceContract]
interface IMyContract

74 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

{
 [OperationContract]
 string MyMethod();
}

class MyService : IMyContract
{
 public string MyMethod()
 {...}
}

This is the matching wrapper class:

class MyClass : WcfWrapper<MyService,IMyContract>,IMyContract
{
 public string MyMethod()
 {
 return Proxy.MyMethod();
 }
}

Using the wrapper class is now indistinguishable from regular C# code and yet all the
calls are actually WCF calls:

MyClass obj = new MyClass();
string text = obj.MyMethod();
obj.Close();

Appendix A further discusses the profound implications of this programming model.

Transport-Level Sessions
In traditional programming, an object is indirectly associated with a client by virtue of
the call stack. That is, each object is tied to a particular client. But in WCF, since the
client sends a message to the service and never invokes the instance directly, such an
association is not possible. The analogous concept in WCF is the transport session,
which ensures that all messages coming from a particular client are sent to the same
transport channel on the host. It is as if the client and the channel maintain a logical
session at the transport level (hence the name). As in traditional programming, with a
transport session, the calls (or rather, the messages) are strictly processed in the order
in which they were received. The transport session is unrelated to any application-level
session the client may or may not have with the instance itself. Note that using a trans-
port session is optional and is largely an aspect of the binding configuration, so the
client and the service may or may not have a transport session. The transport session
is one of the key fundamental concepts of WCF, affecting reliability, instance manage-
ment, error management, synchronization, transactions, and security.

A transport session relies on WCF’s ability to identify the client and correlate all its
messages to a particular channel. Thus, there has to be something in the transport or
in the message that identifies the client.

Transport-Level Sessions | 75

Download from Library of Wow! eBook <www.wowebook.com>

Transport Session and Binding
Both the TCP and the IPC bindings are connection-full. That is, all calls from the client
come on the same connection or pipe, enabling WCF to easily identify the client. How-
ever, HTTP is, by definition, a connectionless protocol, and every message from the
client comes on a new connection. Consequently, when using the basic binding, there
is never a transport session. Or, more precisely, there is a transport session, but it lasts
for only one call and after the call returns, the channel is destroyed along with the
connection. The next call will come on a new connection and will be routed to a new
channel. The WS binding can improve on this situation by emulating a transport ses-
sion. If configured to do so, it will insert a unique ID identifying the client in each
message and will keep sending this ID for every call from that client. You will see more
about this ID in Chapter 4.

Transport Session Termination
Typically, the transport session will end once the client closes the proxy. However, in
case the client terminates ungracefully or in case of a communication problem, each
transport session also has an idle-time timeout that defaults to 10 minutes. The trans-
port session will automatically terminate after 10 minutes of inactivity from the client,
even if the client still intends to use the proxy. If the client tries to use its proxy after
the transport session has been terminated due to the idle timeout, it will get a
CommunicationObjectFaultedException. You can configure different timeouts on the
client and the service by setting different values in the binding. The bindings that sup-
port a transport-level session provide the ReliableSession property, which can be of
the type ReliableSession or OptionalReliableSession. The ReliableSession class offers
the InactivityTimeout property, which you can use to configure a new idle-time
timeout:

public class ReliableSession
{
 public TimeSpan InactivityTimeout
 {get;set;}
 //More members
}
public class OptionalReliableSession : ReliableSession
{...}
public class NetTcpBinding : Binding,...
{
 public OptionalReliableSession ReliableSession
 {get;set}
 //More members
}
public abstract class WSHttpBindingBase : ...
{
 public OptionalReliableSession ReliableSession
 {get;set}
 //More members
}

76 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

public class WSHttpBinding : WSHttpBindingBase,...
{...}

For example, here is the code required to programmatically configure an idle timeout
of 25 minutes for the TCP binding:

NetTcpBinding tcpSessionBinding = new NetTcpBinding();
tcpSessionBinding.ReliableSession.InactivityTimeout = TimeSpan.FromMinutes(25);

Here is the equivalent configuration setting using a config file:

<netTcpBinding>
 <binding name = "TCPSession">
 <reliableSession inactivityTimeout = "00:25:00"/>
 </binding>
</netTcpBinding>

If both the client and the service configure a timeout, the shorter timeout prevails.

There is another esoteric service-side configuration for session termi-
nation: the ServiceBehavior attribute offers an advanced option for
managing session shutdown via the AutomaticSessionShutdown prop-
erty. This property is intended for optimizing certain callback sce-
narios and you can safely ignore it in most cases. In a nutshell,
AutomaticSessionShutdown defaults to true so that when the client closes
the proxy, the session is terminated. Setting it to false causes the session
to continue until the service explicitly closes its sending channel. When
this attribute is set to false, the client of a duplex session (discussed in
Chapter 5) must manually close the output session on the duplex client
channel; otherwise, the client will hang waiting for the session to
terminate.

Reliability
WCF and other service-oriented technologies make a distinction between transport
reliability and message reliability. Transport reliability (such as that offered by TCP/IP)
offers point-to-point guaranteed delivery at the network packet level and also guaran-
tees in-order delivery of the packets. Transport reliability is not resilient to dropped
network connections or a variety of other communication problems.

Message reliability, as the name implies, deals with reliability at the message level, in-
dependent of how many packets are required to deliver the message. Message reliability
provides end-to-end guaranteed delivery and order of messages, regardless of how
many intermediaries are involved and how many network hops are required to deliver
the message from the client to the service. Message reliability is based on an industry
standard for reliable message-based communication that maintains a session at the
transport level and supports retries in case of transport failures, such as dropping a
wireless connection. It automatically deals with congestion, message buffering, and
flow control, and can adjust the flow of messages accordingly. Message reliability also

Reliability | 77

Download from Library of Wow! eBook <www.wowebook.com>

deals with connection management, verifying connections and cleaning them up when
they are no longer needed.

Message reliability does not guarantee message delivery. It provides only
a guarantee that if the message does not reach its destination, the sender
will know about it.

Bindings, Reliability, and Ordered Messages
In WCF, you control and configure reliability in the binding. A particular binding can
support or not support reliable messaging and, if it’s supported, you can enable or
disable it. Whether a binding supports reliability is driven by the target scenario for
that particular binding. Table 1-2 summarizes the relationship between binding, reli-
ability, and ordered delivery for the six commonly used bindings and lists the respective
default values.

Table 1-2. Reliability and ordered delivery

Binding name
Supports
reliability Default reliability

Supports ordered
delivery

Default ordered
delivery

BasicHttpBinding No N/A No N/A

NetTcpBinding Yes Off Yes On

NetNamedPipeBinding No N/A (On) Yes N/A (On)

WSHttpBinding Yes Off Yes On

NetMsmqBinding No N/A No N/A

The BasicHttpBinding and the NetMsmqBinding do not support reliability. The BasicHttp
Binding is oriented toward the legacy ASMX web services world, which does not sup-
port reliability, while the NetMsmqBinding is for disconnected calls and has its own
notion of reliability (discussed in Chapter 9).

Reliability is disabled by default, but you can enable it in the NetTcpBinding and the
WSHttpBinding. Finally, the NetNamedPipeBinding is considered inherently reliable be-
cause it always has exactly one hop from the client to the service.

Message reliability also provides ordered delivery assurance, allowing execution of
messages in the order in which they were sent, not the order in which they were deliv-
ered. In addition, it guarantees that each message is delivered exactly once.

WCF lets you enable reliability but not ordered delivery, in which case messages are
executed in the order in which they were received. The default for all bindings that
support reliability is that when reliability is enabled, ordered delivery is enabled as well.
Ordered delivery requires reliability. Thus, if ordered delivery is turned on but reliability
is turned off, the calls will not be delivered in order.

78 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

Configuring Reliability
You can configure reliability (and ordered delivery) both programmatically and ad-
ministratively. When you enable reliability, you must do so on both the client and the
service host sides, or the client will not be able to communicate with the service. You
can only configure reliability for the bindings that support it. Example 1-24 shows a
service-side config file that uses a binding configuration section to enable reliability
when using the TCP binding.

Example 1-24. Enabling reliability with the TCP binding

<system.serviceModel>
 <services>
 <service name = "MyService">
 <endpoint
 address = "net.tcp://localhost:8000/MyService"
 binding = "netTcpBinding"
 bindingConfiguration = "ReliableTCP"
 contract = "IMyContract"
 />
 </service>
 </services>
 <bindings>
 <netTcpBinding>
 <binding name = "ReliableTCP">
 <reliableSession enabled = "true"/>
 </binding>
 </netTcpBinding>
 </bindings>
</system.serviceModel>

When it comes to programmatic configuration, the TCP and WS bindings both offer
a construction parameter and a property for configuring reliability. For example, the
NetTcpBinding binding accepts a Boolean construction parameter for enabling
reliability:

public class NetTcpBinding : Binding,...
{
 public NetTcpBinding(...,bool reliableSessionEnabled);
 //More members
}

You can also enable reliability post-construction by accessing the ReliableSession
property:

public class ReliableSession
{
 public bool Ordered
 {get;set;}
 //More members
}
public class OptionalReliableSession : ReliableSession
{
 public bool Enabled

Reliability | 79

Download from Library of Wow! eBook <www.wowebook.com>

 {get;set;}
 //More members
}
public class NetTcpBinding : Binding,...
{
 public OptionalReliableSession ReliableSession
 {get;}
 //More members
}

Requiring Ordered Delivery
In theory, the service code and the contract definition should be independent of the
binding used and its properties. The service should not care about the binding, and
nothing in the service code pertains to the binding used. The service should be able to
work with any aspect of the configured binding. In practice, however, the service im-
plementation or the contract itself may depend on ordered delivery of the messages.
To enable the contract or service developer to constrain the allowed bindings, WCF
defines the DeliveryRequirementsAttribute:

[AttributeUsage(AttributeTargets.Class|AttributeTargets.Interface,
 AllowMultiple = true)]
public sealed class DeliveryRequirementsAttribute : Attribute,...
{
 public Type TargetContract
 {get;set;}
 public bool RequireOrderedDelivery
 {get;set;}

 //More members
}

You can apply the DeliveryRequirements attribute at the service level, affecting all end-
points of the service, or only at those endpoints that expose a particular contract. When
applied at the service level, requiring ordered delivery is an implementation decision.
For example, to demand that all endpoints of the service, regardless of contracts, have
ordered delivery enabled, apply the attribute directly on the service class:

[DeliveryRequirements(RequireOrderedDelivery = true)]
class MyService : IMyContract,IMyOtherContract
{...}

By setting the TargetContract property, you can demand that only endpoints of the
service that support the specified contract be constrained to have reliable ordered
delivery:

[DeliveryRequirements(TargetContract = typeof(IMyContract),
 RequireOrderedDelivery = true)]
class MyService : IMyContract,IMyOtherContract
{...}

80 | Chapter 1: WCF Essentials

Download from Library of Wow! eBook <www.wowebook.com>

You can also use the attribute at the contract level, affecting all services that support
that contract. When applied at the contract level, requiring ordered delivery is a design
decision. Enforcing the constraint is done at service load time. If an endpoint has a
binding that does not support reliability, supports reliability but has it disabled, or has
reliability enabled but ordered delivery disabled, loading the service will fail with an
InvalidOperationException.

By applying the DeliveryRequirements attribute on the contract interface, you place the
constraint on all services that support it:

[ServiceContract]
[DeliveryRequirements(RequireOrderedDelivery = true)]
interface IMyContract
{...}

class MyService : IMyContract
{...}

class MyOtherService : IMyContract
{...}

The default value of RequireOrderedDelivery is false, so merely applying the attribute
has no effect. For example, these statements are equivalent:

[ServiceContract]
interface IMyContract
{...}

[ServiceContract]
[DeliveryRequirements]
interface IMyContract
{...}

[ServiceContract]
[DeliveryRequirements(RequireOrderedDelivery = false)]
interface IMyContract
{...}

The IPC binding satisfies the ordered delivery constraint.

Reliability | 81

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 2

Service Contracts

The ServiceContract attribute presented in the previous chapter exposes a program-
ming construct (the interface) as a service-oriented contract, allowing you to program
in languages such as C#, while exposing the construct as WCF contracts and services.
This chapter starts by discussing how to better bridge the gap between the two pro-
gramming models by enabling operation overloading and contract inheritance. Next,
it presents a few simple yet powerful service contract design and factoring guidelines
and techniques. The chapter ends by showing you how to interact programmatically
at runtime with the metadata of the exposed contracts.

Operation Overloading
Programming languages such as C++ and C# support method overloading; that is,
defining two methods with the same name but with different parameters. For example,
this is a valid C# interface definition:

interface ICalculator
{
 int Add(int arg1,int arg2);
 double Add(double arg1,double arg2);
}

However, operation overloading is invalid in the world of WSDL-based operations,
since all operations must have unique names (they are identified by name in the mes-
sages). Consequently, while the following contract definition compiles, it will throw
an InvalidOperationException at the service host load time:

//Invalid contract definition:
[ServiceContract]
interface ICalculator
{
 [OperationContract]
 int Add(int arg1,int arg2);

83

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationContract]
 double Add(double arg1,double arg2);
}

However, you can manually enable operation overloading. The trick is using the Name
property of the OperationContract attribute to alias the operation:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationContractAttribute : Attribute
{
 public string Name
 {get;set;}
 //More members
}

You need to alias the operation both on the service and on the client side. On the service
side, provide a unique name for each overloaded operation, as shown in Example 2-1.

Example 2-1. Service-side operation overloading

[ServiceContract]
interface ICalculator
{
 [OperationContract(Name = "AddInt")]
 int Add(int arg1,int arg2);

 [OperationContract(Name = "AddDouble")]
 double Add(double arg1,double arg2);
}

When the client imports the contract and generates the proxy, the imported operations
will have the aliased names:

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 int AddInt(int arg1,int arg2);

 [OperationContract]
 double AddDouble(double arg1,double arg2);
}
class CalculatorClient : ClientBase<ICalculator>,ICalculator
{
 public int AddInt(int arg1,int arg2)
 {
 return Channel.AddInt(arg1,arg2);
 }
 public double AddDouble(double arg1,double arg2)
 {
 return Channel.AddDouble(arg1,arg2);
 }
 //Rest of the proxy
}

84 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

The client can use the generated proxy and contract as they are, but you can also rework
them to provide overloading on the client side. Rename the methods on the imported
contract and the proxy to the overloaded names, and make sure the proxy class makes
calls on the internal proxy using the overloaded methods, as in:

public int Add(int arg1,int arg2)
{
 return Channel.Add(arg1,arg2);
}

Finally, use the Name property on the imported contract on the client side to alias and
overload the methods, matching the imported operation names, as shown in
Example 2-2.

Example 2-2. Client-side operation overloading

[ServiceContract]
interface ICalculator
{
 [OperationContract(Name = "AddInt")]
 int Add(int arg1,int arg2);

 [OperationContract(Name = "AddDouble")]
 double Add(double arg1,double arg2);
}

class CalculatorClient : ClientBase<ICalculator>,ICalculator
{
 public int Add(int arg1,int arg2)
 {
 return Channel.Add(arg1,arg2);
 }
 public double Add(double arg1,double arg2)
 {
 return Channel.Add(arg1,arg2);
 }
 //Rest of the proxy
}

Now the client can benefit from the readable and smooth programming model offered
by overloaded operations:

CalculatorClient proxy = new CalculatorClient();

int result1 = proxy.Add(1,2);
double result2 = proxy.Add(1.0,2.0);

proxy.Close();

Operation Overloading | 85

Download from Library of Wow! eBook <www.wowebook.com>

Contract Inheritance
Service contract interfaces can derive from each other, enabling you to define a hierar-
chy of contracts. However, the ServiceContract attribute is not inheritable:

[AttributeUsage(Inherited = false,...)]
public sealed class ServiceContractAttribute : Attribute
{...}

Consequently, every level in the interface hierarchy must explicitly have the Service
Contract attribute, as shown in Example 2-3.

Example 2-3. Service-side contract hierarchy

[ServiceContract]
interface ISimpleCalculator
{
 [OperationContract]
 int Add(int arg1,int arg2);
}

[ServiceContract]
interface IScientificCalculator : ISimpleCalculator
{
 [OperationContract]
 int Multiply(int arg1,int arg2);
}

When it comes to implementing a contract hierarchy, a single service class can imple-
ment the entire hierarchy, just as with classic C# programming:

class MyCalculator : IScientificCalculator
{
 public int Add(int arg1,int arg2)
 {
 return arg1 + arg2;
 }
 public int Multiply(int arg1,int arg2)
 {
 return arg1 * arg2;
 }
}

The host can expose a single endpoint for the bottommost interface in the hierarchy:

<service name = "MyCalculator">
 <endpoint
 address = "http://localhost:8001/MyCalculator/"
 binding = "basicHttpBinding"
 contract = "IScientificCalculator"
 />
</service>

86 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

Client-Side Contract Hierarchy
When a client imports the metadata of a service endpoint whose contract is part of an
interface hierarchy, the resulting contract on the client side will not maintain the orig-
inal hierarchy. Instead, it will include a flattened hierarchy in the form of a single con-
tract named after the endpoint’s contract. The single contract will have a union of all
the operations from all the interfaces leading down to it in the hierarchy, including
itself. However, the imported interface definition will maintain, in the Action and
ReplyAction properties of the OperationContract attribute, the name of the original
contract that defined each operation:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationContractAttribute : Attribute
{
 public string Action
 {get;set;}
 public string ReplyAction
 {get;set;}
 //More members
}

Finally, a single proxy class will implement all methods in the imported contract. Given
the definitions in Example 2-3, Example 2-4 shows the imported contract and the gen-
erated proxy class.

Example 2-4. Client-side flattened hierarchy

[ServiceContract]
interface IScientificCalculator
{
 [OperationContract(Action = ".../ISimpleCalculator/Add",
 ReplyAction = ".../ISimpleCalculator/AddResponse")]
 int Add(int arg1,int arg2);

 [OperationContract(Action = ".../IScientificCalculator/Multiply",
 ReplyAction = ".../IScientificCalculator/MultiplyResponse")]
 int Multiply(int arg1,int arg2);
}

class ScientificCalculatorClient :
 ClientBase<IScientificCalculator>,IScientificCalculator
{
 public int Add(int arg1,int arg2)
 {...}
 public int Multiply(int arg1,int arg2)
 {...}
 //Rest of the proxy
}

Restoring the hierarchy on the client

The client can manually rework the proxy and the imported contract definitions to
restore the contract hierarchy, as shown in Example 2-5.

Contract Inheritance | 87

Download from Library of Wow! eBook <www.wowebook.com>

Example 2-5. Client-side contract hierarchy

[ServiceContract]
interface ISimpleCalculator
{
 [OperationContract]
 int Add(int arg1,int arg2);
}
class SimpleCalculatorClient : ClientBase<ISimpleCalculator>,ISimpleCalculator
{
 public int Add(int arg1,int arg2)
 {
 return Channel.Add(arg1,arg2);
 }
 //Rest of the proxy
}

[ServiceContract]
interface IScientificCalculator : ISimpleCalculator
{
 [OperationContract]
 int Multiply(int arg1,int arg2);
}
class ScientificCalculatorClient :
 ClientBase<IScientificCalculator>,IScientificCalculator
{
 public int Add(int arg1,int arg2)
 {
 return Channel.Add(arg1,arg2);
 }
 public int Multiply(int arg1,int arg2)
 {
 return Channel.Multiply(arg1,arg2);
 }
 //Rest of the proxy
}

Using the value of the Action property in the various operations, the client can factor
out the definitions of the comprising contracts in the service contract hierarchy and
provide interface and proxy definitions (for example, ISimpleCalculator and Simple
CalculatorClient in Example 2-5). There is no need to set the Action and
ReplyAction properties, and you can safely remove them all. Next, manually add the
interface to the inheritance chain as required:

[ServiceContract]
interface IScientificCalculator : ISimpleCalculator
{...}

Even though the service may have exposed just a single endpoint for the bottommost
interface in the hierarchy, the client can view it as different endpoints with the same
address, where each endpoint corresponds to a different level in the contract hierarchy:

<client>
 <endpoint name = "SimpleEndpoint"
 address = "http://localhost:8001/MyCalculator/"

88 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 binding = "basicHttpBinding"
 contract = "ISimpleCalculator"
 />
 <endpoint name = "ScientificEndpoint"
 address = "http://localhost:8001/MyCalculator/"
 binding = "basicHttpBinding"
 contract = "IScientificCalculator"
 />
</client>

The client can now write the following code, taking full advantage of the contract
hierarchy:

SimpleCalculatorClient proxy1 = new SimpleCalculatorClient();
proxy1.Add(1,2);
proxy1.Close();

ScientificCalculatorClient proxy2 = new ScientificCalculatorClient();
proxy2.Add(3,4);
proxy2.Multiply(5,6);
proxy2.Close();

The advantage of the proxy refactoring in Example 2-5 is that each level in the contract
is kept separately and decoupled from the levels underneath it. Anyone on the client
side that expects a reference to ISimpleCalculator can now be given a reference to
IScientificCalculator:

void UseCalculator(ISimpleCalculator calculator)
{...}

ISimpleCalculator proxy1 = new SimpleCalculatorClient();
ISimpleCalculator proxy2 = new ScientificCalculatorClient();
IScientificCalculator proxy3 = new ScientificCalculatorClient();
SimpleCalculatorClient proxy4 = new SimpleCalculatorClient();
ScientificCalculatorClient proxy5 = new ScientificCalculatorClient();

UseCalculator(proxy1);
UseCalculator(proxy2);
UseCalculator(proxy3);
UseCalculator(proxy4);
UseCalculator(proxy5);

However, there is no Is-A relationship between the proxies. The IScientific
Calculator interface derives from ISimpleCalculator, but a ScientificCalculator
Client is not a SimpleCalculatorClient. In addition, you have to repeat the implemen-
tation of the base contract in the proxy for the subcontract. You can rectify that by
using a technique I call proxy chaining, illustrated in Example 2-6.

Example 2-6. Proxy chaining

class SimpleCalculatorClient :
 ClientBase<IScientificCalculator>,ISimpleCalculator
{
 public int Add(int arg1,int arg2)
 {

Contract Inheritance | 89

Download from Library of Wow! eBook <www.wowebook.com>

 return Channel.Add(arg1,arg2);
 }
 //Rest of the proxy
}

class ScientificCalculatorClient :
 SimpleCalculatorClient,IScientificCalculator
{
 public int Multiply(int arg1,int arg2)
 {
 return Channel.Multiply(arg1,arg2);
 }
 //Rest of the proxy
}

Only the proxy that implements the topmost base contract derives directly from
ClientBase<T>, providing it as a type parameter with the bottommost subinterface. All
the other proxies derive from the proxy immediately above them and the respective
contract.

Proxy chaining gives you an Is-A relationship between the proxies, as well as enabling
code reuse. Anyone on the client side that expects a reference to SimpleCalculator
Client can now be given a reference to ScientificCalculatorClient:

void UseCalculator(SimpleCalculatorClient calculator)
{...}

SimpleCalculatorClient proxy1 = new SimpleCalculatorClient();
SimpleCalculatorClient proxy2 = new ScientificCalculatorClient();
ScientificCalculatorClient proxy3 = new ScientificCalculatorClient();

UseCalculator(proxy1);
UseCalculator(proxy2);
UseCalculator(proxy3);

Service Contract Factoring and Design
Syntax aside, how do you go about designing service contracts? How do you know
which operations to allocate to which service contract? How many operations should
each contract have? Answering these questions has little to do with WCF and a lot to
do with abstract service-oriented analysis and design. An in-depth discussion of how
to decompose a system into services and how to discover contract methods is beyond
the scope of this book. Nonetheless, this section offers a few pieces of advice to guide
you in your service contracts design effort.

Contract Factoring
A service contract is a grouping of logically related operations. What constitutes “log-
ically related” is usually domain-specific. You can think of service contracts as different
facets of some entity. Once you have identified (after requirements analysis) all the

90 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

operations the entity supports, you need to allocate those operations to contracts. This
is called service contract factoring. When you factor a service contract, always think in
terms of reusable elements. In a service-oriented application, the basic unit of reuse is
the service contract. Ask yourself, will this particular contract factoring yield contracts
that other entities in the system can reuse? What facets of the entity can logically be
factored out and used by other entities?

As a concrete yet simple example, suppose you wish to model a dog service. The re-
quirements are that the dog should be able to bark and fetch, that it should have a
veterinary clinic registration number, and that you should be able to vaccinate it. You
could define the IDog service contract and have different kinds of services, such as the
PoodleService and the GermanShepherdService, implement the IDog contract:

[ServiceContract]
interface IDog
{
 [OperationContract]
 void Fetch();

 [OperationContract]
 void Bark();

 [OperationContract]
 long GetVetClinicNumber();

 [OperationContract]
 void Vaccinate();
}
class PoodleService : IDog
{...}
class GermanShepherdService : IDog
{...}

However, this composition of the IDog service contract is not well factored. Even though
all the operations are things a dog should support, Fetch() and Bark() are more logically
related to each other than to GetVetClinicNumber() and Vaccinate(). Fetch() and
Bark() involve one facet of the dog, as a living, active canine entity, while
GetVetClinicNumber() and Vaccinate() involve a different facet, one that relates it as a
record of a pet in a veterinary clinic. A better approach is to factor out the
GetVetClinicNumber() and Vaccinate() operations to a separate contract called IPet:

[ServiceContract]
interface IPet
{
 [OperationContract]
 long GetVetClinicNumber();

 [OperationContract]
 void Vaccinate();
}

Service Contract Factoring and Design | 91

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
interface IDog
{
 [OperationContract]
 void Fetch();

 [OperationContract]
 void Bark();
}

Because the pet facet is independent of the canine facet, other entities (such as cats)
can reuse the IPet service contract and support it:

[ServiceContract]
interface ICat
{
 [OperationContract]
 void Purr();

 [OperationContract]
 void CatchMouse();
}

class PoodleService : IDog,IPet
{...}

class SiameseService : ICat,IPet
{...}

This factoring, in turn, allows you to decouple the clinic-management aspect of the
application from the actual service (be it dogs or cats). Factoring operations into sep-
arate interfaces is usually done when there is a weak logical relation between the
operations. However, identical operations are sometimes found in several unrelated
contracts, and these operations are logically related to their respective contracts. For
example, both cats and dogs need to shed fur and nurse their offspring. Logically,
shedding is just as much a dog operation as barking, and just as much a cat operation
as purring.

In such cases, you can factor the service contracts into a hierarchy of contracts instead
of separate contracts:

[ServiceContract]
interface IMammal
{
 [OperationContract]
 void Shed();

 [OperationContract]
 void Lactate();
}
[ServiceContract]
interface IDog : IMammal
{...}

92 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
interface ICat : IMammal
{...}

Factoring Metrics
As you can see, proper contract factoring results in more specialized, loosely coupled,
fine-tuned, and reusable contracts, and subsequently, those benefits apply to the system
as well. In general, contract factoring results in contracts with fewer operations.

When you design a service-based system, however, you need to balance two countering
forces (see Figure 2-1). One is the cost of implementing the service contracts, and the
other is the cost of putting them together or integrating them into a cohesive
application.

Figure 2-1. Balancing the number of services and their size

If you have too many granular service contracts, it will be easy to implement each
contract, but the overall cost of integrating all those service contracts will be prohibitive.
On the other hand, if you have only a few complex, large service contracts, the cost of
implementing those contracts will be a prohibitive factor, even though the cost of in-
tegrating them might be low.

The relationship between size of a service contract and cost of implementation is not
linear, because complexity is not linear to size—something that’s twice as big may be
four or six times as complex. Similarly, the relationship between integration cost and
the number of service contracts to integrate is not linear, because the number of possible
connections is not linear to the number of participating services.

In any given system, the total effort involved in designing and maintaining the services
that implement the contracts is the sum of those two factors (cost of implementation
and cost of integration). As you can see from Figure 2-1, there is an area of minimum
cost or effort in relation to the size and number of service contracts. A well-designed

Service Contract Factoring and Design | 93

Download from Library of Wow! eBook <www.wowebook.com>

system has not too many but not too few services, and those services are not too big
but not too small.

Because these contract-factoring issues are independent of the service technology used,
I can extrapolate from my own and others’ experiences of factoring and architecting
large-scale applications and share a few rules of thumb and metrics I have collected
about service-contract factoring.

Service contracts with just one operation are possible, but you should avoid them. A
service contract is a facet of an entity, and that facet must be pretty dull if you can
express it with just one operation. Examine that single operation, and ask yourself some
questions about it. Is it using too many parameters? Is it too coarse, and therefore should
it be factored into several operations? Should you factor this operation into an already
existing service contract?

The optimal number of service contract members (in my opinion and experience) is
between three and five. If you design a service contract with more operations—say, six
to nine—you are still doing relatively well. However, look at the operations and try to
determine whether any can be collapsed into each other, since it’s quite possible to
over-factor operations. If you have a service contract with 12 or more operations, you
should definitely look for ways to factor the operations into either separate service
contracts or a hierarchy of contracts. Your coding standard should set some upper limit
never to be exceeded, regardless of the circumstances (say, 20).

Another rule involves the use of property-like operations, such as this:

[OperationContract]
long GetVetClinicNumber();

You should avoid such operations. Service contracts allow clients to invoke abstract
operations, without caring about actual implementation details. Properties in general
are better than public member variables, but methods are better than properties. I say
that properties provide just-enough encapsulation, and this is why WCF (unlike C#)
does not support properties directly—although you can easily circumvent that by de-
fining property-like operations. Such property-like operations would encapsulate the
business logic of setting and reading the variables’ values on the service side. Ideally,
however, you shouldn’t bother clients with properties at all. That is, clients should be
able to simply invoke operations and let the service worry about how to manage its
state. The interaction should be in terms of DoSomething(), like Vaccinate(). How the
service goes about doing that and whether or not a vet clinic number is involved should
be of no concern to the client.

A word of caution about factoring metrics: rules of thumb and generic
metrics are only tools to help you evaluate your particular design. There
is no substitute for domain expertise and experience. Always be practi-
cal, apply judgment, and question what you do in light of these
guidelines.

94 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

Contract Queries
Sometimes the client needs to programmatically verify whether a particular endpoint
(identified by its address) supports a particular contract. For example, imagine an ap-
plication where the application administrator (or even the end user) specifies or con-
figures the application during setup (or at runtime) to consume and interact with a
service. If the service does not support the required contracts, the application should
alert the user that an invalid address was specified, and ask for an alternative or a correct
address. For example, the Credentials Manager application used in Chapter 10 has just
such a feature: the user needs to provide it with the address of the security credentials
service that manages account membership and roles. Credentials Manager only allows
the user to select a valid address, after verifying that the address supports the required
service contracts.

Programmatic Metadata Processing
In order to support such functionality, the application needs to retrieve the service’s
metadata and see if at least one of the endpoints supports the requested contract. As
explained in Chapter 1, the metadata may be available either in special metadata ex-
change endpoints (if the service supports them), or over the HTTP-GET protocol.
When you use HTTP-GET, the address of the metadata exchange is the HTTP-GET
address suffixed by ?wsdl. To ease the task of parsing the returned metadata WCF offers
a few helper classes, available in the System.ServiceModel.Description namespaces, as
shown in Example 2-7.

Example 2-7. Metadata processing supporting types

public enum MetadataExchangeClientMode
{
 MetadataExchange,
 HttpGet
}
public class MetadataSet : ...
{...}
public class ServiceEndpointCollection : Collection<ServiceEndpoint>
{...}

public class MetadataExchangeClient
{
 public MetadataExchangeClient();
 public MetadataExchangeClient(Binding mexBinding);
 public MetadataSet GetMetadata(Uri address,MetadataExchangeClientMode mode);
 //More members
}
public abstract class MetadataImporter
{
 public abstract ServiceEndpointCollection ImportAllEndpoints();
 //More members
}

Contract Queries | 95

Download from Library of Wow! eBook <www.wowebook.com>

public class WsdlImporter : MetadataImporter
{
 public WsdlImporter(MetadataSet metadata);
 //More members
}
public class ServiceEndpoint
{
 public EndpointAddress Address
 {get;set;}
 public Binding Binding
 {get;set;}
 public ContractDescription Contract
 {get;}
 //More members
}
public class ContractDescription
{
 public static ContractDescription GetContract(Type contractType);

 public string Name
 {get;set;}
 public string Namespace
 {get;set;}
 //More members
}

You can provide the MetadataExchangeClient constructor with an already-initialized
binding instance that has some custom values, such as a capacity for larger messages
if the metadata returned exceeds the default received message size. The GetMeta
data() method of MetadataExchangeClient accepts an endpoint address instance wrap-
ping the metadata exchange address, as well as an enum specifying the access method.
It returns the metadata in an instance of MetadataSet, but you should not work with
that type directly. Instead, instantiate a subclass of MetadataImporter, such as
WsdlImporter, and provide the raw metadata as a construction parameter; then call the
ImportAllEndpoints() method to obtain a collection of all endpoints found in the
metadata. The endpoints are represented by the ServiceEndpoint class.

ServiceEndpoint provides the Contract property of the type ContractDescription.
ContractDescription provides the name and namespace of the contract. You can con-
vert a CLR type (typically an interface with the ServiceContract attribute) to a
ContractDescription via the GetContract() static method of ContractDescription.

Using HTTP-GET, to find out if a specified base address supports a particular contract,
follow the steps just described. This will yield the collection of endpoints. Then, find
out if any of the endpoints in the collection support the contract by comparing the
Name and Namespace properties in the ContractDescription with the requested contract,
as shown in Example 2-8.

96 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

Example 2-8. Querying an address for a contract

Uri mexAddress = new Uri("...?wsdl");

MetadataExchangeClient mexClient = new MetadataExchangeClient(mexAddress,
 MetadataExchangeClientMode.HttpGet);
MetadataSet metadata = mexClient.GetMetadata();
MetadataImporter importer = new WsdlImporter(metadata);
ServiceEndpointCollection endpoints = importer.ImportAllEndpoints();
ContractDescription description =
 ContractDescription.GetContract(typeof(IMyContract));

bool contractSupported = endpoints.Any(endpoint =>
 endpoint.Contract.Namespace == description.Namespace &&
 endpoint.Contract.Name == description.Name);

The Metadata Explorer tool presented in Chapter 1 follows steps similar
to those in Example 2-8 to retrieve the service endpoints. When given
an HTTP-based address, the tool tries both HTTP-GET and an HTTP-
based metadata exchange endpoint. The Metadata Explorer can also
retrieve the metadata using a TCP- or IPC-based metadata exchange
endpoint. The bulk of the implementation of the tool was in processing
the metadata and rendering it because the difficult task of retrieving and
parsing the metadata is done by the WCF-provided classes.

The MetadataResolver class

Example 2-8 queries the metadata in two phases: MetadataExchangeClient is used to
obtain the metadata, and MetadataImporter is used to parse it and extract the endpoints.
WCF combines these two steps for you with the MetadataResolver static class:

public static class MetadataResolver
{
 public static ServiceEndpointCollection Resolve(Type contract,
 EndpointAddress address);
 public static ServiceEndpointCollection Resolve(Type contract,Uri address,
 MetadataExchangeClientMode mode);
 //Additional members
}

Here is the same querying logic as that in Example 2-8, using the MetadataResolver:

bool contractSupported = false;

Uri mexAddress = new Uri("...?wsdl");

ServiceEndpointCollection endpoints =
 MetadataResolver.Resolve(typeof(IMyContract),
 mexAddress,MetadataExchangeClientMode.HttpGet);
if(endpoints.Count > 0)
{
 contractSupported = true;
}

Contract Queries | 97

Download from Library of Wow! eBook <www.wowebook.com>

The MetadataHelper Class
While the WCF-provided MetadataResolver is a step in the right direction, I wanted to
streamline obtaining metadata further and encapsulate advanced yet sometimes nec-
essary steps such as setting the metadata message size. To this end, I created a general-
purpose static utility class called MetadataHelper, which offers methods such as Query
Contract():

public static class MetadataHelper
{
 public static bool QueryContract(string mexAddress,Type contractType);
 //More members
}

You can provide MetadataHelper with either the Type of the contract you wish to query
for, or the name and namespace of the contract:

string address = "...";
bool contractSupported = MetadataHelper.QueryContract(address,typeof(IMyContract));

For a metadata exchange address, you can provide MetadataHelper with an HTTP-GET
address, or a MEX endpoint address over HTTP, HTTPS, TCP, or IPC. Example 2-9
shows the implementation of MetadataHelper.QueryContract(), with some of the error-
handling code removed.

Example 2-9. Implementing MetadataHelper.QueryContract()

public static class MetadataHelper
{
 const int MessageSizeMultiplier = 5;

 static ServiceEndpointCollection QueryMexEndpoint(string mexAddress,
 BindingElement bindingElement)
 {
 dynamic element = bindingElement;
 element.MaxReceivedMessageSize *= MessageSizeMultiplier;

 CustomBinding binding = new CustomBinding(element);

 MetadataExchangeClient mexClient = new MetadataExchangeClient(binding);
 MetadataSet metadata = mexClient.
 GetMetadata(new EndpointAddress(mexAddress));
 MetadataImporter importer = new WsdlImporter(metadata);
 return importer.ImportAllEndpoints();
 }

 public static ServiceEndpoint[] GetEndpoints(string mexAddress)
 {
 /* Some error handling */
 Uri address = new Uri(mexAddress);
 ServiceEndpointCollection endpoints = null;
 BindingElement bindingElement = null;

 if(address.Scheme == Uri.UriSchemeNetTcp)

98 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 {
 bindingElement = new TcpTransportBindingElement();
 }
 if(address.Scheme == Uri.UriSchemeNetPipe)
 {...}
 if(address.Scheme == Uri.UriSchemeHttp) //Checks for HTTP-GET as well
 {...}
 if(address.Scheme == Uri.UriSchemeHttps) //Checks for HTTPS-GET as well
 {...}

 endpoints = QueryMexEndpoint(mexAddress,bindingElement);

 return endpoints.ToArray();
 }
 public static bool QueryContract(string mexAddress,Type contractType)
 {
 if(contractType.IsInterface == false)
 {
 Debug.Assert(false,contractType + " is not an interface");
 return false;
 }
 object[] attributes = contractType.GetCustomAttributes(
 typeof(ServiceContractAttribute),false);
 if(attributes.Length == 0)
 {
 Debug.Assert(false,"Interface " + contractType +
 " does not have the ServiceContractAttribute");
 return false;
 }
 ContractDescription description = ContractDescription.
 GetContract(contractType);
 return QueryContract(mexAddress,description.Namespace,description.Name);
 }
 public static bool QueryContract(string mexAddress,string contractNamespace,
 string contractName)
 {
 // Check mex address and contract namespace.
 if (string.IsNullOrWhiteSpace(mexAddress))
 throw new ArgumentException("mexAddress");

 if (string.IsNullOrWhiteSpace(contractNamespace))
 throw new ArgumentException("contractNamespace");

 if (string.IsNullOrWhiteSpace(contractName))
 throw new ArgumentException("contractName");

 ServiceEndpoint[] endpoints = GetEndpoints(mexAddress);

 return endpoints.Any(endpoint =>
 endpoint.Contract.Namespace == contractNamespace &&
 endpoint.Contract.Name == contractName);
 }
}

Contract Queries | 99

Download from Library of Wow! eBook <www.wowebook.com>

In Example 2-9, the GetEndpoints() method parses out the scheme of the metadata
exchange address. According to the transport scheme found (e.g., TCP), GetEnd
points() constructs a matching binding element. GetEndpoints() then uses the Query
MexEndpoint() private method to actually retrieve the metadata. QueryMexEndpoint()
accepts the metadata exchange endpoint address and the binding element to use.
QueryMexEndpoint() must adjust the received message size because the maximum re-
ceived message size defaults to 64K. While this is adequate for simple services, services
that have many endpoints and use complex types will generate larger messages, causing
the call to MetadataExchangeClient.GetMetadata() to fail. My experimentations indicate
that 5 is an adequate boost factor for most cases. You control the maximum received
message size via the MaxReceivedMessageSize property of each specific binding element.
For example, in the case of the TCP binding element:

public abstract class TransportBindingElement : BindingElement
{
 public virtual long MaxReceivedMessageSize
 {get;set;}
}

public class TcpTransportBindingElement :
 ConnectionOrientedTransportBindingElement
{...}

public abstract class ConnectionOrientedTransportBindingElement :
 TransportBindingElement,...
{...}

Since QueryMexEndpoint() uses the abstract base class BindingElement, which does not
have a MaxReceivedMessageSize property, QueryMexEndpoint() relies on the dynamic di-
rective to instruct the compiler to set the property on the derived element. QueryMex
Endpoint() then wraps the binding element with a custom binding and provides it to
an instance of MetadataExchangeClient, which retrieves the metadata and returns the
endpoint collection. Instead of returning a ServiceEndpointCollection, GetEnd
points() uses LINQ to return an array of endpoints.

The QueryContract() method that accepts a Type first verifies that the type is an in-
terface and that it is decorated with the ServiceContract attribute. Because the
ServiceContract attribute can be used to alias both the name and namespace of the
requested type of contract, QueryContract() uses ContractDescription instead of
the raw type and calls the QueryContract() method that operates on the name and
namespace. That version of QueryContract() calls GetEndpoints() to obtain the array
of endpoints and returns true if it finds at least one endpoint that supports the contract.

Example 2-10 shows additional metadata querying methods offered by MetadataHelper.

Example 2-10. The MetadataHelper class

public static class MetadataHelper
{
 public static ServiceEndpoint[] GetEndpoints(string mexAddress);

100 | Chapter 2: Service Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 public static ServiceEndpoint[] GetEndpoints(string mexAddress,
 Type contractType);
 public static string[] GetAddresses(Type bindingType,string mexAddress,
 Type contractType);
 public static string[] GetAddresses(string mexAddress,Type contractType);
 public static string[] GetAddresses(Type bindingType,string mexAddress,
 string contractNamespace,
 string contractName);
 public static string[] GetAddresses(string mexAddress,string contractNamespace,
 string contractName);
 public static ContractDescription[] GetContracts(Type bindingType,
 string mexAddress);
 public static ContractDescription[] GetContracts(string mexAddress);
 public static string[] GetOperations(string mexAddress,Type contractType);
 public static string[] GetOperations(string mexAddress,
 string contractNamespace,
 string contractName);
 public static bool QueryContract(string mexAddress,Type contractType);
 public static bool QueryContract(string mexAddress,
 string contractNamespace,string contractName);
 //More members
}

These powerful and useful features are often required during setup or in administration
applications and tools, and yet their implementation is all based on processing the array
of endpoints returned from the GetEndpoints() method.

The GetAddresses() methods return either all the endpoint addresses that support a
particular contract, or only the addresses of those endpoints that also use a particular
binding. Similarly, GetContracts() returns all the contracts supported across all end-
points, or the contracts supported across all endpoints that use a particular binding.
Finally, GetOperations() returns all the operations on a particular contract.

Chapter 10 uses the MetadataHelper class in the Credentials Manager
application, Appendix C uses it in conjunction with discovery, and
Appendix D uses it for administering persistent subscribers.

Contract Queries | 101

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 3

Data Contracts

WCF provides the ability to host and expose native CLR types (interfaces and classes)
as services, as well as the ability to consume services as native CLR interfaces and
classes. WCF service operations accept and return CLR types such as integers and
strings, and the WCF clients pass in and process returned CLR types. However, such
CLR types are specific to .NET. This poses a problem because one of the core tenets
of service orientation is that services do not betray their implementation technologies
across the service boundary. As a result, any client, regardless of its own technology,
can interact with any service. This, of course, means that WCF cannot allow you to
expose the CLR data types across the service boundary. What you need is a way of
converting CLR types to and from a standard neutral representation. That representa-
tion is a simple XML-based schema, also known as an infoset. In addition, the service
needs a formal way of declaring how the conversion is to take place. This formal spec-
ification is called a data contract, and it is the subject of this chapter. The first part of
the chapter shows how data contracts enable type marshaling and conversions, and
how the infrastructure deals with class hierarchies and data contract versioning. The
second part shows how to use various .NET types, such as enumerations, delegates,
data tables, and collections, as data contracts.

Serialization
The data contract is part of the contractual obligation the service supports, just like the
service operations are part of that contract. The data contract is published in the serv-
ice’s metadata, allowing clients to convert the neutral, technology-agnostic represen-
tation of the data types to their native representations. Because objects and local
references are CLR concepts, you cannot pass CLR objects and references to and from
a WCF service operation. Allowing you to do so not only would violate the core service-
oriented principle discussed previously, but also would be impractical, since an object
is comprised of both its state and the code manipulating it. There is no way of sending
the code or the logic as part of a C# or Visual Basic method invocation, let alone
marshaling it to another platform and technology. In fact, when passing an object (or

103

Download from Library of Wow! eBook <www.wowebook.com>

a value type) as an operation parameter, all you really need to send is the state of that
object, and you let the receiving side convert it back to its own native representation.
Such an approach for passing state around is called marshaling by value. The easiest
way to perform marshaling by value is to rely on the built-in support most platforms
(.NET included) offer for serialization. The approach is simple enough, as shown in
Figure 3-1.

Figure 3-1. Serialization and deserialization during an operation call

On the client side, WCF will serialize the in-parameters from the CLR native repre-
sentation to an XML infoset and bundle them in the outgoing message to the client.
Once the message is received on the service side, WCF will deserialize it and convert
the neutral XML infoset to the corresponding CLR representation before dispatching
the call to the service. The service will then process the native CLR parameters. Once
the service has finished executing the operation, WCF will serialize the out-parameters
and the returned values into a neutral XML infoset, package them in the returned mes-
sage, and post the returned message to the client. Finally, on the client side, WCF will
deserialize the returned values into native CLR types and return them to the client.

104 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

The double dose of serialization and deserialization in every call is the
real bottleneck of WCF, performance-wise. The cost of running a mes-
sage through the interceptors on the client and service sides is minuscule
compared with the overhead of serialization.

.NET Serialization
WCF can make use of .NET’s ready-made support for serialization. .NET automatically
serializes and deserializes objects using reflection. .NET captures the value of each of
the object’s fields and serializes it to memory, to a file, or to a network connection. For
deserializing, .NET creates a new object of the matching type, reads its persisted field
values, and sets the values of its fields using reflection. Because reflection can access
private fields, .NET takes a complete snapshot of the state of an object during seriali-
zation and perfectly reconstructs that state during deserialization. .NET serializes the
object state into a stream, which is a logical sequence of bytes, independent of a par-
ticular medium such as a file, memory, a communication port, or any other resource.

The Serializable attribute

By default, user-defined types (classes and structs) are not serializable. The reason is
that .NET has no way of knowing whether a reflection-based dump of the object state
to a stream makes sense. Perhaps the object members have some transient value or state
(such as an open database connection or communication port). If .NET simply serial-
ized the state of such an object after constructing a new object by deserializing it from
the stream, you could end up with a defective object. Consequently, serialization has
to be performed by consent of the class’s developer.

To indicate to .NET that instances of your class are serializable, add the
SerializableAttribute to your class or struct definition:

[AttributeUsage(AttributeTargets.Delegate|
 AttributeTargets.Enum |
 AttributeTargets.Struct |
 AttributeTargets.Class,
 Inherited = false)]
public sealed class SerializableAttribute : Attribute
{}

For example:

[Serializable]
class MyClass
{...}

The NonSerialized attribute

When a class is serializable, .NET insists that all its member variables be serializable as
well, and if it discovers a non-serializable member, it throws an exception. However,
what if the class or a struct that you want to serialize has a member that cannot be

Serialization | 105

Download from Library of Wow! eBook <www.wowebook.com>

serialized? That type will not have the Serializable attribute and will preclude the
containing type from being serialized. Commonly, that non-serializable member is a
reference type requiring some special initialization. The solution to this problem re-
quires marking such a member as non-serializable and taking a custom step to initialize
it during deserialization.

To allow a serializable type to contain a non-serializable type as a member variable,
you need to mark the member with the NonSerialized field attribute. For example:

class MyOtherClass
{...}

[Serializable]
class MyClass
{
 [NonSerialized]
 MyOtherClass m_OtherClass;
 /* Methods and properties */
}

When .NET serializes a member variable, it first reflects it to see whether it has the
NonSerialized attribute. If so, .NET ignores that variable and simply skips over it.

You can even use this technique to exclude from serialization normally serializable
types, such as string:

[Serializable]
class MyClass
{
 [NonSerialized]
 string m_Name;
}

The .NET formatters

.NET offers two formatters for serializing and deserializing types. The Binary
Formatter serializes into a compact binary format, enabling fast serialization and de-
serialization. The SoapFormatter uses a .NET-specific SOAP XML format.

Both formatters support the IFormatter interface, defined as:

public interface IFormatter
{
 object Deserialize(Stream serializationStream);
 void Serialize(Stream serializationStream,object graph);
 // More members
}

public sealed class BinaryFormatter : IFormatter,...
{...}
public sealed class SoapFormatter : IFormatter,...
{...}

106 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

In addition to the state of the object, both formatters persist the type’s assembly and
versioning information to the stream so that they can deserialize it back to the correct
type. This renders them inadequate for service-oriented interaction, however, because
it requires the other party not only to have the type assembly, but also to be using .NET.
The use of the Stream is also an imposition, because it requires the client and the service
to somehow share the stream.

The WCF Formatters
Due to the deficiencies of the classic .NET formatters, WCF has to provide its own
service-oriented formatter. The formatter, DataContractSerializer, is capable of shar-
ing just the data contract, not the underlying type information. DataContractSerial
izer is defined in the System.Runtime.Serialization namespace and is partially listed
in Example 3-1.

Example 3-1. The DataContractSerializer formatter

public abstract class XmlObjectSerializer
{
 public virtual object ReadObject(Stream stream);
 public virtual object ReadObject(XmlReader reader);
 public virtual void WriteObject(XmlWriter writer,object graph);
 public void WriteObject(Stream stream,object graph);
 //More members
}
public sealed class DataContractSerializer : XmlObjectSerializer
{
 public DataContractSerializer(Type type);
 //More members
}

DataContractSerializer captures only the state of the object according to the seriali-
zation or data contract schema. Note that DataContractSerializer does not support
IFormatter.

WCF uses DataContractSerializer automatically under the covers, and developers
should never need to interact with it directly. However, you can use
DataContractSerializer to serialize types to and from a .NET stream, similar to using
the legacy formatters. Unlike when using the binary or SOAP formatters, however, you
need to supply the DataContractSerializer constructor with the type to operate on,
because no type information will be present in the stream:

MyClass obj1 = new MyClass();
DataContractSerializer formatter = new DataContractSerializer(typeof(MyClass));

using(Stream stream = new MemoryStream())
{
 formatter.WriteObject(stream,obj1);
 stream.Position = 0;

Serialization | 107

Download from Library of Wow! eBook <www.wowebook.com>

 MyClass obj2 = (MyClass)formatter.ReadObject(stream);
}

While you can use DataContractSerializer with .NET streams, you can also use it in
conjunction with XML readers and writers when the only form of input is the raw XML
itself, as opposed to some medium such as a file or memory.

Note the use of the amorphous object in the definition of DataContractSerializer in
Example 3-1. This means that there will be no compile-time-type safety, because the
constructor can accept one type, the WriteObject() method can accept a second type,
and the ReadObject() method can cast to yet a third type.

To compensate for that, you can define your own generic wrapper around
DataContractSerializer, as shown in Example 3-2.

Example 3-2. The generic DataContractSerializer<T>

public class DataContractSerializer<T> : XmlObjectSerializer
{
 DataContractSerializer m_DataContractSerializer;

 public DataContractSerializer()
 {
 m_DataContractSerializer = new DataContractSerializer(typeof(T));
 }
 public new T ReadObject(Stream stream)
 {
 return (T)m_DataContractSerializer.ReadObject(stream);
 }
 public new T ReadObject(XmlReader reader)
 {
 return (T)m_DataContractSerializer.ReadObject(reader);
 }
 public void WriteObject(Stream stream,T graph)
 {
 m_DataContractSerializer.WriteObject(stream,graph);
 }
 public void WriteObject(XmlWriter writer,T graph)
 {
 m_DataContractSerializer.WriteObject(writer,graph);
 }
 //More members
}

The generic class DataContractSerializer<T> is much safer to use than the object-based
DataContractSerializer:

MyClass obj1 = new MyClass();
DataContractSerializer<MyClass> formatter = new DataContractSerializer<MyClass>();

108 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

using(Stream stream = new MemoryStream())
{
 formatter.WriteObject(stream,obj1);
 stream.Position = 0;
 MyClass obj2 = formatter.ReadObject(stream);
}

WCF also offers the NetDataContractSerializer formatter, which is polymorphic with
IFormatter:

public sealed class NetDataContractSerializer : IFormatter,...
{...}

As its name implies, similar to the legacy .NET formatters, the NetDataContractSerial
izer formatter captures the type information in addition to the state of the object. It is
used just like the legacy formatters:

MyClass obj1 = new MyClass();
IFormatter formatter = new NetDataContractSerializer();

using(Stream stream = new MemoryStream())
{
 formatter.Serialize(stream,obj1);
 stream.Position = 0;
 MyClass obj2 = (MyClass)formatter.Deserialize(stream);
}

NetDataContractSerializer is designed to complement DataContractSerializer. You
can serialize a type using NetDataContractSerializer and deserialize it using
DataContractSerializer:

MyClass obj1 = new MyClass();
IFormatter formatter1 = new NetDataContractSerializer();

using(Stream stream = new MemoryStream())
{
 formatter1.Serialize(stream,obj1);

 stream.Position = 0;

 DataContractSerializer formatter2 = new DataContractSerializer(typeof(MyClass));
 MyClass obj2 = (MyClass)formatter2.ReadObject(stream);
}

This capability opens the way for versioning tolerance and for migrating legacy code
that shares type information into a more service-oriented approach where only the data
schema is maintained.

Serialization | 109

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Data Contract via Serialization
When a service operation accepts or returns any type or parameter, WCF uses Data
ContractSerializer to serialize and deserialize that parameter. This means you can pass
any serializable type as a parameter or returned value from a contract operation, as long
as the other party has the definition of the data schema or the data contract. All the .NET
built-in primitive types are serializable. For example, here are the definitions of the
int and string types:

[Serializable]
public struct Int32 : ...
{...}

[Serializable]
public sealed class String : ...
{...}

This is the only reason why any of the service contracts shown in the previous chapters
actually worked: WCF offers implicit data contracts for the primitive types because there
is an industry standard for the schemas of those types.

To use a custom type as an operation parameter, there are two requirements: first, the
type must be serializable, and second, both the client and the service need to have a
local definition of that type that results in the same data schema.

Consider the IContactManager service contract used to manage a contacts list:

[Serializable]
struct Contact
{
 public string FirstName;
 public string LastName;
}

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}

If the client uses an equivalent definition of the Contact structure, it can pass a contact
to the service. An equivalent definition might be anything that results in the same data
schema for serialization. For example, the client might use this definition instead:

[Serializable]
struct Contact
{
 public string FirstName;
 public string LastName;
 [NonSerialized]

110 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 public string Address;
}

Data Contract Attributes
While using the Serializable attribute is workable, it is not ideal for service-oriented
interaction between clients and services. Rather than denoting all members in a type
as serializable and therefore part of the data schema for that type, it would be preferable
to have an opt-in approach, where only members the contract developer wants to ex-
plicitly include in the data contract are included. The Serializable attribute forces the
data type to be serializable in order to be used as a parameter in a contract operation,
and it does not offer clean separation between the ability to use the type as a WCF
operation parameter (the “serviceness” aspect of the type) and the ability to serialize
it. The attribute offers no support for aliasing type names or members, or for mapping
a new type to a predefined data contract. The attribute operates directly on member
fields and completely bypasses any logical properties used to access those fields. It
would be better to allow those properties to add their values when accessing the fields.
Finally, there is no direct support for versioning, because the formatter supposedly
captures all versioning information. Consequently, it is difficult to deal with versioning
over time.

Yet again, the WCF solution is to come up with new service-oriented opt-in attributes.
The first of these attributes is the DataContractAttribute, defined in the System.Run
time.Serialization namespace:

[AttributeUsage(AttributeTargets.Enum |
 AttributeTargets.Struct|
 AttributeTargets.Class,
 Inherited = false,
 AllowMultiple = false)]
public sealed class DataContractAttribute : Attribute
{
 public string Name
 {get;set;}
 public string Namespace
 {get;set;}

 //More members
}

Applying the DataContract attribute on a class or struct does not cause WCF to serialize
any of its members:

[DataContract]
struct Contact
{
 //Will not be part of the data contract
 public string FirstName;
 public string LastName;
}

Data Contract Attributes | 111

Download from Library of Wow! eBook <www.wowebook.com>

All the DataContract attribute does is opt-in the type, indicating that the type can
be marshaled by value. To serialize any of its members, you must apply the
DataMemberAttribute, defined as:

[AttributeUsage(AttributeTargets.Field|AttributeTargets.Property,
 Inherited = false,AllowMultiple = false)]
public sealed class DataMemberAttribute : Attribute
{
 public bool IsRequired
 {get;set;}
 public string Name
 {get;set;}
 public int Order
 {get;set;}

 //More members
}

You can apply the DataMember attribute on the fields directly:

[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;
}

You can also apply the DataMember attribute on properties (either explicit properties,
where you provide the property implementation, or automatic properties, where the
compiler generates the underlying member and access implementation):

[DataContract]
struct Contact
{
 string m_FirstName;

 [DataMember]
 public string FirstName
 {
 get
 {
 return m_FirstName;
 }
 set
 {
 m_FirstName = value;
 }
 }

 [DataMember]
 public string LastName
 {get;set;}
}

112 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

As with service contracts, the visibility of the data members and the data contract itself
is of no consequence to WCF. Thus, you can include internal types with private data
members in the data contract:

[DataContract]
struct Contact
{
 [DataMember]
 string FirstName
 {get;set;}

 [DataMember]
 string LastName
 {get;set;}
}

Some of the code in this chapter applies the DataMember attribute directly on public data
members for brevity’s sake. In real code, you should, of course, use properties instead
of public members.

Data contracts are case-sensitive both at the type and member levels.

Importing a Data Contract
When a data contract is used in a contract operation, it is published in the service
metadata. When the client uses a tool such as Visual Studio 2010 to import the defi-
nition of the data contract, the client will end up with an equivalent definition, but not
necessarily an identical one. The difference is a function of the tool, not the published
metadata. With Visual Studio 2010, the imported definition will maintain the original
type designation of a class or a structure as well as the original type namespace, but
with SvcUtil, only the data contract will maintain the namespace. Take, for example,
the following service-side definition:

namespace MyNamespace
{
 [DataContract]
 struct Contact
 {...}

 [ServiceContract]
 interface IContactManager
 {
 [OperationContract]
 void AddContact(Contact contact);

Data Contract Attributes | 113

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationContract]
 Contact[] GetContacts();
 }
}

The imported definition will be:

namespace MyNamespace
{
 [DataContract]
 struct Contact
 {...}
}
[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}

To override this default and provide an alternative namespace for the data contract,
you can assign a value to the Namespace property of the DataContract attribute. The
tools treat the provided namespace differently. Given this service-side definition:

namespace MyNamespace
{
 [DataContract(Namespace = "MyOtherNamespace")]
 struct Contact
 {...}
}

Visual Studio 2010 imports it exactly as defined, while SvcUtil imports it as published:

namespace MyOtherNamespace
{
 [DataContract]
 struct Contact
 {...}
}

When using Visual Studio 2010, the imported definition will always have properties
decorated with the DataMember attribute, even if the original type on the service side did
not define any properties. For example, for this service-side definition:

[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;
}

114 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

The imported client-side definition will be:

[DataContract]
public partial struct Contact
{
 string FirstNameField;
 string LastNameField;

 [DataMember]
 public string FirstName
 {
 get
 {
 return FirstNameField;
 }
 set
 {
 FirstNameField = value;
 }
 }

 [DataMember]
 public string LastName
 {
 get
 {
 return LastNameField;
 }
 set
 {
 LastNameField = value;
 }
 }
}

The client can, of course, manually rework any imported definition to be just like a
service-side definition.

Even if the DataMember attribute on the service side is applied on a private
field or property, as shown here:

[DataContract]
struct Contact
{
 [DataMember]
 string FirstName
 {get;set;}

 [DataMember]
 string LastName;
}

the imported definition will have a public property instead.

Data Contract Attributes | 115

Download from Library of Wow! eBook <www.wowebook.com>

When the DataMember attribute is applied on a property (on either the service or the
client side), that property must have get and set accessors. Without them, you will get
an InvalidDataContractException at call time. The reason is that when the property
itself is the data member, WCF uses the property during serialization and deserializa-
tion, letting you apply any custom logic in the property.

Do not apply the DataMember attribute on both a property and its un-
derlying field—this will result in duplication of the members on the
importing side.

It is important to realize that the method just described for utilizing the DataMember
attribute applies to both the service and the client side. When the client uses the Data
Member attribute (and its related attributes, described elsewhere in this chapter), it affects
the data contract it is using to either serialize and send parameters to the service or
deserialize and use the values returned from the service. It is quite possible for the two
parties to use equivalent yet not identical data contracts, and, as you will see later, even
to use nonequivalent data contracts. The client controls and configures its data contract
independently of the service.

Data Contracts and the Serializable Attribute
The service can still use a type that is only marked with the Serializable attribute:

[Serializable]
struct Contact
{
 string m_FirstName;
 public string LastName;
}

When importing the metadata of such a type, the imported definition will use the
DataContract attribute. In addition, since the Serializable attribute affects only fields,
it will be as if every serializable member (whether public or private) is a data member,
resulting in a set of wrapping properties named exactly like the original fields:

[DataContract]
public partial struct Contact
{
 string LastNameField;
 string m_FirstNameField;

 [DataMember(...)]
 public string LastName
 {
 ... //Accesses LastNameField
 }
 [DataMember(...)]
 public string m_FirstName
 {
 ... //Accesses m_FirstNameField

116 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 }
}

The client can also use the Serializable attribute on its data contract to have it mar-
shaled in much the same way.

A type marked only with the DataContract attribute cannot be serialized
using the legacy formatters. If you want to serialize such a type, you
must apply both the DataContract attribute and the Serializable at-
tribute on it. In the resulting data contract for the type, the effect will
be the same as if only the DataContract attribute had been applied, and
you will still need to use the DataMember attribute on the members you
want to serialize.

Data Contracts and XML Serialization
.NET offers yet another serialization mechanism: raw XML serialization, using a dedi-
cated set of attributes. When you’re dealing with a data type that requires explicit
control over XML serialization, you can use the XmlSerializerFormatAttribute on in-
dividual operations in the contract definition to instruct WCF to use XML serialization
at runtime. If all the operations in the contract require this form of serialization, you
can use the /serializer:XmlSerializer switch of SvcUtil (described in Chapter 1) to
instruct it to automatically apply the XmlSerializerFormat attribute on all operations
in all imported contracts. Use this switch with caution, though, because it will affect
all data contracts, including those that do not require explicit control over XML
serialization.

Inferred Data Contracts
WCF provides support for inferred data contracts. If the marshaled type is a public type
and it is not decorated with the DataContract attribute, WCF will automatically infer
such an attribute and apply the DataMember attribute to all public members (fields or
properties) of the type.

For example, given this service contract definition:

public struct Contact
{
 public string FirstName
 {get;set;}

 public string LastName;

 internal string PhoneNumber;

 string Address;
}

Data Contract Attributes | 117

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);
 ...
}

WCF will infer a data contract, as if the service contract developer had defined it as:

[DataContract]
public class Contact
{
 [DataMember]
 public string FirstName
 {get;set;}

 [DataMember]
 public string LastName;
}

The inferred data contract will be published in the service metadata.

If the type already contains DataMember attributes (but not a DataContract attribute),
these data member contracts will be ignored as if they were not present. If the type does
contain a DataContract attribute, no data contract is inferred. Likewise, if the type is
internal, no data contract is inferred. Furthermore, all subclasses of a class that utilizes
an inferred data contract must themselves be inferable; that is, they must be public
classes and have no DataContract attribute.

Microsoft calls inferred data contracts POCOs, or “plain old CLR
objects.”

In my opinion, relying on inferred data contracts is a sloppy hack that goes against the
grain of most everything else in WCF. Much as WCF does not infer a service contract
from a mere interface definition or enable transactions or reliability by default, it should
not infer a data contract. Service orientation (with the exception of security) is heavily
biased toward opting out by default, as it should be, to maximize encapsulation and
decoupling. Do use the DataContract attribute, and be explicit about your data con-
tracts. This will enable you to tap into data contract features such as versioning. The
rest of this book does not use or rely on inferred data contracts.

Composite Data Contracts
When you define a data contract, you can apply the DataMember attribute on members
that are themselves data contracts, as shown in Example 3-3.

118 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

Example 3-3. A composite data contract

[DataContract]
class Address
{
 [DataMember]
 public string Street;

 [DataMember]
 public string City;

 [DataMember]
 public string State;

 [DataMember]
 public string Zip;
}
[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

 [DataMember]
 public Address Address;
}

Being able to aggregate other data contracts in this way illustrates the fact that data
contracts are actually recursive in nature. When you serialize a composite data contract,
the DataContractSerializer will chase all applicable references in the object graph and
capture their state as well. When you publish a composite data contract, all its com-
prising data contracts will be published as well. For example, using the same definitions
as those in Example 3-3, the metadata for this service contract:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}

will include the definition of the Address structure as well.

Data Contract Events
.NET provides support for serialization events for serializable types, and WCF provides
the same support for data contracts. WCF calls designated methods on your data

Data Contract Attributes | 119

Download from Library of Wow! eBook <www.wowebook.com>

contract when serialization and deserialization take place. Four serialization and de-
serialization events are defined. The serializing event is raised just before serialization
takes place and the serialized event is raised just after serialization. Similarly, the de-
serializing event is raised just before deserialization and the deserialized event is raised
after deserialization. You designate methods as serialization event handlers using
method attributes, as shown in Example 3-4.

Example 3-4. Applying the serialization event attributes

[DataContract]
class MyDataContract
{
 [OnSerializing]
 void OnSerializing(StreamingContext context)
 {...}

 [OnSerialized]
 void OnSerialized(StreamingContext context)
 {...}

 [OnDeserializing]
 void OnDeserializing(StreamingContext context)
 {...}

 [OnDeserialized]
 void OnDeserialized(StreamingContext context)
 {...}
 //Data members
}

Each serialization event-handling method must have the following signature:

void <Method Name>(StreamingContext context);

If the serialization event attributes (defined in the System.Runtime.Serialization name-
space) are applied on methods with incompatible signatures, WCF will throw an
exception.

The StreamingContext structure informs the type of why it is being serialized, but it can
be ignored for WCF data contracts.

As their names imply, the OnSerializing attribute designates a method to handle the
serializing event and the OnSerialized attribute designates a method to handle the se-
rialized event. Similarly, the OnDeserializing attribute designates a method to handle
the deserializing event and the OnDeserialized attribute designates a method to handle
the deserialized event.

Figure 3-2 is an activity diagram depicting the order in which events are raised during
serialization.

120 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

WCF first raises the serializing event, thus invoking the corresponding event handler.
Next, WCF serializes the object, and finally, the serialized event is raised and its event
handler is invoked.

Figure 3-3 is an activity diagram depicting the order in which deserialization events are
raised. WCF first raises the deserializing event, thus invoking the corresponding event
handler. Next, WCF deserializes the object, and finally the deserialized event is raised
and its event handler is invoked.

Figure 3-3. Events raised during deserialization

Note that in order to call the deserializing event-handling method, WCF has to first
construct an object. However, it does so without ever calling your data contract class’s
default constructor.

Figure 3-2. Events raised during serialization

Data Contract Attributes | 121

Download from Library of Wow! eBook <www.wowebook.com>

WCF does not allow you to apply the same serialization event attribute
on multiple methods of the data contract type. This is somewhat re-
grettable, because it precludes support for partial classes where each
part deals with its own serialization events.

Using the deserializing event

Since no constructor calls are ever made during deserialization, the deserializing event-
handling method is logically your deserialization constructor. It is intended for
performing some custom pre-deserialization steps, typically, initialization of class
members not marked as data members. Any value settings on members marked as data
members will be in vain because WCF will set those members again during deseriali-
zation using values from the message. Other steps you can take in the deserializing
event-handling method are setting specific environment variables (such as thread local
storage), performing diagnostics, or signaling some global synchronization events. I
would even go as far as to say that if you do provide such a deserializing event-handling
method, you should have only a default constructor and have both the default con-
structor and the event handler call the same helper method so that anyone instantiating
the type using regular .NET will perform exactly the same steps that you do and you
will have a single place to maintain that code:

[DataContract]
class MyClass
{
 public MyClass()
 {
 OnDeserializing();
 }
 [OnDeserializing]
 void OnDeserializing(StreamingContext context)
 {
 OnDeserializing();
 }
 void OnDeserializing()
 {...}
}

Using the deserialized event

The deserialized event lets your data contract initialize or reclaim non-data members
while utilizing already deserialized values. Example 3-5 demonstrates this point, using
the deserialized event to initialize a database connection. Without the event, the data
contract will not be able to function properly—since the constructor is never called, it
will have a null for the connection object.

Example 3-5. Initializing non-serializable resources using the deserialized event

[DataContract]
class MyDataContract
{

122 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 IDbConnection m_Connection;

 [OnDeserialized]
 void OnDeserialized(StreamingContext context)
 {
 m_Connection = new SqlConnection(...);
 }
 /* Data members */
}

Shared Data Contracts
When adding a service reference in Visual Studio 2010, you must provide a unique
namespace for each service reference. The imported types will be defined in that new
namespace. This presents a problem when adding references for two different services
that share the same data contract, since you will get two distinct types in two different
namespaces representing the same data contract.

By default, however, if any of the assemblies referenced by the client has a data contract
type that matches a data contract type already exposed in the metadata of the referenced
service, Visual Studio 2010 will not import that type again. It is worth emphasizing
again that the existing data contract reference must be in another referenced assembly,
not in the client project itself. This limitation may be addressed in a future release of
Visual Studio, but for now, the workaround and best practice is obvious: factor all of
your shared data contracts to a designated class library, and have all clients reference
that assembly. You can then control and configure which referenced assemblies (if any)
to consult regarding those shared data contracts via the advanced settings dialog box
for the service reference, shown in Figure 1-10 (page 41). The “Reuse types in referenced
assemblies” checkbox is checked by default, but you can turn off this feature if you so
desire. Despite its name, it will share only data contracts, not service contracts. Using
the radio buttons below it, you can also instruct Visual Studio 2010 to reuse data con-
tracts across all referenced assemblies, or restrict the sharing to specific assemblies by
selecting them in the list.

Data Contract Hierarchy
Your data contract class may be a subclass of another data contract class. WCF requires
that every level in the class hierarchy explicitly opt in for a given data contract, because
the DataContract attribute is not inheritable:

[DataContract]
class Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

Data Contract Hierarchy | 123

Download from Library of Wow! eBook <www.wowebook.com>

}
[DataContract]
class Customer : Contact
{
 [DataMember]
 public int CustomerNumber;
}

Failing to designate every level in the class hierarchy as serializable or as a data contract
will result in an InvalidDataContractException at the service load time. WCF lets you
mix the Serializable and DataContract attributes in the class hierarchy:

[Serializable]
class Contact
{...}

[DataContract]
class Customer : Contact
{...}

However, the Serializable attribute will typically be at the root of the class hierarchy,
if it appears at all, because new classes should use the DataContract attribute. When
you export a data contract hierarchy, the metadata maintains the hierarchy, and all
levels of the class hierarchy are exported when you make use of the subclass in a service
contract:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddCustomer(Customer customer); //Contact is exported as well
 ...
}

Known Types
In traditional object-oriented programming, a reference to a subclass is also a reference
to its base class, so the subclass maintains an Is-A relationship with its base class. Any
method that expects a reference to a base class can also accept a reference to its subclass.
This is a direct result of the way the compiler spans the state of the subclass in memory,
by appending it right after the base class section.

While languages such as C# let you substitute a subclass for a base class in this manner,
this is not the case with WCF operations. By default, you cannot use a subclass of a
data contract class instead of its base class. Consider this service contract:

[ServiceContract]
interface IContactManager
{
 //Cannot accept Customer object here:
 [OperationContract]
 void AddContact(Contact contact);

124 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 //Cannot return Customer objects here:
 [OperationContract]
 Contact[] GetContacts();
}

Suppose the client defined the Customer class as well:

[DataContract]
class Customer : Contact
{
 [DataMember]
 public int CustomerNumber;
}

While the following code will compile successfully, it will fail at runtime:

Contact contact = new Customer();

ContactManagerClient proxy = new ContactManagerClient();

//Service call will fail:
proxy.AddContact(contact);

proxy.Close();

The reason is that you are not actually passing an object reference; you are instead
passing the object’s state. When you pass in a Customer instead of a Contact, as in the
previous example, the service does not know it should deserialize the Customer portion
of the state.

Likewise, when a Customer is returned instead of a Contact, the client does not know
how to deserialize it, because all it knows about are Contacts, not Customers:

/////////////////////////// Service Side //////////////////////////////
[DataContract]
class Customer : Contact
{
 [DataMember]
 public int CustomerNumber;
}
class CustomerManager : IContactManager
{
 List<Customer> m_Customers = new List<Customer>();

 public Contact[] GetContacts()
 {
 return m_Customers.ToArray();
 }
 //Rest of the implementation
}
/////////////////////////// Client Side //////////////////////////////
ContactManagerClient proxy = new ContactManagerClient();
//Call will fail if there are items in the list:
Contact[] contacts = proxy.GetContacts();
proxy.Close();

Data Contract Hierarchy | 125

Download from Library of Wow! eBook <www.wowebook.com>

The solution is to explicitly tell WCF about the Customer class using the KnownTyp
eAttribute, defined as:

[AttributeUsage(AttributeTargets.Struct|AttributeTargets.Class,
 AllowMultiple = true)]
public sealed class KnownTypeAttribute : Attribute
{
 public KnownTypeAttribute(Type type);
 //More members
}

The KnownType attribute allows you to designate acceptable subclasses for the data
contract:

[DataContract]
[KnownType(typeof(Customer))]
class Contact
{...}

[DataContract]
class Customer : Contact
{...}

On the host side, the KnownType attribute affects all contracts and operations using the
base class, across all services and endpoints, allowing it to accept subclasses instead of
base classes. In addition, it includes the subclass in the metadata so that the client will
have its own definition of the subclass and will be able to pass the subclass instead of
the base class. If the client also applies the KnownType attribute on its copy of the base
class, it can in turn receive the known subclass back from the service.

Service Known Types
The downside of using the KnownType attribute is that it may be too broad in scope.
WCF also provides the ServiceKnownTypeAttribute, defined as:

[AttributeUsage(AttributeTargets.Interface|
 AttributeTargets.Method |
 AttributeTargets.Class,
 AllowMultiple = true)]
public sealed class ServiceKnownTypeAttribute : Attribute
{
 public ServiceKnownTypeAttribute(Type type);
 //More members
}

Instead of using the KnownType attribute on the base data contract, you can apply the
ServiceKnownType attribute on a specific operation on the service side. Then, only that
operation (across all supporting services) can accept the known subclass:

[DataContract]
class Contact
{...}

[DataContract]

126 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

class Customer : Contact
{...}

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 [ServiceKnownType(typeof(Customer))]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}

Other operations cannot accept the subclass.

When the ServiceKnownType attribute is applied at the contract level, all the operations
in that contract can accept the known subclass across all implementing services:

[ServiceContract]
[ServiceKnownType(typeof(Customer))]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}

Do not apply the ServiceKnownType attribute on the service class itself.
Although the code will compile, this will have an effect only when you
don’t define the service contract as an interface (something I strongly
discourage in any case). If you apply the ServiceKnownType attribute on
the service class while there is a separate contract definition, it will have
no effect.

Whether you apply the ServiceKnownType attribute at the operation or the contract level,
the exported metadata and the generated proxy will have no trace of it and will include
the KnownType attribute on the base class only. For example, given this service-side
definition:

[ServiceContract]
[ServiceKnownType(typeof(Customer))]
interface IContactManager
{...}

The imported definition will be:

[DataContract]
[KnownType(typeof(Customer))]
class Contact
{...}
[DataContract]

Data Contract Hierarchy | 127

Download from Library of Wow! eBook <www.wowebook.com>

class Customer : Contact
{...}
[ServiceContract]
interface IContactManager
{...}

You can manually rework the client-side proxy class to correctly reflect the service-side
semantic by removing the KnownType attribute from the base class and applying the
ServiceKnownType attribute to the appropriate level in the contract.

Multiple Known Types
You can apply the KnownType and ServiceKnownType attributes multiple times to inform
WCF about as many known types as required:

[DataContract]
class Contact
{...}

[DataContract]
class Customer : Contact
{...}

[DataContract]
class Person : Contact
{...}

[ServiceContract]
[ServiceKnownType(typeof(Customer))]
[ServiceKnownType(typeof(Person))]
interface IContactManager
{...}

The WCF formatter uses reflection to collect all the known types of the data contracts,
then examines the provided parameter to see if it is of any of the known types.

Note that you must explicitly add all levels in the data contract class hierarchy. Adding
a subclass does not add its base class(es):

[DataContract]
class Contact
{...}

[DataContract]
class Customer : Contact
{...}

[DataContract]
class Person : Customer
{...}

[ServiceContract]
[ServiceKnownType(typeof(Customer))]
[ServiceKnownType(typeof(Person))]

128 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

interface IContactManager
{...}

Configuring Known Types
The main downside of the known types attributes is that they require the service or the
client to know in advance about all possible subclasses the other party may want to
use. Adding a new subclass necessitates changing the code, recompiling, and rede-
ploying. To alleviate this, WCF lets you configure the known types in the service’s or
client’s config file, as shown in Example 3-6. You need to provide not just the type
names, but also the names of their containing assemblies.

Example 3-6. Known types in config file

<system.runtime.serialization>
 <dataContractSerializer>
 <declaredTypes>
 <add type = "Contact,MyClassLibrary,Version = 1.0.0.0,Culture = neutral,
 PublicKeyToken = null">
 <knownType type = "Customer,MyOtherClassLibrary,Version = 1.0.0.0,
 Culture = neutral,PublicKeyToken = null"/>
 </add>
 </declaredTypes>
 </dataContractSerializer>
</system.runtime.serialization>

When not relying on string name or assembly version resolution, you can just use the
assembly-friendly name:

<add type = "Contact,MyClassLibrary">
 <knownType type = "Customer,MyOtherClassLibrary"/>
</add>

Including the known types in the config file has the same effect as applying the Known
Type attribute on the data contract, and the published metadata will include the known
types definition.

Using a config file to declare a known type is the only way to add a
known type that is internal to another assembly.

Data Contract Resolvers
The final technique for addressing known types would be to do so programmatically.
This is the most powerful technique, since you can extend it to completely automate
dealing with the known type issues. This is possible using a mechanism called data
contract resolvers introduced by WCF in .NET 4.0. In essence, you are given a chance

Data Contract Hierarchy | 129

Download from Library of Wow! eBook <www.wowebook.com>

to intercept the operation’s attempt to serialize and deserialize parameters and resolve
the known types at runtime both on the client and service sides.

The first step in implementing a programmatic resolution is to derive from the abstract
class DataContractResolver defined as:

public abstract class DataContractResolver
{
 protected DataContractResolver();

 public abstract bool TryResolveType(Type type,Type declaredType,
 DataContractResolver knownTypeResolver,
 out XmlDictionaryString typeName,
 out XmlDictionaryString typeNamespace);

 public abstract Type ResolveName(string typeName,string typeNamespace,
 Type declaredType,
 DataContractResolver knownTypeResolver);
}

Your implementation of the TryResolveType() is called when WCF tries to serialize a
type into a message and the type provided (the type parameter) is different from the
type declared in the operation contract (the declaredType parameter). If you want to
serialize the type, you need to provide some unique identifiers to serve as keys into a
dictionary that maps identifiers to types. WCF will provide you those keys during de-
serialization so that you can bind against that type. Note that the namespace key cannot
be an empty string or a null. While virtually any unique string value will do for the
identifiers, I recommend simply using the CLR type name and namespace. Set the type
name and namespace into the typeName and typeNamespace out parameters.

If you return true from TryResolveType(), the type is considered resolved as if you had
applied the KnownType attribute. If you return false, WCF fails the call. Note that
TryResolveType() must resolve all known types, even those types that are decorated
with the KnownType attribute or are listed in the config file. This presents a potential
risk: it requires the resolver to be coupled to all known types in the application and will
fail the operation call with other types that may come over time. It is therefore preferable
as a fallback contingency to try to resolve the type using the default known types re-
solver that WCF would have used if your resolver was not in use. This is exactly what
the knownTypeResolver parameter is for. If your implementation of TryResolveType()
cannot resolve the type, it should delegate to knownTypeResolver.

The ResolveName() is called when WCF tries to deserialize a type out of a message, and
the type provided (the type parameter) is different from the type declared in the oper-
ation contract (the declaredType parameter). In this case, WCF provides you with the
type name and namespace identifiers so that you can map them back to a known type.

For example, consider again these two data contracts:

[DataContract]
class Contact
{...}

130 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

[DataContract]
class Customer : Contact
{...}

Example 3-7 lists a simple resolver for the Customer type.

Example 3-7. The CustomerResolver

class CustomerResolver : DataContractResolver
{
 string Namespace
 {
 get
 {
 return typeof(Customer).Namespace ?? "global";
 }
 }
 string Name
 {
 get
 {
 return typeof(Customer).Name;
 }
 }

 public override Type ResolveName(string typeName,string typeNamespace,
 Type declaredType,
 DataContractResolver knownTypeResolver)
 {
 if(typeName == Name && typeNamespace == Namespace)
 {
 return typeof(Customer);
 }
 else
 {
 return knownTypeResolver.
 ResolveName(typeName,typeNamespace,declaredType,null);
 }
 }

 public override bool TryResolveType(Type type,Type declaredType,
 DataContractResolver knownTypeResolver,
 out XmlDictionaryString typeName,
 out XmlDictionaryString typeNamespace)
 {
 if(type == typeof(Customer))
 {
 XmlDictionary dictionary = new XmlDictionary();
 typeName = dictionary.Add(Name);
 typeNamespace = dictionary.Add(Namespace);
 return true;
 }
 else
 {
 return knownTypeResolver.

Data Contract Hierarchy | 131

Download from Library of Wow! eBook <www.wowebook.com>

 TryResolveType(type,declaredType,null,out typeName,out typeNamespace);
 }
 }
}

Installing the data contract resolver

The resolver must be attached as a behavior for each operation on the proxy or the
service endpoint. As explained in Chapter 1, a behavior is a local aspect of the service
that does not affect in any way the message or the communication channel to the serv-
ice. For example, how you choose to resolve a known type (be it declaratively via the
KnownType attribute or programmatically with a resolver) is a local implementation de-
tail, on both the client and the service sides.

In WCF, every endpoint it represented by the type ServiceEndpoint. The
ServiceEndpoint has a property called Contract of the type ContractDescription:

public class ServiceEndpoint
{
 public ContractDescription Contract
 {get;set;}

 //More members
}

ContractDescription has a collection of operation descriptions, with an instance of
OperationDescription for every operation on the contract:

public class ContractDescription
{
 public OperationDescriptionCollection Operations
 {get;}

 //More members
}
public class OperationDescriptionCollection :
 Collection<OperationDescription>
{...}

Each OperationDescription has a collection of operation behaviors of the type
IOperationBehavior:

public class OperationDescription
{
 public KeyedByTypeCollection<IOperationBehavior> Behaviors
 {get;}
 //More members
}

In its collection of behaviors, every operation always has a behavior called
DataContractSerializerOperationBehavior with a DataContractResolver property:

public class DataContractSerializerOperationBehavior : IOperationBehavior,...
{
 public DataContractResolver DataContractResolver

132 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 {get;set}
 //More members
}

The DataContractResolver property defaults to null, but you can set it to your custom
resolver.

To install a resolver on the host side, you must iterate over the collection of endpoints
in the service description maintained by the host:

public class ServiceHost : ServiceHostBase
{...}

public abstract class ServiceHostBase : ...
{
 public ServiceDescription Description
 {get;}
 //More members
}

public class ServiceDescription
{
 public ServiceEndpointCollection Endpoints
 {get;}

 //More members
}

public class ServiceEndpointCollection : Collection<ServiceEndpoint>
{...}

Suppose you have the following service definition and are using the resolver in
Example 3-7:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);
 ...
}
class ContactManager : IContactManager
{...}

Example 3-8 shows how to install the resolver on the host for the ContactManager
service.

Example 3-8. Installing a resolver on the host

ServiceHost host = new ServiceHost(typeof(ContactManager));

foreach(ServiceEndpoint endpoint in host.Description.Endpoints)
{
 foreach(OperationDescription operation in endpoint.Contract.Operations)
 {
 DataContractSerializerOperationBehavior behavior =

Data Contract Hierarchy | 133

Download from Library of Wow! eBook <www.wowebook.com>

 operation.Behaviors.Find<DataContractSerializerOperationBehavior>();
 behavior.DataContractResolver = new CustomerResolver();
 }
}
host.Open();

On the client side, you follow similar steps, except you need to set the resolver on the
single endpoint of the proxy or the channel factory. For example, given this proxy class
definition:

class ContactManagerClient : ClientBase<IContactManager>,IContactManager
{...}

Example 3-9 shows how to install the resolver on the proxy in order to call the service
of Example 3-8 with a known type.

Example 3-9. Installing a resolver on the proxy

ContactManagerClient proxy = new ContactManagerClient();

foreach(OperationDescription operation in proxy.Endpoint.Contract.Operations)
{
 DataContractSerializerOperationBehavior behavior =
 operation.Behaviors.Find<DataContractSerializerOperationBehavior>();

 behavior.DataContractResolver = new CustomerResolver();
}

Customer customer = new Customer();
...

proxy.AddContact(customer);

The generic resolver

Writing and installing a resolver for each type is obviously a lot of work, requiring you
to meticulously track all known types, something that is error-prone and can quickly
get out of hand in an evolving system. To automate implementing a resolver, I wrote
the class GenericResolver defined as:

public class GenericResolver : DataContractResolver
{
 public Type[] KnownTypes
 {get;}

 public GenericResolver();
 public GenericResolver(Type[] typesToResolve);

 public static GenericResolver Merge(GenericResolver resolver1,
 GenericResolver resolver2);
}

GenericResolver offers two constructors. One constructor can accept an array of known
types to resolve. The types in the array can include bounded generic types, that is, generic

134 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

types for which you have already specified type parameters. The parameterless con-
structor will automatically add as known types all classes and structs in the calling
assembly and all public classes and structs in assemblies referenced by the calling as-
semblies. The parameterless constructor will not add types originating in a .NET
Framework–referenced assembly. Note that the parameterless constructor will also
ignore generic types (since there is no way of inferring the type parameters used in
code). In addition, GenericResolver offers the Merge() static method that you can use
to merge the known types of two resolvers, returning a GenericResolver that resolves
the union of the two resolvers provided. Example 3-10 shows the pertinent portion of
GenericResolver without reflecting the types in the assemblies, which has nothing to
do with WCF.

Example 3-10. Implementing GenericResolver (partial)

public class GenericResolver : DataContractResolver
{
 const string DefaultNamespace = "global";

 readonly Dictionary<Type,Tuple<string,string>> m_TypeToNames;
 readonly Dictionary<string,Dictionary<string,Type>> m_NamesToType;

 public Type[] KnownTypes
 {
 get
 {
 return m_TypeToNames.Keys.ToArray();
 }
 }

 //Get all types in calling assembly and referenced assemblies
 static Type[] ReflectTypes()
 {...}

 public GenericResolver() : this(ReflectTypes())
 {}
 public GenericResolver(Type[] typesToResolve)
 {
 m_TypeToNames = new Dictionary<Type,Tuple<string,string>>();
 m_NamesToType = new Dictionary<string,Dictionary<string,Type>>();

 foreach(Type type in typesToResolve)
 {
 string typeNamespace = GetNamespace(type);
 string typeName = GetName(type);

 m_TypeToNames[type] = new Tuple<string,string>(typeNamespace,typeName);

 if(m_NamesToType.ContainsKey(typeNamespace) == false)
 {
 m_NamesToType[typeNamespace] = new Dictionary<string,Type>();
 }

 m_NamesToType[typeNamespace][typeName] = type;

Data Contract Hierarchy | 135

Download from Library of Wow! eBook <www.wowebook.com>

 }
 }
 static string GetNamespace(Type type)
 {
 return type.Namespace ?? DefaultNamespace;
 }
 static string GetName(Type type)
 {
 return type.Name;
 }

 public static GenericResolver Merge(GenericResolver resolver1,
 GenericResolver resolver2)
 {
 if(resolver1 == null)
 {
 return resolver2;
 }
 if(resolver2 == null)
 {
 return resolver1;
 }
 List<Type> types = new List<Type>();

 types.AddRange(resolver1.KnownTypes);
 types.AddRange(resolver2.KnownTypes);

 return new GenericResolver(types.ToArray());
 }
 public override Type ResolveName(string typeName,string typeNamespace,
 Type declaredType,
 DataContractResolver knownTypeResolver)
 {
 if(m_NamesToType.ContainsKey(typeNamespace))
 {
 if(m_NamesToType[typeNamespace].ContainsKey(typeName))
 {
 return m_NamesToType[typeNamespace][typeName];
 }
 }
 return knownTypeResolver.
 ResolveName(typeName,typeNamespace,declaredType,null);
 }
 public override bool TryResolveType(Type type,Type declaredType,
 DataContractResolver knownTypeResolver,
 out XmlDictionaryString typeName,
 out XmlDictionaryString typeNamespace)
 {
 if(m_TypeToNames.ContainsKey(type))
 {
 XmlDictionary dictionary = new XmlDictionary();
 typeNamespace = dictionary.Add(m_TypeToNames[type].Item1);
 typeName = dictionary.Add(m_TypeToNames[type].Item2);
 return true;
 }

136 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 else
 {
 return knownTypeResolver.
 TryResolveType(type,declaredType,null,out typeName,
 out typeNamespace);
 }
 }
}

The most important members of GenericResolver are the m_TypeToNames and the
m_NamesToType dictionaries. m_TypeToNames maps a type to a tuple of its name and name-
space. m_NamesToType maps a type namespace and name to the actual type. The con-
structor that takes the array of types initializes those two dictionaries. The Merge()
method uses the helper property KnownTypes[] to merge the two resolvers. The
TryResolveType() method uses the provided type as a key into the m_TypeToNames dic-
tionary to read the type’s name and namespace. The ResolveName() method uses the
provided namespace and name as keys into the m_NamesToType dictionary to return the
resolved type.

Installing the generic resolver

While you could use tedious code similar to Example 3-8 and Example 3-9 to install
GenericResolver, it is best to streamline it with extension methods. To that end, use
my AddGenericResolver() methods of GenericResolverInstaller defined as:

public static class GenericResolverInstaller
{
 public static void AddGenericResolver(this ServiceHost host,
 params Type[] typesToResolve);

 public static void AddGenericResolver<T>(this ClientBase<T> proxy,
 params Type[] typesToResolve) where T : class;

 public static void AddGenericResolver<T>(this ChannelFactory<T> factory,
 params Type[] typesToResolve) where T : class;
}

The AddGenericResolver() method accepts a params array of types, which means an
open-ended, comma-separated list of types. If you do not specify types, that will make
AddGenericResolver() add as known types all classes and structs in the calling assembly
plus the public classes and structs in referenced assemblies. For example, given these
known types:

[DataContract]
class Contact
{...}

[DataContract]
class Customer : Contact
{...}

Data Contract Hierarchy | 137

Download from Library of Wow! eBook <www.wowebook.com>

[DataContract]
class Employee : Contact
{...}

Example 3-11 shows several examples of using the AddGenericResolver() extension
method.

Example 3-11. Installing GenericResolver

//Host side

ServiceHost host1 = new ServiceHost(typeof(ContactManager));
//Resolve all types in this and referenced assemblies
host1.AddGenericResolver();
host1.Open();

ServiceHost host2 = new ServiceHost(typeof(ContactManager));
//Resolve only Customer and Employee
host2.AddGenericResolver(typeof(Customer),typeof(Employee));
host2.Open();

ServiceHost host3 = new ServiceHost(typeof(ContactManager));
//Can call AddGenericResolver() multiple times
host3.AddGenericResolver(typeof(Customer));
host3.AddGenericResolver(typeof(Employee));
host3.Open();

//Client side

ContactManagerClient proxy = new ContactManagerClient();
//Resolve all types in this and referenced assemblies
proxy.AddGenericResolver();

Customer customer = new Customer();
...
proxy.AddContact(customer);

GenericResolverInstaller not only installs the GenericResolver, it also tries to merge
it with the old generic resolver (if present). This means you can call the Add
GenericResolver() method multiple times. This is handy when adding bounded generic
types:

[DataContract]
class Customer<T> : Contact
{...}

ServiceHost host = new ServiceHost(typeof(ContactManager));

//Add all non-generic known types
host.AddGenericResolver();

138 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

//Add the generic types
host.AddGenericResolver(typeof(Customer<int>,Customer<string>));

host.Open();

Example 3-12 shows the partial implementation of GenericResolverInstaller.

Example 3-12. Implementing GenericResolverInstaller

public static class GenericResolverInstaller
{
 public static void AddGenericResolver(this ServiceHost host,
 params Type[] typesToResolve)
 {
 foreach(ServiceEndpoint endpoint in host.Description.Endpoints)
 {
 AddGenericResolver(endpoint,typesToResolve);
 }
 }

 static void AddGenericResolver(ServiceEndpoint endpoint,Type[] typesToResolve)
 {
 foreach(OperationDescription operation in endpoint.Contract.Operations)
 {
 DataContractSerializerOperationBehavior behavior = operation.
 Behaviors.Find<DataContractSerializerOperationBehavior>();

 GenericResolver newResolver;

 if(typesToResolve == null || typesToResolve.Any() == false)
 {
 newResolver = new GenericResolver();
 }
 else
 {
 newResolver = new GenericResolver(typesToResolve);
 }

 GenericResolver oldResolver = behavior.DataContractResolver
 as GenericResolver;
 behavior.DataContractResolver =
 GenericResolver.Merge(oldResolver,newResolver);
 }
 }
}

If no types are provided, AddGenericResolver() will use the parameterless constructor
of GenericResolver. Otherwise, it will use only the specified types by calling the other
constructor. Note the merging with the old resolver if present.

GenericResolver and ServiceHost<T>

Using a generic resolver is great, and arguably should always be associated with any
host since you have no way of knowing in advance all the known types your system

Data Contract Hierarchy | 139

Download from Library of Wow! eBook <www.wowebook.com>

will encounter. In that case, instead of explicitly adding GenericResolver to the host
(as in Example 3-11), you can also have a custom host type that adds the generic resolver
implicitly. For example, My ServiceHost<T> (presented in Chapter 1) does just that:

public class ServiceHost<T> : ServiceHost
{
 protected override void OnOpening()
 {
 this.AddGenericResolver();
 ...
 }
}

This means that the following code is all you will need when it comes to known types:

ServiceHost host = new ServiceHost<ContactManager>();
host.Open();

The InProcFactory presented in Chapter 1 actually uses Service
Host<T> internally and, as such, it benefits automatically from the
generic resolver without any additional steps.

Generic resolver attribute

If your service relies on the generic resolver by design, it is better not to be at the mercy
of the host and to declare your need for the generic resolver at design time. To that end,
I wrote the GenericResolverBehaviorAttribute:

[AttributeUsage(AttributeTargets.Class)]
public class GenericResolverBehaviorAttribute : Attribute,IServiceBehavior
{
 void IServiceBehavior.Validate(ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 ServiceHost host = serviceHostBase as ServiceHost;
 host.AddGenericResolver();
 }
 //More members
}

This concise attribute makes the service independent of the host and the config file:

[GenericResolverBehavior]
class ContactManager : IContactManager
{...}

GenericResolverBehaviorAttribute derives from IServiceBehavior. IServiceBehavior
is a special WCF interface and it is the most commonly used extension in WCF. Sub-
sequent chapters will make extensive use of it and will discuss its various methods.
Briefly, when the host loads the service, it uses reflection to determine if the service
class has an attribute that supports IServiceBehavior and, if so, the host calls the
IServiceBehavior methods, specifically the Validate() method, which lets the attribute

140 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

interact with the host. In the case of GenericResolverBehaviorAttribute, it adds the
generic resolver to the host.

Objects and Interfaces
The base type of a data contract class or a struct can be an interface:

interface IContact
{
 string FirstName
 {get;set;}
 string LastName
 {get;set;}
}
[DataContract]
class Contact : IContact
{...}

You can use such a base interface in your service contract or as a data member in a data
contract if you use the ServiceKnownType attribute to designate the actual data type:

[ServiceContract]
[ServiceKnownType(typeof(Contact))]
interface IContactManager
{
 [OperationContract]
 void AddContact(IContact contact);

 [OperationContract]
 IContact[] GetContacts();
}

You cannot apply the KnownType attribute on the base interface, because the interface
itself will not be included in the exported metadata. Instead, the imported service con-
tract will be object-based and it will not include the data contract interface:

//Imported definitions:
[DataContract]
class Contact
{...}

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 [ServiceKnownType(typeof(Contact))]
 [ServiceKnownType(typeof(object[]))]
 void AddContact(object contact);

 [OperationContract]
 [ServiceKnownType(typeof(Contact))]
 [ServiceKnownType(typeof(object[]))]
 object[] GetContacts();
}

Data Contract Hierarchy | 141

Download from Library of Wow! eBook <www.wowebook.com>

The imported definition will always have the ServiceKnownType attribute applied at the
operation level, even if it was originally defined at the scope of the contract. In addition,
every operation will include a union of all the ServiceKnownType attributes required by
all the operations, including a redundant service known type attribute for the array.
These are relics from a time when these definitions were required in a beta version
of WCF.

You can manually rework the imported definition to have only the required Service
KnownType attributes:

[DataContract]
class Contact
{...}

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 [ServiceKnownType(typeof(Contact))]
 void AddContact(object contact);

 [OperationContract]
 [ServiceKnownType(typeof(Contact))]
 object[] GetContacts();
}

Or better yet, if you have the definition of the base interface on the client side or if you
refactor that definition, you can use that instead of object. This gives you an added
degree of type safety as long as you add a derivation from the interface to the data
contract:

[DataContract]
class Contact : IContact
{...}

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 [ServiceKnownType(typeof(Contact))]
 void AddContact(IContact contact);

 [OperationContract]
 [ServiceKnownType(typeof(Contact))]
 IContact[] GetContacts();
}

However, you cannot replace the object in the imported contract with the concrete
data contract type, because it is no longer compatible:

//Invalid client-side contract
[ServiceContract]
interface IContactManager
{

142 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}

Data Contract Equivalence
Two data contracts are considered equivalent if they have the same wire
representation—that is, if they have the same schema. This can be the case if they define
the same type (but not necessarily the same version of the type) or if the two data
contracts refer to two different types with the same data contract and data member
names. Equivalent data contracts are interchangeable: WCF will let any service that
was defined with one data contract operate with an equivalent data contract.

The most common way of defining an equivalent data contract is to use the
DataContract and DataMember attributes’ Name properties to map one data contract to
another. In the case of the DataContract attribute, the Name property defaults to the
type’s name, so these two definitions are identical:

[DataContract]
struct Contact
{...}

[DataContract(Name = "Contact")]
struct Contact
{...}

In fact, the full name of the data contract always includes its namespace as well, but as
you have seen, you can assign a different namespace.

In the case of the DataMember attribute, the Name property defaults to the member name,
so these two definitions are identical:

[DataMember]
string FirstName;

[DataMember(Name = "FirstName")]
string FirstName;

By assigning different names to the data contract and data members, you can generate
an equivalent data contract from a different type. For example, these two data contracts
are equivalent:

[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

Data Contract Equivalence | 143

Download from Library of Wow! eBook <www.wowebook.com>

}
[DataContract(Name = "Contact")]
struct Person
{
 [DataMember(Name = "FirstName")]
 public string Name;

 [DataMember(Name = "LastName")]
 public string Surname;
}

In addition to having identical names, the types of the data members have to match.

A class and a structure that support the same data contract are
interchangeable.

Serialization Order
In classic .NET, a subclass can define a member of the same name and type as a private
member of its base class and, in turn, its own subclass can do the same:

class A
{
 string Name;
}
class B : A
{
 string Name;
}
class C : B
{
 string Name;
}

If the class hierarchy is also a data contract, this presents a problem when serializing
an instance of the subclass into a message, since the message will contain multiple
copies of a data member with the same name and type. To distinguish between them,
WCF places the data members in the message in a particular order.

The default serialization order inside a type is simply alphabetical, and across a class
hierarchy the order is top-down. In case of a mismatch in the serialization order, the
members will be initialized to their default values. For example, when serializing a
Customer instance defined as:

[DataContract]
class Contact
{
 [DataMember]
 public string FirstName;

144 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 [DataMember]
 public string LastName;
}
[DataContract]
class Customer : Contact
{
 [DataMember]
 public int CustomerNumber;
}

the members will be serialized in the following order: FirstName, LastName, Customer
Number.

Of course, equivalent data contracts must serialize and deserialize their members in the
same order. The problem now is that combining a data contract hierarchy with aliasing
contracts and members might break the serialization order. For example, the following
data contract is not equivalent to the Customer data contract:

[DataContract(Name = "Customer")]
public class Person
{
 [DataMember(Name = "FirstName")]
 public string Name;

 [DataMember(Name = "LastName")]
 public string Surname;

 [DataMember]
 public int CustomerNumber;
}

because the serialization order is CustomerNumber, FirstName, LastName.

To resolve this conflict, you need to provide WCF with the order of serialization by
setting the Order property of the DataMember attribute. The value of the Order property
defaults to −1, meaning the default WCF ordering, but you can assign it values indi-
cating the required order:

[DataContract(Name = "Customer")]
public class Person
{
 [DataMember(Name = "FirstName",Order = 1)]
 public string Name;

 [DataMember(Name = "LastName",Order = 2)]
 public string Surname;

 [DataMember(Order = 3)]
 public int CustomerNumber;
}

When renaming data members, you must take care to manually change their order.
Even without renaming, the sorting can quickly get out of hand with a large number
of data members. Fortunately, if another member has the same value for its Order

Data Contract Equivalence | 145

Download from Library of Wow! eBook <www.wowebook.com>

property, WCF will order them alphabetically. You can take advantage of this behavior
by assigning the same number to all members coming from the same level in the original
class hierarchy or, better yet, simply assigning them their levels in that hierarchy:

[DataContract(Name = "Customer")]
public class Person
{
 [DataMember(Name = "FirstName",Order = 1)]
 public string Name;

 [DataMember(Name = "LastName",Order = 1)]
 public string Surname;

 [DataMember(Order = 2)]
 public int CustomerNumber;
}

Versioning
Services should be decoupled from their clients as much as possible, especially when
it comes to versioning and technologies. Any version of the client should be able to
consume any version of the service and should do so without resorting to version num-
bers (such as those in assemblies), because those are .NET-specific. When a service and
a client share a data contract, an important objective is to allow the service and client
to evolve their versions of the data contract separately. To allow such decoupling, WCF
needs to enable both backward and forward compatibility, without even sharing types
or version information. There are three main versioning scenarios:

• New members

• Missing members

• Round-tripping, in which a new data contract version is passed to and from a client
or service with an older version, requiring both backward and forward
compatibility

By default, data contracts are version-tolerant and will silently ignore incompatibilities.

New Members
The most common change made to a data contract is adding new members on one side
and sending the new contract to an old client or service. When deserializing the type,
DataContractSerializer will simply ignore the new members. As a result, both the
service and the client can accept data with new members that were not part of the
original contract. For example, suppose the service is built against this data contract:

[DataContract]
struct Contact
{
 [DataMember]

146 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 public string FirstName;

 [DataMember]
 public string LastName;
}

yet the client sends it this data contract instead:

[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

 [DataMember]
 public string Address;
}

Note that adding new members and having them ignored in this way breaks the data
contract schema compatibility, because a service (or a client) that is compatible with
one schema is all of a sudden compatible with a new schema.

Missing Members
By default, WCF lets either party remove members from the data contract. That is, you
can serialize a type without certain members and send it to another party that expects
the missing members. Although normally you probably won’t intentionally remove
members, the more likely scenario is when a client that is written against an old defi-
nition of the data contract interacts with a service written against a newer definition of
that contract that expects new members. When, on the receiving side, DataContract
Serializer does not find in the message the information required to deserialize those
members, it will silently deserialize them to their default values; that is, null for refer-
ence types and a zero whitewash for value types. In effect, it will be as if the sending
party never initialized those members. This default policy enables a service to accept
data with missing members or return data with missing members to the client. Exam-
ple 3-13 demonstrates this point.

Example 3-13. Missing members are initialized to their default values

/////////////////////////// Service Side //////////////////////////////
[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

Versioning | 147

Download from Library of Wow! eBook <www.wowebook.com>

 [DataMember]
 public string Address;
}

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);
 ...
}

class ContactManager : IContactManager
{
 public void AddContact(Contact contact)
 {
 Trace.WriteLine("First name = " + contact.FirstName);
 Trace.WriteLine("Last name = " + contact.LastName);
 Trace.WriteLine("Address = " + (contact.Address ?? "Missing"));
 ...
 }
 ...
}
/////////////////////////// Client Side //////////////////////////////
[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;
}

Contact contact = new Contact()
 {
 FirstName = "Juval",
 LastName = "Lowy"
 };

ContactManagerClient proxy = new ContactManagerClient();
proxy.AddContact(contact);

proxy.Close();

The output of Example 3-13 will be:

First name = Juval
Last name = Lowy
Address = Missing

because the service received null for the Address data member and coalesced the trace
to Missing. The problem with Example 3-13 is that you will have to manually com-
pensate this way at every place the service (or any other service or client) uses this data
contract.

148 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

Using the OnDeserializing event

When you do want to share your compensation logic across all parties using the data
contract, it’s better to use the OnDeserializing event to initialize potentially missing
data members based on some local heuristic. If the message contains values for those
members, they will override your settings in the OnDeserializing event. If it doesn’t,
the event handling method provides some nondefault values. Using the technique
shown here:

[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

 [DataMember]
 public string Address;

 [OnDeserializing]
 void OnDeserializing(StreamingContext context)
 {
 Address = "Some default address";
 }
}

the output of Example 3-13 will be:

First name = Juval
Last name = Lowy
Address = Some default address

Required members

Unlike ignoring new members, which for the most part is benign, the default handling
of missing members may very likely cause the receiving side to fail further down the
call chain, because the missing members may be essential for correct operation. This
may have disastrous results. You can instruct WCF to avoid invoking the operation
and to fail the call if a data member is missing by setting the IsRequired property of the
DataMember attribute to true:

[DataContract]
struct Contact
{
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

 [DataMember(IsRequired = true)]

Versioning | 149

Download from Library of Wow! eBook <www.wowebook.com>

 public string Address;
}

The default value of IsRequired is false; that is, to ignore the missing member. When,
on the receiving side, DataContractSerializer does not find the information required
to deserialize a member marked as required in the message, it will abort the call, re-
sulting in a NetDispatcherFaultException on the sending side. For instance, if the data
contract on the service side in Example 3-13 were to mark the Address member as
required, the call would not reach the service. The fact that a particular member is
required is published in the service metadata, and when it is imported to the client, the
generated proxy definition will also have that member as required.

Both the client and the service can mark some or all of the data members in their data
contracts as required, completely independently of each other. The more members that
are marked as required, the safer the interaction with a service or a client will be, but
at the expense of flexibility and versioning tolerance.

When a data contract that has a required new member is sent to a receiving party that
is not even aware of that member, such a call is actually valid and will be allowed to go
through. In other words, if Version 2 (V2) of a data contract has a new member for
which IsRequired is set to true, you can send V2 to a party expecting Version 1 (V1)
that does not even have the member in the contract, and the new member will simply
be ignored. IsRequired has an effect only when the V2-aware party is missing the mem-
ber. Assuming that V1 does not know about a new member added by V2, Table 3-1
lists the possible permutations of allowed or disallowed interactions as a product of
the versions involved and the value of the IsRequired property.

Table 3-1. Versioning tolerance with required members

IsRequired V1 to V2 V2 to V1

False Yes Yes

True No Yes

An interesting situation relying on required members has to do with serializable types.
Since serializable types have no tolerance for missing members by default, the resulting
data contract will have all data members as required when they are exported. For ex-
ample, this Contact definition:

[Serializable]
struct Contact
{
 public string FirstName;
 public string LastName;
}

will have the metadata representation:

[DataContract]
struct Contact

150 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

{
 [DataMember(IsRequired = true)]
 public string FirstName
 {get;set;}

 [DataMember(IsRequired = true)]
 public string LastName
 {get;set;}
}

To set the same versioning tolerance regarding missing members as the DataContract
attribute, apply the OptionalField attribute on the optional member. For example, this
Contact definition:

[Serializable]
struct Contact
{
 public string FirstName;

 [OptionalField]
 public string LastName;
}

will have the metadata representation:

[DataContract]
struct Contact
{
 [DataMember(IsRequired = true)]
 public string FirstName
 {get;set;}

 [DataMember]
 public string LastName
 {get;set;}
}

Versioning Round-Trip
The versioning tolerance techniques discussed so far for ignoring new members and
defaulting missing ones are suboptimal: they enable a point-to-point client-to-service
call, but have no support for a wider-scope pass-through scenario. Consider the two
interactions shown in Figure 3-4.

In the first interaction, a client that is built against a new data contract with new mem-
bers passes that data contract to Service A, which does not know about the new mem-
bers. Service A then passes the data to Service B, which is aware of the new data contract.
However, the data passed from Service A to Service B does not contain the new
members—they were silently dropped during deserialization from the client because
they were not part of the data contract for Service A. A similar situation occurs in the
second interaction, where a client that is aware of the new data contract with new
members passes the data to Service C, which is aware only of the old contract that does

Versioning | 151

Download from Library of Wow! eBook <www.wowebook.com>

not have the new members. The data Service C returns to the client will not have the
new members.

This situation of new-old-new interaction is called a versioning round-trip. WCF sup-
ports handling of versioning round-trips by allowing a service (or client) with knowl-
edge of only the old contract to simply pass through the state of the members defined
in the new contract without dropping them. The problem is how to enable services/
clients that are not aware of the new members to serialize and deserialize those un-
known members without their schemas, and where to store them between calls. WCF’s
solution is to have the data contract type implement the IExtensibleDataObject inter-
face, defined as:

public interface IExtensibleDataObject
{
 ExtensionDataObject ExtensionData
 {get;set;}
}

IExtensibleDataObject defines a single property of the type ExtensionDataObject. The
exact definition of ExtensionDataObject is irrelevant, since developers never have to
interact with it directly. ExtensionDataObject has an internal linked list of object ref-
erences and type information, and that is where the unknown data members are stored.
In other words, if the data contract type supports IExtensibleDataObject, when un-
recognized new members are available in the message, they are deserialized and stored
in that list. When the service (or client) calls out—passing the old data contract type,
which now includes the unknown data members inside ExtensionDataObject—the un-
known members are serialized out into the message in order. If the receiving side knows
about the new data contract, it will get a valid new data contract without any
missing members. Example 3-14 demonstrates implementing and relying on
IExtensibleDataObject. As you can see, the implementation is straightforward: just add
an ExtensionDataObject automatic property with explicit interface implementation.

Figure 3-4. Versioning round-trip may degrade overall interaction

152 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

Example 3-14. Implementing IExtensibleDataObject

[DataContract]
class Contact : IExtensibleDataObject
{
 ExtensionDataObject IExtensibleDataObject.ExtensionData
 {get;set;}

 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;
}

Schema compatibility

While implementing IExtensibleDataObject enables round-tripping, it has the down-
side of enabling a service that is compatible with one data contract schema to interact
successfully with another service that expects another data contract schema. In some
esoteric cases, the service may decide to disallow round-tripping and enforce its own
version of the data contract on downstream services. Using the ServiceBehavior at-
tribute (discussed at length in Chapter 4), services can instruct WCF to override the
handling of unknown members by IExtensibleDataObject and ignore them even if the
data contract supports IExtensibleDataObject. The ServiceBehavior attribute offers
the Boolean property IgnoreExtensionDataObject, defined as:

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : Attribute,...
{
 public bool IgnoreExtensionDataObject
 {get;set;}
 //More members
}

The default value of IgnoreExtensionDataObject is false. Setting it to true ensures that
all unknown data members across all data contracts used by the service will always be
ignored:

[ServiceBehavior(IgnoreExtensionDataObject = true)]
class ContactManager : IContactManager
{...}

When you import a data contract using Visual Studio 2010, the generated data contract
type always supports IExtensibleDataObject, even if the original data contract did not.
I believe that the best practice is to always have your data contracts implement IExten
sibleDataObject and to avoid setting IgnoreExtensionDataObject to true. IExtensible
DataObject decouples the service from its downstream services, allowing them to evolve
separately.

Versioning | 153

Download from Library of Wow! eBook <www.wowebook.com>

Enumerations
Enumerations are always, by definition, serializable. When you define a new enum,
there is no need to apply the DataContract attribute to it, and you can use it freely in a
data contract, as shown in Example 3-15. All the values in the enum will implicitly be
included in the data contract.

Example 3-15. Using an enum in a data contract

enum ContactType
{
 Customer,
 Vendor,
 Partner
}

[DataContract]
struct Contact
{
 [DataMember]
 public ContactType ContactType;

 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;
}

If you want to exclude certain enum values from the data contract, you need to first
decorate the enum with the DataContract attribute, and then explicitly apply the Enum
MemberAttribute to all enum values you want to include in the enum data contract. The
EnumMember attribute is defined as:

[AttributeUsage(AttributeTargets.Field,Inherited = false)]
public sealed class EnumMemberAttribute : Attribute
{
 public string Value
 {get;set;}
}

Any enum value not decorated with the EnumMember attribute will not be part of the data
contract for that enum. For example, this enum:

[DataContract]
enum ContactType
{
 [EnumMember]
 Customer,

 [EnumMember]
 Vendor,

 //Will not be part of data contract

154 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 Partner
}

will result in this wire representation:

enum ContactType
{
 Customer,
 Vendor
}

The other use for the EnumMember attribute is to alias certain enum values to an existing
enum data contract using the Value property. For example, this enum:

[DataContract]
enum ContactType
{
 [EnumMember(Value = "MyCustomer")]
 Customer,

 [EnumMember]
 Vendor,

 [EnumMember]
 Partner
}

will result in this wire representation:

enum ContactType
{
 MyCustomer,
 Vendor,
 Partner
}

The effect the EnumMember attribute has is local to the party using it. When publishing
the metadata (or when defining it on the client side), the resulting data contract has no
trace of it, and only the final product is used.

Delegates and Data Contracts
All delegate definitions are compiled into serializable classes, so in theory your data
contract types can contain delegates as member variables:

[DataContract]
class MyDataContract
{
 [DataMember]
 public EventHandler MyEvent;
}

Or even as events (note the use of the field qualifier):

[DataContract]
class MyDataContract

Delegates and Data Contracts | 155

Download from Library of Wow! eBook <www.wowebook.com>

{
 [field:DataMember]
 public event EventHandler MyEvent;
}

In practice, however, when the data contract refers to a custom delegate, the imported
data contract will contain an invalid delegate definition. While you could manually fix
that definition, the bigger problem is that when you serialize an object that has a del-
egate member variable, the internal invocation list of the delegates is serialized, too. In
most cases, this is not the desired effect with services and clients, because the exact
structure of the list is local to the client or the service and should not be shared across
the service boundary. In addition, there are no guarantees that the target objects in the
internal list are serializable or are valid data contracts. Consequently, sometimes the
serialization will work, and sometimes it will fail.

The simplest way to avoid this pitfall is not to apply the DataMember attribute on dele-
gates. If the data contract is a serializable type, you need to explicitly exclude the
delegate from the data contract:

[Serializable]
public class MyDataContract
{
 [NonSerialized]
 public EventHandler MyEvent;
}

Generics
You cannot define WCF contracts that rely on generic type parameters. Generics are
specific to .NET, and using them would violate the service-oriented nature of WCF.
However, you can use bounded generic types in your data contracts, as long as you
specify the type parameters in the service contract and as long as the specified type
parameters have valid data contracts, as shown in Example 3-16.

Example 3-16. Using bounded generic types

[DataContract]
class MyClass<T>
{
 [DataMember]
 public T MyMember;
}

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod(MyClass<int> obj);
}

156 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

When you import the metadata of a data contract such as the one in Example 3-16, the
imported types have all type parameters replaced with specific types, and the data con-
tract itself is renamed to this format:

<Original name>Of<Type parameter names><hash>

Using the same definitions as in Example 3-16, the imported data contract and service
contract will look like this:

[DataContract]
class MyClassOfint
{
 int MyMemberField;

 [DataMember]
 public int MyMember
 {
 get
 {
 return MyMemberField;
 }
 set
 {
 MyMemberField = value;
 }
 }
}

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod(MyClassOfint obj);
}

If, however, the service contract were to use a custom type such as SomeClass instead
of int:

[DataContract]
class SomeClass
{...}

[DataContract]
class MyClass<T>
{...}

[OperationContract]
void MyMethod(MyClass<SomeClass> obj);

the exported data contract might look like this:

[DataContract]
class SomeClass
{...}

[DataContract]

Generics | 157

Download from Library of Wow! eBook <www.wowebook.com>

class MyClassOfSomeClassMTRdqN6P
{...}

[OperationContract(...)]
void MyMethod(MyClassOfSomeClassMTRdqN6P obj);

where MTRdqN6P is some quasi-unique hash of the generic type parameter and the con-
taining namespace. Different data contracts and namespaces will generate different
hashes. The hash is in place to reduce the overall potential for a conflict with another
data contract that might use another type parameter with the same name. No hash is
created for the implicit data contracts of the primitives when they are used as generic
type parameters, since the type int is a reserved word and the definition of
MyClassOfint is unique.

In most cases, the hash is a cumbersome over-precaution. You can specify a different
name for the exported data contract by simply assigning it to the data contract’s Name
property. For example, given this service-side data contract:

[DataContract]
class SomeClass
{...}

[DataContract(Name = "MyClass")]
class MyClass<T>
{...}

[OperationContract]
void MyMethod(MyClass<SomeClass> obj);

the exported data contract will be:

[DataContract]
class SomeClass
{...}

[DataContract]
class MyClass
{...}

[OperationContract]
void MyMethod(MyClass obj);

However, by doing this, you run the risk of some ambiguity, since two different custom
generic types will result in the same type name.

If you still want to combine the name of the generic type parameter with that of the
data contract, use the {<number>} directive, where the number is the ordinal number of
the type parameter. For example, given this service-side definition:

[DataContract]
class SomeClass
{...}

[DataContract(Name = "MyClassOf{0}{1}")]

158 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

class MyClass<T,U>
{...}

[OperationContract]
void MyMethod(MyClass<SomeClass,int> obj);

the exported definition will be:

[DataContract]
class SomeClass
{...}

[DataContract]
class MyClassOfSomeClassint
{...}

[OperationContract(...)]
void MyMethod(MyClassOfSomeClassint obj);

The number of type parameters specified is not verified at compile time.
Any mismatch will yield a runtime exception.

Finally, you can append # after the number to generate the unique hash. For example,
given this data contract definition:

[DataContract]
class SomeClass
{...}

[DataContract(Name = "MyClassOf{0}{#}")]
class MyClass<T>
{...}

[OperationContract]
void MyMethod(MyClass<SomeClass> obj);

the exported definition will be:

[DataContract]
class SomeClass
{...}

[DataContract]
class MyClassOfSomeClassMTRdqN6P
{...}

[OperationContract]
void MyMethod(MyClassOfSomeClassMTRdqN6P obj);

Generics | 159

Download from Library of Wow! eBook <www.wowebook.com>

Collections
In .NET, a collection is any type that supports the IEnumerable or IEnumerable<T> in-
terface. All of the built-in collections in .NET, such as the array, the list, and the stack,
support these interfaces. A data contract can include a collection as a data member,
and a service contract can define operations that interact with a collection directly.
Because .NET collections are .NET-specific, WCF cannot expose them in the service
metadata, yet because they are so useful, WCF offers dedicated marshaling rules for
collections.

Whenever you define a service operation that uses the collection interfaces
IEnumerable<T>, IList<T>, or ICollection<T>, the resulting metadata always uses an
array. For example, this service contract definition and implementation:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 IEnumerable<Contact> GetContacts();
 ...
}
class ContactManager : IContactManager
{
 List<Contact> m_Contacts = new List<Contact>();

 public IEnumerable<Contact> GetContacts()
 {
 return m_Contacts;
 }
 ...
}

will still be exported as:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 Contact[] GetContacts();
}

Concrete Collections
If the collection in the contract is a concrete collection (not an interface) and is a seri-
alizable collection—that is, it is marked with the Serializable attribute but not with
the DataContract attribute—WCF can normalize the collection automatically to an
array of the collection’s type, provided the collection contains an Add() method with
either one of these signatures:

public void Add(object obj); //Collection uses IEnumerable
public void Add(T item); //Collection uses IEnumerable<T>

160 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

For example, consider this contract definition:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 List<Contact> GetContacts();
}

The list class is defined as:

public interface ICollection<T> : IEnumerable<T>
{...}
public interface IList<T> : ICollection<T>
{...}

[Serializable]
public class List<T> : IList<T>
{
 public void Add(T item);
 //More members
}

Because it is a valid collection and it has an Add() method, the resulting representation
of the contract will be:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}

That is, a List<Contact> is marshaled as a Contact[]. The service may still return a
List<Contact>, and yet the client will interact with an array, as shown in Example 3-17.

Example 3-17. Marshaling a list as an array

/////////////////////////// Service Side //////////////////////////////
[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 List<Contact> GetContacts();
}
//Service implementation
class ContactManager : IContactManager
{

Collections | 161

Download from Library of Wow! eBook <www.wowebook.com>

 List<Contact> m_Contacts = new List<Contact>();

 public void AddContact(Contact contact)
 {
 m_Contacts.Add(contact);
 }

 public List<Contact> GetContacts()
 {
 return m_Contacts;
 }
}
/////////////////////////// Client Side //////////////////////////////
[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 Contact[] GetContacts();
}
class ContactManagerClient : ClientBase<IContactManager>,IContactManager
{
 public Contact[] GetContacts()
 {
 return Channel.GetContacts();
 }
 //More members
}
//Client code
ContactManagerClient proxy = new ContactManagerClient();
Contact[] contacts = proxy.GetContacts();
proxy.Close();

Note that while the collection must have the Add() method to be marshaled as an array,
the collection need not implement the Add() method at all.

Custom Collections
It’s not just the built-in collections that can be marshaled automatically as arrays—any
custom collection can abide by the same prerequisites and be marshaled as an array,
as shown in Example 3-18. In this example, the collection MyCollection<string> is
marshaled as a string[].

Example 3-18. Marshaling a custom collection as an array

/////////////////////////// Service Side //////////////////////////////
[Serializable]
public class MyCollection<T> : IEnumerable<T>
{
 public void Add(T item)
 {}

162 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {...}
 //Rest of the implementation
}
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 MyCollection<string> GetCollection();
}

/////////////////////////// Client Side //////////////////////////////
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string[] GetCollection();
}

The CollectionDataContract Attribute
The mechanism shown so far for marshaling a concrete collection is suboptimal. For
one thing, it requires the collection to be serializable and does not work with the service-
oriented DataContract attribute. Also, while one party is dealing with a collection, the
other is dealing with an array, and the two are not semantically equivalent: the collec-
tion is likely to offer some advantages, or it would not have been chosen in the first
place. Furthermore, there is no compile-time or runtime verification of the presence of
the Add() method or the IEnumerable and IEnumerable<T> interfaces, resulting in an
unworkable data contract if they are missing. WCF’s solution is yet another dedicated
attribute called CollectionDataContractAttribute, defined as:

[AttributeUsage(AttributeTargets.Struct|AttributeTargets.Class,Inherited = false)]
public sealed class CollectionDataContractAttribute : Attribute
{
 public string Name
 {get;set;}

 public string Namespace
 {get;set;}
 //More members
}

The CollectionDataContract attribute is analogous to the DataContract attribute, and
similarly, it does not make the collection serializable. When applied on a collection,
the CollectionDataContract attribute exposes the collection to the client as a generic
linked list. While the linked list may have nothing to do with the original collection, it
does offer a more collection-like interface than an array.

Collections | 163

Download from Library of Wow! eBook <www.wowebook.com>

For example, given this collection definition:

[CollectionDataContract(Name = "MyCollectionOf{0}")]
public class MyCollection<T> : IEnumerable<T>
{
 public void Add(T item)
 {}

 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {...}
 //Rest of the implementation
}

and this service-side contract definition:

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 MyCollection<Contact> GetContacts();
}

the definitions the client ends up with after importing the metadata will be:

[CollectionDataContract]
public class MyCollectionOfContact : List<Contact>
{}

[ServiceContract]
interface IContactManager
{
 [OperationContract]
 void AddContact(Contact contact);

 [OperationContract]
 MyCollectionOfContact GetContacts();
}

In addition, at service load time the CollectionDataContract attribute verifies the pres-
ence of the Add() method as well as either IEnumerable or IEnumerable<T>. Failing to
have these on the collection will result in an InvalidDataContractException.

Note that you cannot apply both the DataContract attribute and the CollectionData
Contract attribute on a collection. Again, this is verified at service load time.

Referencing a Collection
WCF even lets you preserve the same collection on the client side as on the service side.
The advanced settings dialog box for the service reference (see Figure 1-10) contains a
Collection type combo box that lets you specify how to represent to the client certain
kinds of collections and arrays found in the service metadata. For example, if the service

164 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

operation returns one of the collections IEnumerable<T>, IList<T>, or ICollection<T>,
by default the proxy will present it as an array (the default item in the combo box).
However, you can request Visual Studio 2010 to use another collection, such as Bind
ingList for data binding, a List<T>, Collection, or LinkedList<T>, and so on. If a con-
version is possible, the proxy will use the requested collection type instead of an array,
for example:

[OperationContract]
List<int> GetNumbers();

When you then define the collection in another assembly referenced by the client’s
project, as I’ve discussed, that collection will be imported as-is. This feature is very
useful when interacting with one of the built-in .NET collections, such as the
Stack<T> collection defined in the System.dll, which is referenced by practically all .NET
projects.

Dictionaries
A dictionary is a special type of collection that maps one data instance to another. As
such, dictionaries do not marshal well either as arrays or as lists. Not surprisingly,
dictionaries get their own representation in WCF.

If the dictionary is a serializable collection that supports the IDictionary interface, it
will be exposed as a Dictionary<object,object>. For example, this service contract
definition:

[Serializable]
public class MyDictionary : IDictionary
{...}

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 MyDictionary GetContacts();
}

will be exposed as this definition:

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 Dictionary<object,object> GetContacts();
}

This, by the way, includes using the HashTable collection.

Collections | 165

Download from Library of Wow! eBook <www.wowebook.com>

If the serializable collection supports the IDictionary<K,T> interface, as in:

[Serializable]
public class MyDictionary<K,T> : IDictionary<K,T>
{...}

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 MyDictionary<int,Contact> GetContacts();
}

the exported representation will be as a Dictionary<K,T>:

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 Dictionary<int,Contact> GetContacts();
}

This includes making direct use of Dictionary<K,T> in the original definition, instead
of MyDictionary<K,T>.

If instead of merely being a serializable collection, the dictionary is decorated with the
CollectionDataContract attribute, it will be marshaled as a subclass of the respective
representation. For example, this service contract definition:

[CollectionDataContract]
public class MyDictionary : IDictionary
{...}

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 MyDictionary GetContacts();
}

will have this representation:

[CollectionDataContract]
public class MyDictionary : Dictionary<object,object>
{}

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 MyDictionary GetContacts();
}

166 | Chapter 3: Data Contracts

Download from Library of Wow! eBook <www.wowebook.com>

while this generic collection:

[CollectionDataContract(Name = "MyDictionary")]
public class MyDictionary<K,T> : IDictionary<K,T>
{...}

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 MyDictionary<int,Contact> GetContacts();
}

will be published in the metadata as:

[CollectionDataContract]
public class MyDictionary : Dictionary<int,Contact>
{}

[ServiceContract]
interface IContactManager
{
 ...
 [OperationContract]
 MyDictionary GetContacts();
}

As for a collection, in the advanced settings dialog box for a service reference—see
Figure 1-10 (page 41)—you can request other dictionary types, such as the Sor
tedDictionary<T,K>, HashTable, or ListDictionary type, and the proxy will use that
dictionary instead if possible.

Collections | 167

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 4

Instance Management

Instance management is my name for the set of techniques WCF uses to bind client
requests to service instances, governing which service instance handles which client
request, and when. Instance management is necessary because of the extent to which
applications differ in their needs for scalability, performance, throughput, durability,
transactions, and queued calls—there simply isn’t a one-size-fits-all solution. However,
there are a few canonical instance management techniques that are applicable across
the range of applications, thus enabling a wide variety of scenarios and programming
models. These techniques are the subject of this chapter, and understanding them is
essential to developing scalable and consistent applications. WCF supports three types
of instance activation: per-call services allocate (and destroy) a new service instance for
each client request; sessionful services allocate a service instance for each client con-
nection; and singleton services share the same service instance for all clients, across all
connections and activations. This chapter provides the rationale for each of these in-
stance management modes, and offers guidelines on when and how to best use them.
It also addresses some related topics, such as behaviors, contexts, demarcating opera-
tions, instance deactivation, durable services, and throttling.*

Behaviors
By and large, the service instance mode is strictly a service-side implementation detail
that should not manifest itself on the client side in any way. To support that and a few
other local service-side aspects, WCF defines the notion of behaviors. A behavior is a
local attribute of the service or the client that does not affect its communication pat-
terns. Clients should be unaware of service behaviors, and behaviors do not manifest
themselves in the service’s binding or published metadata. You have already seen two
service behaviors in the previous chapters: Chapter 1 uses the service metadata behavior

* This chapter contains excerpts from my articles “WCF Essentials: Discover Mighty Instance Management
Techniques for Developing WCF Apps” (MSDN Magazine, June 2006) and “Managing State with Durable
Services” (MSDN Magazine, October 2008).

169

Download from Library of Wow! eBook <www.wowebook.com>

to instruct the host to publish the service’s metadata over HTTP-GET or to implement
the MEX endpoint, and Chapter 3 uses the service behavior to ignore the data object
extension. No client can ever tell simply by examining the communication and the
exchanged messages if the service is ignoring the data object extension or who pub-
lished its metadata.

WCF defines two types of declarative service-side behaviors, governed by two corre-
sponding attributes. The ServiceBehaviorAttribute is used to configure service behav-
iors; that is, behaviors that affect all endpoints (all contracts and operations) of the
service. Apply the ServiceBehavior attribute directly on the service implementation
class.

Use the OperationBehaviorAttribute to configure operation behaviors; that is, behaviors
that affect only the implementation of a particular operation. The OperationBehavior
attribute can be applied only on a method that implements a contract operation, never
on the operation definition in the contract itself. You will see the use of
OperationBehavior attribute later in this chapter and in subsequent chapters as well.

In the context of this chapter, the ServiceBehavior attribute is used to configure the
service instance mode. As shown in Example 4-1, the attribute defines the Instance
ContextMode property of the enum type InstanceContextMode. The value of the
InstanceContextMode enum controls which instance mode is used for the service.

Example 4-1. ServiceBehaviorAttribute used to configure the instance context mode

public enum InstanceContextMode
{
 PerCall,
 PerSession,
 Single
}
[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : Attribute,...
{
 public InstanceContextMode InstanceContextMode
 {get;set;}
 //More members
}

The enum is correctly called InstanceContextMode rather than InstanceMode because it
actually controls the instantiation mode of the context hosting the instance, rather than
that of the instance itself (recall from Chapter 1 that the instance context is the inner-
most execution scope of the service). By default, however, the instance and its context
are treated as a single unit, so the enum does control the life of the instance as well.
You will see later in this chapter and in subsequent chapters how (and when) you can
disengage the two, and for what purposes.

170 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Per-Call Services
When the service type is configured for per-call activation, a service instance (the CLR
object) exists only while a client call is in progress. Every client request (that is, a method
call on the WCF contract) gets a new dedicated service instance. The following list
explains how per-call activation works, and the steps are illustrated in Figure 4-1:

1. The client calls the proxy and the proxy forwards the call to the service.

2. WCF creates a new context with a new service instance and calls the method on it.

3. When the method call returns, if the object implements IDisposable, WCF calls
IDisposable.Dispose() on it. WCF then destroys the context.

4. The client calls the proxy and the proxy forwards the call to the service.

5. WCF creates an object and calls the method on it.

Figure 4-1. Per-call instantiation mode

Disposing of the service instance is an interesting point. As I just mentioned, if the
service supports the IDisposable interface, WCF will automatically call the Dispose()
method, allowing the service to perform any required cleanup. Note that Dispose() is
called on the same thread that dispatched the original method call, and that
Dispose() has an operation context (presented later). Once Dispose() is called, WCF
disconnects the instance from the rest of the WCF infrastructure, making it a candidate
for garbage collection.

Benefits of Per-Call Services
In the classic client/server programming model, using languages such as C++ or C#,
every client gets its own dedicated server object. The fundamental problem with this
approach is that it doesn’t scale well. Imagine an application that has to serve many
clients. Typically, these clients create the objects they need when the client application
starts and dispose of them when the client application shuts down. What impedes
scalability with the client/server model is that the client applications can hold onto

Per-Call Services | 171

Download from Library of Wow! eBook <www.wowebook.com>

objects for long periods of time, while actually using them for only a fraction of that
time. Those objects may hold expensive or scarce resources, such as database connec-
tions, communication ports, or files. If you allocate an object for each client, you will
tie up such crucial and/or limited resources for long periods, and you will eventually
run out of resources.

A better activation model is to allocate an object for a client only while a call is in
progress from the client to the service. That way, you have to create and maintain in
memory only as many objects as there are concurrent calls, not as many objects as there
are outstanding clients. My personal experience indicates that in a typical Enterprise
system, especially one that involves users, only 1 percent of all clients make concurrent
calls (in a high-load Enterprise system, that figure rises to 3 percent). Thus, if your
system can concurrently sustain 100 expensive service instances, it can still typically
serve as many as 10,000 outstanding clients. This is precisely the benefit the per-call
instance activation mode offers. In between calls, the client holds a reference on a proxy
that doesn’t have an actual object at the end of the wire. This means that you can dispose
of the expensive resources the service instance occupies long before the client closes
the proxy. By that same token, acquiring the resources is postponed until they are
actually needed by a client.

Keep in mind that creating and destroying a service instance repeatedly on the service
side without tearing down the connection to the client (with its client-side proxy) is a
lot cheaper than repeatedly creating an instance and a connection. The second benefit
is that forcing the service instance to reallocate or connect to its resources on every call
caters very well to transactional resources and transactional programming (discussed
in Chapter 7), because it eases the task of enforcing consistency with the instance state.
The third benefit of per-call services is that they can be used in conjunction with queued
disconnected calls (described in Chapter 9), because they allow easy mapping of service
instances to discrete queued messages.

Configuring Per-Call Services
To configure a service type as a per-call service, you apply the ServiceBehavior attribute
with the InstanceContextMode property set to InstanceContextMode.PerCall:

[ServiceContract]
interface IMyContract
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{...}

Example 4-2 lists a simple per-call service and its client. As you can see from the program
output, for each client method call a new service instance is constructed.

172 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-2. Per-call service and client

///////////////////////// Service Code /////////////////////
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract,IDisposable
{
 int m_Counter = 0;

 MyService()
 {
 Trace.WriteLine("MyService.MyService()");
 }
 public void MyMethod()
 {
 m_Counter++;
 Trace.WriteLine("Counter = " + m_Counter);
 }
 public void Dispose()
 {
 Trace.WriteLine("MyService.Dispose()");
 }
}
///////////////////////// Client Code /////////////////////
MyContractClient proxy = new MyContractClient();

proxy.MyMethod();
proxy.MyMethod();

proxy.Close();

//Possible output
MyService.MyService()
Counter = 1
MyService.Dispose()
MyService.MyService()
Counter = 1
MyService.Dispose()

Per-Call Services and Transport Sessions
The use of a per-call service is independent from the presence of a transport session
(described in Chapter 1). A transport session correlates all messages from a particular
client to a particular channel. If the service is configured for per-call instantiation, there
can still be a transport session, but for every call WCF will create a new context used
just for that call. If transport-level sessions are not used, as you will see later, the service
always behaves as a per-call service, regardless of its configuration.

Per-Call Services | 173

Download from Library of Wow! eBook <www.wowebook.com>

If the per-call service has a transport session, communication from the client is sub-
jected to the inactivity timeout of the transport session (which defaults to 10 minutes).
Once the timeout has expired, the client can no longer use the proxy to invoke opera-
tions on the per-call service, since the transport session has ended.

The biggest effect transport sessions have on per-call services is that when the service
is configured for single-threaded access (the WCF default, explained in Chapter 8), the
transport session enforces a lock-step execution, where calls to the per-call service from
the same proxy are serialized. That is, even if the client issues the calls concurrently,
they are executed against different instances, one at a time, in order. This has particular
implications for disposing of the instance. WCF does not block the client while it dis-
poses of the service instance. However, if during the call to Dispose() the client has
issued a second call, that call will be allowed to access a new instance only after
Dispose() has returned. For example, the output at the end of Example 4-2 represents
a case where there is a transport session, since the second call can only execute once
Dispose() has returned. If Example 4-2 had no transport session, you might end up
with the same output but also an out-of-order invocation where Dispose() is non-
blocking, such as:

MyService.MyService()
Counter = 1
MyService.MyService()
Counter = 1
MyService.Dispose()
MyService.Dispose()

Designing Per-Call Services
Although in theory you can use the per-call instance activation mode on any service
type, in practice you need to design the service and its contracts to support this mode
from the ground up. The main problem is that the client doesn’t know it’s getting a
new instance each time it makes a call. Per-call services must be state-aware; that is,
they must proactively manage their state, giving the client the illusion of a continuous
session. A state-aware service isn’t the same as a stateless service. In fact, if the per-call
service were truly stateless, there would be no need for per-call activation in the first
place. It is precisely because it has state, and an expensive state at that, that you need
the per-call mode. An instance of a per-call service is created just before every method
call and is destroyed immediately after each call. Therefore, at the beginning of each
call, the object should initialize its state from values saved in some storage, and at the
end of the call it should return its state to the storage. Such storage is typically either a
database or the file system, but volatile storage (e.g., static variables) may be used
instead.

Not all of the object’s state can be saved as-is, however. For example, if the state con-
tains a database connection, the object must reacquire the connection at construction

174 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

or at the beginning of every call and dispose of the connection at the end of the call or
in its implementation of IDisposable.Dispose().

Using the per-call instance mode has one important implication for operation design:
every operation must include a parameter to identify the service instance whose state
needs to be retrieved. The instance uses that parameter to get its state from the storage,
and not the state of another instance of the same type. Consequently, state storage is
typically keyed (for example, as a static dictionary in memory or a database table).
Examples of such state parameters are the account number for a bank account service,
the order number for an order-processing service, and so on.

Example 4-3 shows a template for implementing a per-call service.

Example 4-3. Implementing a per-call service

[DataContract]
class Param
{...}

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod(Param stateIdentifier);
}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyPerCallService : IMyContract,IDisposable
{
 public void MyMethod(Param stateIdentifier)
 {
 GetState(stateIdentifier);
 DoWork();
 SaveState(stateIdentifier);
 }
 void GetState(Param stateIdentifier)
 {...}
 void DoWork()
 {...}
 void SaveState(Param stateIdentifier)
 {...}
 public void Dispose()
 {...}
}

The class implements the MyMethod() operation, which accepts a parameter of type
Param (a pseudotype invented for this example) that identifies the instance:

public void MyMethod(Param stateIdentifier);

The instance then uses the identifier to retrieve its state and to save the state back at
the end of the method call. Any piece of state that is common to all clients can be
allocated at the constructor and disposed of in Dispose().

Per-Call Services | 175

Download from Library of Wow! eBook <www.wowebook.com>

The per-call activation mode works best when the amount of work to be done in each
method call is finite, and there are no more activities to complete in the background
once a method returns. Because the object will be discarded once the method returns,
you should not spin off background threads or dispatch asynchronous calls back into
the instance.

Since the per-call service retrieves its state from some storage in every method call, per-
call services work very well in conjunction with a load-balancing machine, as long as
the state repository is some global resource accessible to all machines. The load balancer
can redirect calls to different machines at will, knowing that each per-call service can
execute the call after retrieving its state.

Per-call services and performance

Per-call services clearly offer a trade-off between performance (the overhead of retriev-
ing and saving the instance state on each method call) and scalability (holding onto the
state and the resources it ties in). There are no hard-and-fast rules as to when and to
what extent you should trade some performance for a lot of scalability. You may need
to profile your system and ultimately design some services to use per-call activation
and others not to use it.

Cleanup operations

Whether or not the service type supports IDisposable is an implementation detail and
is of no relevance to the client. In fact, the client has no way of calling the Dispose()
method anyway. When you design a contract for a per-call service, avoid defining op-
erations that are dedicated for state or resource cleanup, like this:

//Avoid
[ServiceContract]
interface IMyContract
{
 void DoSomething();
 void Cleanup();
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyPerCallService : IMyContract,IDisposable
{
 public void DoSomething()
 {...}
 public void Cleanup()
 {...}
 public void Dispose()
 {
 Cleanup();
 }
}

The folly of such a design is obvious: if the client does call the cleanup method, it has
the detrimental effect of creating an object just so the client can call Cleanup() on it,

176 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

followed by a call to IDisposable.Dispose() (if present) by WCF to do the cleanup
again.

Choosing Per-Call Services
While the programming model of per-call services may look somewhat alien to client/
server developers, per-call services are actually the preferred instance management
mode for many WCF services. This is simply because per-call services scale better, or
at least are scale-invariant. When designing a service, my golden rule for scalability is
10X. That is, every service should be designed to handle a load at least an order of
magnitude greater than what its requirements call for. In every other engineering dis-
cipline, engineers never design a system to handle its exact nominal specified load. You
would not want to enter a building whose beams could support only the exact load
they were required to handle, ride in an elevator whose cable could handle only the
exact number of passengers it’s rated for, and so on. Software systems are no different—
why design a system for the specific current load while every other person in the com-
pany is working to increase business and the implied load? You should design software
systems to last years and to sustain current and future loads. As a result, when using
the 10X golden rule, you very quickly end up needing the scalability of the per-call
service.

Per-Session Services
WCF can maintain a logical session between a client and a particular service instance.
When the client creates a new proxy to a service configured as a sessionful service, the
client gets a new dedicated service instance that is independent of all other instances
of the same service. That instance will typically remain in service until the client no
longer needs it. This activation mode (sometimes also referred to as the private-session
mode) is very much like the classic client/server model: each private session uniquely
binds a proxy and its set of client- and service-side channels to a particular service
instance, or, more specifically, to its context. It follows that a transport session is re-
quired for the private-session instantiation mode, as discussed later in this section.

Because the service instance remains in memory throughout the session, it can maintain
state in memory, and the programming model is very much like that of the classic client/
server model. Consequently, it suffers from the same scalability and transaction issues
as the classic client/server model. A service configured for private sessions cannot typ-
ically support more than a few dozen (or perhaps up to one or two hundred) outstand-
ing clients, due to the cost associated with each such dedicated service instance.

The client session is per service endpoint per proxy. If the client creates
another proxy to the same or a different endpoint, that second proxy
will be associated with a new instance and session.

Per-Session Services | 177

Download from Library of Wow! eBook <www.wowebook.com>

Configuring Private Sessions
There are three elements to supporting a session: behavior, binding, and contract. The
behavior part is required so that WCF will keep the service instance context alive
throughout the session, and to direct the client messages to it. This local behavior facet
is achieved by setting the InstanceContextMode property of the ServiceBehavior attrib-
ute to InstanceContextMode.PerSession:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]
class MyService : IMyContract
{...}

Since InstanceContextMode.PerSession is the default value of the InstanceContext
Mode property, these definitions are equivalent:

class MyService : IMyContract
{...}

[ServiceBehavior]
class MyService : IMyContract
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]
class MyService : IMyContract
{...}

The session typically terminates when the client closes the proxy, which causes the
proxy to notify the service that the session has ended. If the service supports
IDisposable, the Dispose() method will be called asynchronously to the client. How-
ever, Disposed() will be called on a worker thread without an operation context.

In order to correlate all messages from a particular client to a particular instance, WCF
needs to be able to identify the client. As explained in Chapter 1, this is exactly what
the transport session achieves. If your service is designed to be used as a sessionful
service, there has to be some contract-level way for you to express that expectation.
The contractual element is required across the service boundary, because the client-
side WCF runtime needs to know it should use a session. To that end, the
ServiceContract attribute offers the property SessionMode, of the enum type Session
Mode:

public enum SessionMode
{
 Allowed,
 Required,
 NotAllowed
}
[AttributeUsage(AttributeTargets.Interface|AttributeTargets.Class,
 Inherited=false)]
public sealed class ServiceContractAttribute : Attribute
{
 public SessionMode SessionMode
 {get;set;}

178 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

SessionMode defaults to SessionMode.Allowed. The configured SessionMode value is in-
cluded in the service metadata and is reflected correctly when the client imports the
contract metadata. The enum value of SessionMode has nothing to do with the service
session; in fact, its proper name should have been TransportSessionMode since it per-
tains to the transport session, not to the logical session maintained between the client
and the instance.

SessionMode.Allowed

SessionMode.Allowed is the default value of the SessionMode property, so these defini-
tions are equivalent:

[ServiceContract]
interface IMyContract
{...}

[ServiceContract(SessionMode = SessionMode.Allowed)]
interface IMyContract
{...}

All bindings support configuring the contract on the endpoint with Session
Mode.Allowed. When the SessionMode property is configured with this value, transport
sessions are allowed, but not enforced. The exact resulting behavior is a product of the
service configuration and the binding used. If the service is configured for per-call
activation, it still behaves as per-call service, as is the case in Example 4-2. When the
service is configured for per-session activation, it will behave as a per-session service
only if the binding used maintains a transport-level session. For example, the BasicHttp
Binding can never have a transport-level session, due to the connectionless nature of
the HTTP protocol. The WSHttpBinding without Message security and without reliable
messaging will also not maintain a transport-level session. In both of these cases, even
though the service is configured with InstanceContextMode.PerSession and the contract
with SessionMode.Allowed, the service will behave as a per-call service.

However, if you use the WSHttpBinding with Message security (its default configuration)
or with reliable messaging, or if you use the NetTcpBinding or the Net
NamedPipeBinding, the service will behave as a per-session service. For example, as-
suming use of the NetTcpBinding, this service behaves as sessionful:

[ServiceContract]
interface IMyContract
{...}

class MyService : IMyContract
{...}

Note that the previous code snippet simply takes the default of both the SessionMode
and the InstanceContextMode properties.

Per-Session Services | 179

Download from Library of Wow! eBook <www.wowebook.com>

SessionMode.Required

The SessionMode.Required value mandates the use of a transport-level session, but not
necessarily an application-level session. You cannot have a contract configured with
SessionMode.Required with a service endpoint whose binding does not maintain a
transport-level session, and this constraint is verified at the service load time. However,
you can still configure the service to be a per-call service, and the service instance will
be created and destroyed on each client call. Only if the service is configured as a
sessionful service will the service instance persist throughout the client’s session:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{...}

class MyService : IMyContract
{...}

When designing a sessionful contract, I recommend explicitly using
SessionMode.Required and not relying on the default of Session
Mode.Allowed. The rest of the code samples in this book actively apply
SessionMode.Required when sessionful interaction is by design.

Example 4-4 lists the same service and client as in Example 4-2, except the contract
and service are configured to require a private session. As you can see from the output,
the client got a dedicated instance.

Example 4-4. Per-session service and client

///////////////////////// Service Code /////////////////////
[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract,IDisposable
{
 int m_Counter = 0;

 MyService()
 {
 Trace.WriteLine("MyService.MyService()");
 }
 public void MyMethod()
 {
 m_Counter++;
 Trace.WriteLine("Counter = " + m_Counter);
 }
 public void Dispose()
 {
 Trace.WriteLine("MyService.Dispose()");

180 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

 }
}
///////////////////////// Client Code /////////////////////
MyContractClient proxy = new MyContractClient();

proxy.MyMethod();
proxy.MyMethod();

proxy.Close();

//Output
MyService.MyService()
Counter = 1
Counter = 2
MyService.Dispose()

SessionMode.NotAllowed

SessionMode.NotAllowed disallows the use of a transport-level session, which precludes
an application-level session. Regardless of the service configuration, when this value is
used the service will always behave as a per-call service.

Since both the TCP and IPC protocols maintain a session at the transport level, you
cannot configure a service endpoint that uses the NetTcpBinding or the NetNamedPipe
Binding to expose a contract marked with SessionMode.NotAllowed, and this is verified
at the service load time. However, the use of the WSHttpBinding with an emulated trans-
port session is still allowed. In the interest of readability, I recommend that when se-
lecting SessionMode.NotAllowed, you always also configure the service as per-call:

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{...}

Since the BasicHttpBinding cannot have a transport-level session, endpoints that use it
behave as if the contract is always configured with SessionMode.NotAllowed. I view
SessionMode.NotAllowed as a setting available for the sake of completeness more than
anything else, and I would not explicitly choose it.

Bindings, contracts, and service behavior

Table 4-1 summarizes the resulting instance mode as a product of the binding being
used, the session mode in the contract, and the configured instance context mode in
the service behavior. The table does not list invalid configurations, such as Session
Mode.Required with the BasicHttpBinding.

Per-Session Services | 181

Download from Library of Wow! eBook <www.wowebook.com>

Table 4-1. Instance mode as a product of the binding, contract configuration, and service behavior

Binding Session mode Context mode Instance mode

Basic Allowed/
NotAllowed

PerCall/
PerSession

PerCall

TCP, IPC Allowed/Required PerCall PerCall

TCP, IPC Allowed/Required PerSession PerSession

WS (no Message security, no reliability) NotAllowed/
Allowed

PerCall/
PerSession

PerCall

WS (with Message security or reliability) Allowed/Required PerSession PerSession

WS (with Message security or reliability) NotAllowed PerCall/
PerSession

PerCall

Consistent configuration

I strongly recommend that if one contract the service implements is a sessionful con-
tract, then all contracts should be sessionful, and that you should avoid mixing per-call
and sessionful contracts on the same per-session service type (even though WCF
allows it):

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{...}

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyOtherContract
{...}

//Avoid
class MyService : IMyContract,IMyOtherContract
{...}

The reason is obvious: per-call services need to proactively manage their state, while
per-session services do not. While the two contracts will be exposed on two different
endpoints and can be consumed independently by two different clients, this duality
requires cumbersome implementation for the underlying service class.

Sessions and Reliability
The session between the client and the service instance is only as reliable as the under-
lying transport session. Consequently, a service that implements a sessionful contract
should have all of its endpoints that expose that contract use bindings that enable
reliable transport sessions. Make sure to always use a binding that supports reliability
and to explicitly enable it at both the client and the service, either programmatically or
administratively, as shown in Example 4-5.

182 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-5. Enabling reliability for per-session services

<!—Host configuration:—>
<system.serviceModel>
 <services>
 <service name = "MyPerSessionService">
 <endpoint
 address = "net.tcp://localhost:8000/MyPerSessionService"
 binding = "netTcpBinding"
 bindingConfiguration = "TCPSession"
 contract = "IMyContract"
 />
 </service>
 </services>
 <bindings>
 <netTcpBinding>
 <binding name = "TCPSession">
 <reliableSession enabled = "true"/>
 </binding>
 </netTcpBinding>
 </bindings>
</system.serviceModel>

<!—Client configuration:—>
<system.serviceModel>
 <client>
 <endpoint
 address = "net.tcp://localhost:8000/MyPerSessionService/"
 binding = "netTcpBinding"
 bindingConfiguration = "TCPSession"
 contract = "IMyContract"
 />
 </client>
 <bindings>
 <netTcpBinding>
 <binding name = "TCPSession">
 <reliableSession enabled = "true"/>
 </binding>
 </netTcpBinding>
 </bindings>
</system.serviceModel>

The one exception to this rule is the IPC binding. This binding has no need for the
reliable messaging protocol (all calls will be on the same machine anyway), and it is
considered an inherently reliable transport.

Just as a reliable transport session is optional, so is ordered delivery of messages, and
WCF will provide for a session even when ordered delivery is disabled. However, by
the very nature of an application session, a client that interacts with a sessionful service
expects all messages to be delivered in the order they are sent. Luckily, ordered delivery
is enabled by default when reliable transport sessions are enabled, so no additional
setting is required.

Per-Session Services | 183

Download from Library of Wow! eBook <www.wowebook.com>

The Session ID
Every session has a unique ID that both the client and the service can obtain. The session
ID is largely in the form of a GUID, and it can be used for logging and diagnostics. The
service can access the session ID via the operation call context, which is a set of prop-
erties (including the session ID) that are used for callbacks, message headers, transac-
tion management, security, host access, and access to the object representing the
execution context itself. Every service operation has an operation call context, acces-
sible via the OperationContext class. A service can obtain a reference to the operation
context of the current method via the Current static method of the OperationContext
class:

public sealed class OperationContext : ...
{
 public static OperationContext Current
 {get;set;}
 public string SessionId
 {get;}
}

To access the session ID, the service needs to read the value of the SessionId property,
which returns (almost) a GUID in the form of a string. In the case of the TCP binding
without reliability, it will be followed by the ordinal number of the session from that
host:

string sessionID = OperationContext.Current.SessionId;
Trace.WriteLine(sessionID);
//Traces:
//uuid:8a0480da-7ac0-423e-9f3e-b2131bcbad8d;id=1

If a per-call service without a transport session accesses the SessionId property, the
session ID will be null, since there is no session and therefore no ID.

The client can access the session ID via the proxy. As introduced in Chapter 1, the class
ClientBase<T> is the base class of the proxy. ClientBase<T> provides the read-only
property InnerChannel of the type IClientChannel. IClientChannel derives from the
interface IContextChannel, which provides a SessionId property that returns the session
ID in the form of a string:

public interface IContextChannel : ...
{
 string SessionId
 {get;}
 //More members
}
public interface IClientChannel : IContextChannel,...
{...}
public abstract class ClientBase<T> : ...
{
 public IClientChannel InnerChannel
 {get;}

184 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

Given the definitions in Example 4-4, the client might obtain the session ID like this:

MyContractClient proxy = new MyContractClient();
proxy.MyMethod();

string sessionID = proxy.InnerChannel.SessionId;
Trace.WriteLine(sessionID);

However, the degree to which the client-side session ID matches that of the service (and
even when the client is allowed to access the SessionId property) is a product of the
binding used and its configuration. What correlates the client-side and service-side
session IDs is the reliable session at the transport level. If the TCP binding is used, when
a reliable session is enabled (as it should be) the client can obtain a valid session ID
only after issuing the first method call to the service to establish the session, or after
explicitly opening the proxy. In this case, the session ID obtained by the client will
match that of the service. (If the client accesses the session ID before the first call, the
SessionId property will be set to null.) If the TCP binding is used but reliable sessions
are disabled, the client can access the session ID before making the first call, but the
ID obtained will be different from that obtained by the service. With the WS binding,
if reliable messaging is enabled, the session ID will be null until after the first call (or
after the client opens the proxy), but after that the client and the service will always
have the same session ID. Without reliable messaging, the client must first use the proxy
(or just open it) before accessing the session ID, or risk an InvalidOpera
tionException. After opening the proxy, the client and the service will have a correlated
session ID. With the IPC binding, the client can access the SessionId property before
making the first call, but the client will always get a session ID different from that of
the service. When using this binding, it is therefore better to ignore the session ID
altogether.

Session Termination
Typically, the session will end once the client closes the proxy. However, in case the
client neglects to close the proxy, or when the client terminates ungracefully or there
is a communication problem, the session will also terminate once the inactivity timeout
of the transport session is exceeded.

Singleton Service
The singleton service is the ultimate sharable service. When you configure a service as
a singleton, all clients are independently connected to the same single well-known
instance context and implicitly to the same instance inside, regardless of which end-
point of the service they connect to. The singleton is created exactly once, when the
host is created, and lives forever: it is disposed of only when the host shuts down.

Singleton Service | 185

Download from Library of Wow! eBook <www.wowebook.com>

A singleton hosted in IIS or the WAS is created when you launch the
host process (only when the first request to any service in that process
is made). However, when using the auto-start feature of Windows
Server AppFabric, the singleton will be instantiated once the machine
starts up. To maintain the semantic of the singleton, use either self-
hosting or Windows Server AppFabric with auto-start.

Using a singleton does not require clients to maintain a logical session with the singleton
instance, or to use a binding that supports a transport-level session. If the contract the
client consumes has a session, during the call the singleton will have the same session
ID as the client (binding permitting), but closing the client proxy will terminate only
the transport session, not the singleton context and the instance inside. If the singleton
service supports contracts without a session, those contracts will not be per-call: they
too will be connected to the same instance. By its very nature, the singleton is shared,
and each client should simply create its own proxy or proxies to it.

You configure a singleton service by setting the InstanceContextMode property to
InstanceContextMode.Single:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
class MySingleton : ...
{...}

Example 4-6 demonstrates a singleton service with two contracts, one that requires a
session and one that does not. As you can see from the client call, the calls on the two
endpoints were routed to the same instance, and closing the proxies did not terminate
the singleton.

Example 4-6. A singleton service and client

///////////////////////// Service Code /////////////////////
[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyOtherContract
{
 [OperationContract]
 void MyOtherMethod();
}
[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
class MySingleton : IMyContract,IMyOtherContract,IDisposable
{
 int m_Counter = 0;

 public MySingleton()
 {
 Trace.WriteLine("MySingleton.MySingleton()");

186 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

 }
 public void MyMethod()
 {
 m_Counter++;
 Trace.WriteLine("Counter = " + m_Counter);
 }
 public void MyOtherMethod()
 {
 m_Counter++;
 Trace.WriteLine("Counter = " + m_Counter);
 }
 public void Dispose()
 {
 Trace.WriteLine("Singleton.Dispose()");
 }
}
///////////////////////// Client Code /////////////////////
MyContractClient proxy1 = new MyContractClient();
proxy1.MyMethod();
proxy1.Close();

MyOtherContractClient proxy2 = new MyOtherContractClient();
proxy2.MyOtherMethod();
proxy2.Close();

//Output
MySingleton.MySingleton()
Counter = 1
Counter = 2

Initializing a Singleton
Sometimes, you may not want to create and initialize the singleton using just the default
constructor. Perhaps initializing the state requires some custom steps or specific knowl-
edge that the clients should not be bothered with, or that is not available to the clients.
Whatever the reason, you may want to create the singleton using some other mecha-
nism besides the WCF service host. To support such scenarios, WCF allows you to
directly create the singleton instance beforehand using normal CLR instantiation, ini-
tialize it, and then open the host with that instance in mind as the singleton service.
The ServiceHost class offers a dedicated constructor that accepts an object:

public class ServiceHost : ServiceHostBase,...
{
 public ServiceHost(object singletonInstance,params Uri[] baseAddresses);
 public object SingletonInstance
 {get;}
 //More members
}

Note that the object must be configured as a singleton. For instance, consider the code
in Example 4-7. The class MySingleton will be first initialized and then hosted as a
singleton.

Singleton Service | 187

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-7. Initializing and hosting a singleton

//Service code
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
class MySingleton : IMyContract
{
 public int Counter
 {get;set;}

 public void MyMethod()
 {
 Counter++;
 Trace.WriteLine("Counter = " + Counter);
 }
}
//Host code
MySingleton singleton = new MySingleton();
singleton.Counter = 287;

ServiceHost host = new ServiceHost(singleton);
host.Open();

//Client code
MyContractClient proxy = new MyContractClient();
proxy.MyMethod();
proxy.Close();

//Output:
Counter = 288

If you do initialize and host a singleton this way, you may also want to be able to access
it directly on the host side. WCF enables downstream objects to reach back into the
singleton directly using the SingletonInstance property of ServiceHost. Any party on
the call chain leading down from an operation call on the singleton can always access
the host via the operation context’s read-only Host property:

public sealed class OperationContext : ...
{
 public ServiceHostBase Host
 {get;}
 //More members
}

Once you have the singleton reference, you can interact with it directly:

ServiceHost host = OperationContext.Current.Host as ServiceHost;
Debug.Assert(host != null);
MySingleton singleton = host.SingletonInstance as MySingleton;

188 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Debug.Assert(singleton != null);
singleton.Counter = 388;

If no singleton instance was provided to the host, SingletonInstance returns null.

Streamlining with ServiceHost<T>

The ServiceHost<T> class presented in Chapter 1 can be extended to offer type-safe
singleton initialization and access:

public class ServiceHost<T> : ServiceHost
{
 public ServiceHost(T singleton,params Uri[] baseAddresses) :
 base(singleton,baseAddresses)
 {}
 public virtual T Singleton
 {
 get
 {
 if(SingletonInstance == null)
 {
 return default(T);
 }
 return (T)SingletonInstance;
 }
 }
 //More members
}

The type parameter provides type-safe binding for the object used for construction:

MySingleton singleton = new MySingleton();
singleton.Counter = 287;

ServiceHost<MySingleton> host = new ServiceHost<MySingleton>(singleton);
host.Open();

and the object returned from the Singleton property:

ServiceHost<MySingleton> host = OperationContext.Current.Host
 as ServiceHost<MySingleton>;
Debug.Assert(host != null);
host.Singleton.Counter = 388;

The InProcFactory<T> (presented in Chapter 1) is similarly extended to
initialize a singleton instance.

Choosing a Singleton
The singleton service is the sworn enemy of scalability. The reason has to do with
singleton state synchronization, rather than the cost of that single instance. Having a
singleton implies that the singleton has some valuable state that you wish to share across

Singleton Service | 189

Download from Library of Wow! eBook <www.wowebook.com>

multiple clients. The problem is that if the singleton’s state is mutable and multiple
clients connect to the singleton, they may all do so concurrently, and the incoming
client calls will be on multiple worker threads. The singleton must therefore synchron-
ize access to its state to avoid state corruption. This, in turn, means that only one client
at a time can access the singleton. This constraint may degrade throughput, respon-
siveness, and availability to the point that the singleton is unusable in a decent-sized
system. For example, if an operation on a singleton takes one-tenth of a second, the
singleton can service only 10 clients per second. If there are many more clients (say 20
or 100), the system’s performance will be inadequate.

In general, you should use a singleton only if it maps well to a natural singleton in the
application domain. A natural singleton is a resource that is, by its very nature, single
and unique. Examples of natural singletons are a global logbook to which all services
should log their activities, a single communication port, or a single mechanical motor.
Avoid using a singleton if there is even the slightest chance that the business logic will
allow more than one such service in the future (for example, adding another motor or
a second communication port). The reason is clear: if your clients all depend on im-
plicitly being connected to the well-known instance and more than one service instance
is available, the clients will suddenly need to have a way to bind to the correct instance.
This can have severe implications for the application’s programming model. Because
of these limitations, I recommend that you avoid singletons in the general case and find
ways to share the state of the singleton instead of the singleton instance itself. That
said, there are cases when using a singleton is acceptable, as mentioned above.

Demarcating Operations
Sometimes, a sessionful contract has an implied order of operation invocations. Some
operations cannot be called first, while other operations must be called last. For ex-
ample, consider this contract, used to manage customer orders:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IOrderManager
{
 [OperationContract]
 void SetCustomerId(int customerId);

 [OperationContract]
 void AddItem(int itemId);

 [OperationContract]
 decimal GetTotal();

 [OperationContract]
 bool ProcessOrders();
}

The contract has the following constraints: the client must provide the customer ID as
the first operation in the session, or else no other operations can take place; items may

190 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

be added, and the total calculated, as often as the client wishes; processing the order
terminates the session, and therefore must come last. In classic .NET, such require-
ments often forced the developers to support some state machine or state flags and to
verify the state on every operation.

WCF, however, allows contract designers to designate contract operations as opera-
tions that can or cannot start or terminate the session, using the IsInitiating and
IsTerminating properties of the OperationContract attribute:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationContractAttribute : Attribute
{
 public bool IsInitiating
 {get;set;}
 public bool IsTerminating
 {get;set;}
 //More members
}

These properties can be used to demarcate the boundary of the session; hence, I call
this technique demarcating operations. At service load time (or during the proxy use
time on the client side), if these properties are set to their non-default values, WCF
verifies that the demarcating operations are part of a contract that mandates
sessions (i.e., that SessionMode is set to SessionMode.Required) and throws an
InvalidOperationException otherwise. Both a sessionful service and a singleton can
implement contracts that use demarcating operations to manage their client sessions.

The default values of these properties are true for IsInitiating and false for
IsTerminating. Consequently, these two definitions are equivalent:

[OperationContract]
void MyMethod();

[OperationContract(IsInitiating = true,IsTerminating = false)]
void MyMethod();

As you can see, you can set both properties on the same method. In addition, operations
do not demarcate the session boundary by default—operations can be called first, last,
or in between any other operations in the session. Using nondefault values enables you
to dictate that a method is not called first, or that it is called last, or both:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 void StartSession();

 [OperationContract(IsInitiating = false)]
 void CannotStart();

 [OperationContract(IsTerminating = true)]
 void EndSession();

Demarcating Operations | 191

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationContract(IsInitiating = false,IsTerminating = true)]
 void CannotStartCanEndSession();
}

Going back to the order-management contract, you can use demarcating operations to
enforce the interaction constraints:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IOrderManager
{
 [OperationContract]
 void SetCustomerId(int customerId);

 [OperationContract(IsInitiating = false)]
 void AddItem(int itemId);

 [OperationContract(IsInitiating = false)]
 decimal GetTotal();

 [OperationContract(IsInitiating = false,IsTerminating = true)]
 bool ProcessOrders();
}
//Client code
OrderManagerClient proxy = new OrderManagerClient();

proxy.SetCustomerId(123);
proxy.AddItem(4);
proxy.AddItem(5);
proxy.AddItem(6);
proxy.ProcessOrders();

proxy.Close();

When IsInitiating is set to true (its default), it means the operation will start a new
session if it is the first method the client calls but will be part of the ongoing session if
another operation is called first. When IsInitiating is set to false, it means that a
client can never call that operation as the first operation in a new session, and that the
method can only be part of an ongoing session.

When IsTerminating is set to false (its default), it means the session continues after
the operation returns. When IsTerminating is set to true, it means the session termi-
nates once the method returns, and WCF disposes of the service instance asynchro-
nously. The client will not be able to issue additional calls on the proxy. Note that the
client should still close the proxy.

When you generate a proxy to a service that uses demarcating opera-
tions, the imported contract definition contains the property settings.
In addition, WCF enforces the demarcation separately on the client and
service sides, so you could actually employ them independently.

192 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Instance Deactivation
Conceptually, the sessionful service instance management technique as described so
far connects a client (or clients) to a service instance. Yet, the real picture is more
complex. Recall from Chapter 1 that each service instance is hosted in a context, as
shown in Figure 4-2.

Figure 4-2. Contexts and instances

What sessions actually do is correlate the client messages not to the instance, but to
the context that hosts it. When the session starts, the host creates a new context. When
the session ends, the context is terminated. By default, the lifetime of the context is the
same as that of the instance it hosts. However, for optimization and extensibility pur-
poses, WCF provides the service designer with the option of separating the two lifetimes
and deactivating the instance separately from its context. In fact, WCF also allows a
context to exist without an associated instance at all, as shown in Figure 4-2. I call this
instance management technique context deactivation. The common way of con-
trolling context deactivation is via the ReleaseInstanceMode property of the
OperationBehavior attribute:

public enum ReleaseInstanceMode
{
 None,
 BeforeCall,
 AfterCall,
 BeforeAndAfterCall,
}
[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationBehaviorAttribute : Attribute,...
{
 public ReleaseInstanceMode ReleaseInstanceMode
 {get;set;}
 //More members
}

ReleaseInstanceMode is of the enum type ReleaseInstanceMode. The various values of
ReleaseInstanceMode control when to release the instance in relation to the method call:
before, after, before and after, or not at all. When releasing the instance, if the service
supports IDisposable, the Dispose() method is called and Dispose() has an operation
context.

Instance Deactivation | 193

Download from Library of Wow! eBook <www.wowebook.com>

You typically apply instance deactivation on some but not all service methods, or with
different values on different methods:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 void MyMethod();

 [OperationContract]
 void MyOtherMethod();
}
class MyService : IMyContract,IDisposable
{
 [OperationBehavior(ReleaseInstanceMode = ReleaseInstanceMode.AfterCall)]
 public void MyMethod()
 {...}
 public void MyOtherMethod()
 {...}
 public void Dispose()
 {...}
}

The reason you typically apply it sporadically is that if you were to apply it uniformly,
you would end up with a per-call-like service, in which case you might as well have
configured the service as per-call.

If relying on instance deactivation assumes a certain call order, you can try to enforce
that order using demarcating operations.

Configuring with ReleaseInstanceMode.None
The default value for the ReleaseInstanceMode property is ReleaseInstanceMode.None,
so these two definitions are equivalent:

[OperationBehavior(ReleaseInstanceMode = ReleaseInstanceMode.None)]
public void MyMethod()
{...}

public void MyMethod()
{...}

ReleaseInstanceMode.None means that the instance lifetime is not affected by the call,
as shown in Figure 4-3.

Configuring with ReleaseInstanceMode.BeforeCall
When a method is configured with ReleaseInstanceMode.BeforeCall, if there is already
an instance in the session, before forwarding the call WCF will deactivate it, create a
new instance in its place, and let that new instance service the call, as shown in
Figure 4-4.

194 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Figure 4-4. Instance lifetime with methods configured with ReleaseInstanceMode.BeforeCall

WCF deactivates the instance and calls Dispose() before the call is done on the incom-
ing call thread, while the client blocks. This ensures that the deactivation is indeed done
before the call, not concurrently with it. ReleaseInstanceMode.BeforeCall is designed
to optimize methods such as Create() that acquire some valuable resources, yet wish
to release the previously allocated resources. Instead of acquiring the resources when
the session starts, you wait until the call to the Create() method and then both release
the previously allocated resources and allocate new ones. After Create() is called, you
are ready to start calling other methods on the instance, which are typically configured
with ReleaseInstanceMode.None.

Configuring with ReleaseInstanceMode.AfterCall
When a method is configured with ReleaseInstanceMode.AfterCall, WCF deactivates
the instance after the call, as shown in Figure 4-5.

This is designed to optimize a method such as Cleanup() that cleans up valuable
resources held by the instance, without waiting for the session to terminate.
ReleaseInstanceMode.AfterCall is typically applied on methods called after methods
configured with ReleaseInstanceMode.None.

Figure 4-3. Instance lifetime with methods configured with ReleaseInstanceMode.None

Instance Deactivation | 195

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Figure 4-5. Instance lifetime with methods configured with ReleaseInstanceMode.AfterCall

Configuring with ReleaseInstanceMode.BeforeAndAfterCall
As its name implies, configuring a method with ReleaseInstanceMode.BeforeAnd
AfterCall has the combined effect of using ReleaseInstanceMode.BeforeCall and
ReleaseInstanceMode.AfterCall. If the context has an instance before the call is made,
just before the call WCF deactivates that instance and creates a new instance to service
the call. It then deactivates the new instance after the call, as shown in Figure 4-6.

Figure 4-6. Instance lifetime with methods configured with ReleaseInstanceMode.BeforeAndAfterCall

ReleaseInstanceMode.BeforeAndAfterCall may look superfluous at first glance, but it
actually complements the other values. It is designed to be applied on methods called
after methods marked with ReleaseInstanceMode.BeforeCall or None, or before meth-
ods marked with ReleaseInstanceMode.AfterCall or None. Consider a situation where
the sessionful service wants to benefit from state-aware behavior (like a per-call service),
while holding onto resources only when needed to optimize resource allocation and
security lookup. If ReleaseInstanceMode.BeforeCall were the only available option,
there would be a period of time after the call when the resources would still be al-
located to the object, but would not be in use. A similar situation would occur if
ReleaseInstanceMode.AfterCall were the only available option, because there would
be a period of time before the call when the resources would be wasted.

196 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Explicit Deactivation
Instead of making a design-time decision on which methods to use to deactivate an
instance, you can make a runtime decision to deactivate the instance after the method
returns. You do that by calling the ReleaseServiceInstance() method on the instance
context. You obtain the instance context via the InstanceContext property of the op-
eration context:

public sealed class InstanceContext : ...
{
 public void ReleaseServiceInstance();
 //More members
}
public sealed class OperationContext : ...
{
 public InstanceContext InstanceContext
 {get;}
 //More members
}

Example 4-8 demonstrates using explicit deactivation to implement a custom instance
management technique that is dependent on the value of a counter.

Example 4-8. Using ReleaseServiceInstance()

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract,IDisposable
{
 int m_Counter = 0;

 public void MyMethod()
 {
 m_Counter++;

 if(m_Counter > 4)
 {
 OperationContext.Current.InstanceContext.ReleaseServiceInstance();
 }
 }
 public void Dispose()
 {...}
}

Calling ReleaseServiceInstance() has a similar effect to using ReleaseInstance
Mode.AfterCall. When used in a method decorated with ReleaseInstanceMode.Before
Call, it has a similar effect to using ReleaseInstanceMode.BeforeAndAfterCall.

Instance Deactivation | 197

Download from Library of Wow! eBook <www.wowebook.com>

Instance deactivation affects a singleton as well, although combining
the two makes little sense—by its very definition, it is permissible and
even desirable to never deactivate the singleton.

Using Instance Deactivation
Instance deactivation is an optimization technique and, like all optimization techni-
ques, you should avoid it in the general case. It adds complexity to the application and
makes the code less approachable and maintainable to all but the WCF expert. Con-
sider using instance deactivation only after failing to meet both your performance and
scalability goals and when careful examination and profiling has proven beyond a doubt
that using instance deactivation will improve the situation. If scalability and throughput
are your concerns, you should take advantage of the simplicity of the per-call instancing
mode and avoid instance deactivation. The main reason I share this technique with you
is that WCF itself makes extensive use of instance deactivation; thus, knowledge of it
is instrumental in demystifying other aspects of WCF, such as durable services and
transactions.

Durable Services
Consider the case of a long-running business process or workflow, comprised of mul-
tiple execution sequences, that lasts many days or even weeks.

I use the term workflow to denote a business workflow in general, not
one that is necessarily supported by or related to the product called
Windows Workflow.

Such long-running processes may involve clients (or even end users) that connect to
the application, perform a finite amount of work, transition the workflow to a new
state, and then disconnect for an indeterminate amount of time before connecting again
and continuing to execute the workflow. The clients may at any point also decide to
terminate the workflow and start a new one, or the backend service supporting the
workflow may end it. Obviously, there is little point in keeping proxies and services in
memory waiting for the clients to call. Such an approach will not robustly withstand
the test of time; at the very least, timeout issues will inevitably terminate the connection,
and there is no easy way to allow machines on both sides to reboot or log off. The need
to allow the clients and the services to have independent lifecycles is an important one
in a long-running business process, because without it there is no way to enable the
clients to connect, perform some work against the workflow, and disconnect. On the
host side, over time you may even want to redirect calls between machines.

198 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

The solution for long-running services is to avoid keeping the service state in memory,
and to handle each call on a new instance with its own temporary in-memory state. For
every operation, the service should retrieve its state from some durable storage (such
as a file or a database), perform the requested unit of work for that operation, and then
save the state back to the durable storage at the end of the call. Services that follow this
model are called durable services. Since the durable storage can be shared across
machines, using durable services also gives you the ability to route calls to different
machines at different times, be it for scalability, redundancy, or maintenance purposes.

Durable Services and Instance Management Modes
This approach to state management for durable services is very much like the one pro-
posed previously for per-call services, which proactively manage their state. Using per-
call services makes additional sense because there is no point in keeping the instance
around between calls if its state is coming from durable storage. The only distinguishing
aspect of a durable service compared with a classic per-call service is that the state
repository needs to be durable.

While in theory nothing prevents you from basing a durable service on a sessionful or
even a singleton service and having that service manage its state in and out of the durable
storage, in practice this would be counterproductive. In the case of a sessionful service,
you would have to keep the proxy open on the client side for long periods of time, thus
excluding clients that terminate their connections and then reconnect. In the case of a
singleton service, the very notion of a singleton suggests an infinite lifetime with clients
that come and go, so there is no need for durability. Consequently, the per-call instan-
tiation mode offers the best choice all around. Note that with durable per-call services,
because the primary concern is long-running workflows rather than scalability or re-
source management, supporting IDisposable is optional. It is also worth pointing out
that the presence of a transport session is optional for a durable service, since there is
no need to maintain a logical session between the client and the service. The transport
session will be a facet of the transport channel used and will not be used to dictate the
lifetime of the instance.

Initiating and terminating

When the long-running workflow starts, the service must first write its state to the
durable storage, so that subsequent operations will find the state in the storage. When
the workflow ends, the service must remove its state from the storage; otherwise, over
time, the storage will become bloated with instance states not required by anyone.

Instance IDs and Durable Storage
Since a new service instance is created for every operation, an instance must have a way
of looking up and loading its state from the durable storage. The client must therefore
provide some state identifier for the instance. That identifier is called the instance ID.

Durable Services | 199

Download from Library of Wow! eBook <www.wowebook.com>

To support clients that connect to the service only occasionally, and client applications
or even machines that recycle between calls, as long as the workflow is in progress the
client will typically save the instance ID in some durable storage on the client side (such
as a file) and provide that ID for every call. When the workflow ends, the client can
discard that ID. For an instance ID, it is important to select a type that is serializable
and equatable. Having a serializable ID is important because the service will need to
save the ID along with its state into the durable storage. Having an equatable ID is
required in order to allow the service to obtain the state from the storage. All the .NET
primitives (such as int, string, and Guid) qualify as instance IDs.

The durable storage is usually some kind of dictionary that pairs the instance ID with
the instance state. The service typically will use a single ID to represent all of its state,
although more complex relationships involving multiple keys and even hierarchies of
keys are possible. For simplicity’s sake, I will limit the discussion here to a single ID.
In addition, the service often uses a dedicated helper class or a structure to aggregate
all its member variables, and stores that type in and retrieves it from the durable storage.
Finally, access to the durable storage itself must be thread-safe and synchronized. This
is required because multiple instances may try to access and modify the store
concurrently.

To help you implement and support simple durable services, I wrote the File
InstanceStore<ID,T> class:

public interface IInstanceStore<ID,T> where ID : IEquatable<ID>
{
 void RemoveInstance(ID instanceId);
 bool ContainsInstance(ID instanceId);
 T this[ID instanceId]
 {get;set;}
}

public class FileInstanceStore<ID,T> : IInstanceStore<ID,T> where ID :
 IEquatable<ID>
{
 protected readonly string Filename;

 public FileInstanceStore(string fileName);

 //Rest of the implementation
}

FileInstanceStore<ID,T> is a general-purpose file-based instance store. FileInstanc
eStore<ID,T> takes two type parameters: the ID type parameter is constrained to be an
equatable type, and the T type parameter represents the instance state.
FileInstanceStore<ID,T> verifies at runtime in a static constructor that both T and ID
are serializable types.

FileInstanceStore<ID,T> provides a simple indexer allowing you to read and write the
instance state to the file. You can also remove an instance state from the file, and check
whether the file contains the instance state. These operations are defined in the

200 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

IInstanceStore<ID,T> interface. The implementation of FileInstanceStore<ID,T> en-
capsulates a dictionary, and on every access it serializes and deserializes the dictionary
to and from the file. When FileInstanceStore<ID,T> is used for the first time, if the file
is empty, FileInstanceStore<ID,T> will initialize it with an empty dictionary.

Explicit Instance IDs
The simplest way a client can provide the instance ID to the service is as an explicit
parameter for every operation designed to access the state. Example 4-9 demonstrates
such a client and service, along with the supporting type definitions.

Example 4-9. Passing explicit instance IDs

[DataContract]
class SomeKey : IEquatable<SomeKey>
{...}

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod(SomeKey instanceId);
}

//Helper type used by the service to capture its state
[Serializable]
struct MyState
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{
 public void MyMethod(SomeKey instanceId)
 {
 GetState(instanceId);
 DoWork();
 SaveState(instanceId);
 }
 void DoWork()
 {...}

 //Get and set MyState from durable storage
 void GetState(SomeKey instanceId)
 {...}

 void SaveState(SomeKey instanceId)
 {...}
}

To make Example 4-9 more concrete, consider Example 4-10, which supports a pocket
calculator with durable memory stored in a file.

Durable Services | 201

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-10. Calculator with explicit instance ID

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 double Add(double number1,double number2);

 /* More arithmetic operations */

 //Memory management operations

 [OperationContract]
 void MemoryStore(string instanceId,double number);

 [OperationContract]
 void MemoryClear(string instanceId);
}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyCalculator : ICalculator
{
 static IInstanceStore<string,double> Memory =
 new FileInstanceStore<string,double>(Settings.Default.MemoryFileName);

 public double Add(double number1,double number2)
 {
 return number1 + number2;
 }
 public void MemoryStore(string instanceId,double number)
 {
 lock(typeof(MyCalculator))
 {
 Memory[instanceId] = number;
 }
 }
 public void MemoryClear(string instanceId)
 {
 lock(typeof(MyCalculator))
 {
 Memory.RemoveInstance(instanceId);
 }
 }
 //Rest of the implementation
}

In Example 4-10, the filename is available in the properties of the project in the Set
tings class. All instances of the calculator use the same static memory, in the form of
a FileInstanceStore<string,double>. The calculator synchronizes access to the mem-
ory in every operation across all instances by locking on the service type. Clearing the
memory signals to the calculator the end of the workflow, so it purges its state from
the storage.

202 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Instance IDs in Headers
Instead of explicitly passing the instance ID, the client can provide the instance ID in
the message headers. Using message headers as a technique for passing out-of-band
parameters used for custom contexts is described in detail in Appendix B. In this case,
the client can use my HeaderClientBase<T,H> proxy class, and the service can read the
ID in the relevant operations using my GenericContext<H> helper class. The service can
use GenericContext<H> as-is or wrap it in a dedicated context.

The general pattern for this technique is shown in Example 4-11.

Example 4-11. Passing instance IDs in message headers

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
//Client-side
class MyContractClient : HeaderClientBase<IMyContract,SomeKey>,IMyContract
{
 public MyContractClient(SomeKey instanceId)
 {}
 public MyContractClient(SomeKey instanceId,string endpointName) :
 base(instanceId,endpointName)
 {}

 //More constructors

 public void MyMethod()
 {
 Channel.MyMethod();
 }
}
//Service-side
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{
 public void MyMethod()
 {
 SomeKey instanceId = GenericContext<SomeKey>.Current.Value;
 ...
 }
 //Rest same as Example 4-9
}

Again, to make Example 4-11 less abstract, Example 4-12 shows the calculator using
the message headers technique.

Durable Services | 203

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-12. Calculator with instance ID in headers

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 double Add(double number1,double number2);

 /* More arithmetic operations */

 //Memory management operations

 [OperationContract]
 void MemoryStore(double number);

 [OperationContract]
 void MemoryClear();
}
//Client-side
class MyCalculatorClient : HeaderClientBase<ICalculator,string>,ICalculator
{
 public MyCalculatorClient(string instanceId)
 {}

 public MyCalculatorClient(string instanceId,string endpointName) :
 base(instanceId,endpointName)
 {}

 //More constructors

 public double Add(double number1,double number2)
 {
 return Channel.Add(number1,number2);
 }

 public void MemoryStore(double number)
 {
 Channel.MemoryStore(number);
 }

 //Rest of the implementation
}
//Service-side
//If using GenericContext<T> is too raw, can encapsulate:
static class CalculatorContext
{
 public static string Id
 {
 get
 {
 return GenericContext<string>.Current.Value ?? String.Empty;
 }
 }
}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]

204 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

class MyCalculator : ICalculator
{
 static IInstanceStore<string,double> Memory =
 new FileInstanceStore<string,double>(Settings.Default.MemoryFileName);

 public double Add(double number1,double number2)
 {
 return number1 + number2;
 }
 public void MemoryStore(double number)
 {
 lock(typeof(MyCalculator))
 {
 Memory[CalculatorContext.Id] = number;
 }
 }
 public void MemoryClear()
 {
 lock(typeof(MyCalculator))
 {
 Memory.RemoveInstance(CalculatorContext.Id);
 }
 }
 //Rest of the implementation
}

Context Bindings for Instance IDs
WCF provides dedicated bindings for passing custom context parameters. These bind-
ings, called context bindings, are also explained in Appendix B. Clients can use my
ContextClientBase<T> class to pass the instance ID over the context binding protocol.
Since the context bindings require a key and a value for every contextual parameter,
the clients will need to provide both to the proxy. Using the same IMyContract as in
Example 4-11, such a proxy will look like this:

class MyContractClient : ContextClientBase<IMyContract>,IMyContract
{
 public MyContractClient(string key,string instanceId) : base(key,instanceId)
 {}
 public MyContractClient(string key,string instanceId,string endpointName) :
 base(key,instanceId,endpointName)
 {}

 //More constructors

 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

Note that the context protocol only supports strings for keys and values. Because the
value of the key must be known to the service in advance, the client might as well

Durable Services | 205

Download from Library of Wow! eBook <www.wowebook.com>

hardcode the same key in the proxy itself. The service can then retrieve the instance ID
using my ContextManager helper class (described in Appendix B). As with message
headers, the service can also encapsulate the interaction with ContextManager in a dedi-
cated context class.

Example 4-13 shows the general pattern for passing an instance ID over the context
bindings. Note that the proxy hardcodes the key for the instance ID, and that the same
ID is known to the service.

Example 4-13. Passing the instance ID over a context binding

//Client-side
class MyContractClient : ContextClientBase<IMyContract>,IMyContract
{
 public MyContractClient(string instanceId) : base("MyKey",instanceId)
 {}

 public MyContractClient(string instanceId,string endpointName) :
 base("MyKey",instanceId,endpointName)
 {}

 //More constructors

 public void MyMethod()
 {
 Channel.MyMethod();
 }
}
//Service-side
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{
 public void MyMethod()
 {
 string instanceId = ContextManager.GetContext("MyKey");

 GetState(instanceId);
 DoWork();
 SaveState(instanceId);
 }
 void DoWork()
 {...}

 //Get and set state from durable storage
 void GetState(string instanceId)
 {...}

 void SaveState(string instanceId)
 {...}
}

Example 4-14 shows the matching concrete calculator example.

206 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-14. Calculator with instance ID over context binding

//Client-side
class MyCalculatorClient : ContextClientBase<ICalculator>,ICalculator
{
 public MyCalculatorClient(string instanceId) : base("CalculatorId",instanceId)
 {}
 public MyCalculatorClient(string instanceId,string endpointName) :
 base("CalculatorId",instanceId,endpointName)
 {}

 //More constructors

 public double Add(double number1,double number2)
 {
 return Channel.Add(number1,number2);
 }
 public void MemoryStore(double number)
 {
 Channel.MemoryStore(number);
 }

 //Rest of the implementation
}
//Service-side
static class CalculatorContext
{
 public static string Id
 {
 get
 {
 return ContextManager.GetContext("CalculatorId") ?? String.Empty;
 }
 }
}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyCalculator : ICalculator
{
 //Same as Example 4-12
}

Using the standard ID for context binding

The need to hardcode and know in advance the key used for the instance ID is a liability.
The context bindings were designed with durable services in mind, so every context
binding always contains an autogenerated instance ID in the form of a Guid (in string
format), accessible via the reserved key of instanceId. The client and the service will
see the same value for the instance ID. The value is initialized once the first call on the
proxy returns, after the binding has had the chance to correlate it between the client
and the service. Like any other parameter passed over a context binding, the value of
the instance ID is immutable throughout the life of the proxy.

Durable Services | 207

Download from Library of Wow! eBook <www.wowebook.com>

To streamline interacting with the standard instance ID, I extended ContextManager
with ID management methods, properties, and proxy extension methods, as shown in
Example 4-15.

Example 4-15. Standard instance ID management with ContextManager

public static class ContextManager
{
 public const string InstanceIdKey = "instanceId";

 public static Guid InstanceId
 {
 get
 {
 string id = GetContext(InstanceIdKey) ?? Guid.Empty.ToString();
 return new Guid(id);
 }
 }
 public static Guid GetInstanceId(IClientChannel innerChannel)
 {
 try
 {
 string instanceId =
 innerChannel.GetProperty<IContextManager>().GetContext()[InstanceIdKey];
 return new Guid(instanceId);
 }
 catch(KeyNotFoundException)
 {
 return Guid.Empty;
 }
 }
 public static void SetInstanceId(IClientChannel innerChannel,Guid instanceId)
 {
 SetContext(innerChannel,InstanceIdKey,instanceId.ToString());
 }
 public static void SaveInstanceId(Guid instanceId,string fileName)
 {
 using(Stream stream =
 new FileStream(fileName,FileMode.OpenOrCreate,FileAccess.Write))
 {
 IFormatter formatter = new BinaryFormatter();
 formatter.Serialize(stream,instanceId);
 }
 }

 public static Guid LoadInstanceId(string fileName)
 {
 try
 {
 using(Stream stream = new FileStream(fileName,FileMode.Open,
 FileAccess.Read))
 {
 IFormatter formatter = new BinaryFormatter();
 return (Guid)formatter.Deserialize(stream);
 }

208 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

 }
 catch
 {
 return Guid.Empty;
 }
 }
 //More members
}

ContextManager offers the GetInstanceId() and SetInstanceId() methods to enable the
client to read an instance ID from and write it to the context. The service uses the
InstanceId read-only property to obtain the ID. ContextManager adds type safety by
treating the instance ID as a Guid and not as a string. It also adds error handling.

Finally, ContextManager provides the LoadInstanceId() and SaveInstanceId() methods
to read the instance ID from and write it to a file. These methods are handy on the client
side to store the ID between client application sessions against the service.

While the client can use ContextClientBase<T> (as in Example 4-13) to pass the standard
ID, it is better to tighten it and provide built-in support for the standard instance ID,
as shown in Example 4-16.

Example 4-16. Extending ContextClientBase<T> to support standard IDs

public abstract class ContextClientBase<T> : ClientBase<T> where T : class
{
 public Guid InstanceId
 {
 get
 {
 return ContextManager.GetInstanceId(InnerChannel);
 }
 }
 public ContextClientBase(Guid instanceId) :
 this(ContextManager.InstanceIdKey,instanceId.ToString())
 {}

 public ContextClientBase(Guid instanceId,string endpointName) :
 this(ContextManager.InstanceIdKey,instanceId.ToString(),endpointName)
 {}

 //More constructors
}

Example 4-17 shows the calculator client and service using the standard ID.

Example 4-17. Calculator using standard ID

//Client-side
class MyCalculatorClient : ContextClientBase<ICalculator>,ICalculator
{
 public MyCalculatorClient()
 {}
 public MyCalculatorClient(Guid instanceId) : base(instanceId)

Durable Services | 209

Download from Library of Wow! eBook <www.wowebook.com>

 {}
 public MyCalculatorClient(Guid instanceId,string endpointName) :
 base(instanceId,endpointName)
 {}

 //Rest same as Example 4-14
}
//Service-side
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyCalculator : ICalculator
{
 static IInstanceStore<Guid,double> Memory =
 new FileInstanceStore<Guid,double>(Settings.Default.MemoryFileName);

 public double Add(double number1,double number2)
 {
 return number1 + number2;
 }
 public void MemoryStore(double number)
 {
 lock(typeof(MyCalculator))
 {
 Memory[ContextManager.InstanceId] = number;
 }
 }
 public void MemoryClear()
 {
 lock(typeof(MyCalculator))
 {
 Memory.RemoveInstance(ContextManager.InstanceId);
 }
 }
 //Rest of the implementation
}

Automatic Durable Behavior
All the techniques shown so far for durable services require a nontrivial amount of work
by the service—in particular, providing a durable state storage and explicitly managing
the instance state against it in every operation. Given the repetitive nature of this work,
WCF can automate it for you, and serialize and deserialize the service state on every
operation from an indicated state store, using the standard instance ID.

When you let WCF manage your instance state, it follows these rules:

• If the client does not provide an ID, WCF will create a new service instance by
exercising its constructor. After the call, WCF will serialize the instance to the state
store.

• If the client provides an ID to the proxy and the store already contains state match-
ing that ID, WCF will not call the instance constructor. Instead, the call will be
serviced on a new instance deserialized out of the state store.

210 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

• When the client provides a valid ID, for every operation WCF will deserialize an
instance out of the store, call the operation, and serialize the new state modified
by the operation back to the store.

• If the client provides an ID not found in the state store, WCF will throw an
exception.

The durable service behavior attribute

To enable this automatic durable behavior, WCF provides the DurableService behavior
attribute, defined as:

public sealed class DurableServiceAttribute : Attribute,IServiceBehavior,...
{...}

You apply this attribute directly on the service class. Most importantly, the service class
must be marked either as serializable or as a data contract with the DataMember attribute
on all members requiring durable state management:

[Serializable]
[DurableService]
class MyService : IMyContract
{
 /* Serializable member variables only */

 public void MyMethod()
 {
 //Do work
 }
}

The instance can now manage its state in member variables, just as if it were a regular
instance, trusting WCF to manage those members for it. If the service is not marked as
serializable (or a data contract), the first call to it will fail once WCF tries to serialize it
to the store. Any service relying on automatic durable state management must be con-
figured as per-session, yet it will always behave as a per-call service (WCF uses context
deactivation after every call). In addition, the service must use one of the context bind-
ings with every endpoint to enable the standard instance ID, and the contract must
allow or require a transport session, but cannot disallow it. These two constraints are
verified at service load time.

The durable operation behavior attribute

A service can optionally use the DurableOperation behavior attribute to instruct WCF
to purge its state from the store at the end of the workflow:

[AttributeUsage(AttributeTargets.Method)]
public sealed class DurableOperationAttribute : Attribute,...
{
 public bool CanCreateInstance
 {get;set;}

Durable Services | 211

Download from Library of Wow! eBook <www.wowebook.com>

 public bool CompletesInstance
 {get;set;}
}

Setting the CompletesInstance property to true instructs WCF to remove the instance
ID from the store once the operation call returns. The default value of the
CompletesInstance property is false. In case the client does not provide an instance ID,
you can also prevent an operation from creating a new instance by setting the
CanCreateInstance property to false. Example 4-18 demonstrates the use of the
CompletesInstance property on the MemoryClear() operation of the calculator.

Example 4-18. Using CompletesInstance to remove the state

[Serializable]
[DurableService]
class MyCalculator : ICalculator
{
 double Memory
 {get;set;}

 public double Add(double number1,double number2)
 {
 return number1 + number2;
 }
 public void MemoryStore(double number)
 {
 Memory = number;
 }
 [DurableOperation(CompletesInstance = true)]
 public void MemoryClear()
 {
 Memory = 0;
 }
 //Rest of the implementation
}

The problem with relying on CompletesInstance is that the context ID is immutable.
This means that if the client tries to make additional calls on the proxy after calling an
operation for which CompletesInstance is set to true, all of those calls will fail, since
the store will no longer contain the instance ID. The client must be aware, therefore,
that it cannot continue to use the same proxy: if the client wants to make further calls
against the service, it must do so on a new proxy that does not have an instance ID yet,
and by doing so, the client will start a new workflow. One way of enforcing this is to
simply close the client program after completing the workflow (or create a new proxy
reference). Using the proxy definition of Example 4-17, Example 4-19 shows how to
manage the calculator proxy after clearing the memory while seamlessly continuing to
use the proxy.

212 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-19. Resetting the proxy after completing a workflow

class CalculatorProgram
{
 MyCalculatorClient m_Proxy;

 public CalculatorProgram()
 {
 Guid calculatorId =
 ContextManager.LoadInstanceId(Settings.Default.CalculatorIdFileName);

 m_Proxy = new MyCalculatorClient(calculatorId);
 }
 public void Add()
 {
 m_Proxy.Add(2,3);
 }
 public void MemoryClear()
 {
 m_Proxy.MemoryClear();

 ResetDurableSession(ref m_Proxy);
 }
 public void Close()
 {
 ContextManager.SaveInstanceId(m_Proxy.InstanceId,
 Settings.Default.CalculatorIdFileName);
 m_Proxy.Close();
 }
 void ResetDurableSession(ref MyCalculatorClient proxy)
 {
 ContextManager.SaveInstanceId(Guid.Empty,
 Settings.Default.CalculatorIdFileName);
 Binding binding = proxy.Endpoint.Binding;
 EndpointAddress address = proxy.Endpoint.Address;

 proxy.Close();

 proxy = new MyCalculatorClient(binding,address);
 }
}

Example 4-19 uses my ContextManager helper class to load an instance ID and save it
to a file. The constructor of the client program creates a new proxy using the ID found
in the file. As shown in Example 4-15, if the file does not contain an instance ID,
LoadInstanceId() returns Guid.Empty. My ContextClientBase<T> is designed to expect
an empty GUID for the context ID: if an empty GUID is provided, ContextClient
Base<T> constructs itself without an instance ID, thus ensuring a new workflow. After
clearing the memory of the calculator, the client calls the ResetDurableSession() helper
method. ResetDurableSession() first saves an empty GUID to the file, and then dupli-
cates the existing proxy. It copies the old proxy’s address and binding, closes the old
proxy, and sets the proxy reference to a new proxy constructed using the same address
and binding as the old one and with an implicit empty GUID for the instance ID.

Durable Services | 213

Download from Library of Wow! eBook <www.wowebook.com>

Programmatic instance management

WCF offers a simple helper class for durable services called DurableOperationContext:

public static class DurableOperationContext
{
 public static void AbortInstance();
 public static void CompleteInstance();
 public static Guid InstanceId
 {get;}
}

The CompleteInstance() method lets the service programmatically (instead of declara-
tively via the DurableOperation attribute) complete the instance and remove the state
from the store once the call returns. AbortInstance(), on the other hand, cancels any
changes made to the store during the call, as if the operation was never called. The
InstanceId property is similar to ContextManager.InstanceId.

Persistence providers

While the DurableService attribute instructs WCF when to serialize and deserialize the
instance, it does not say anything about where to do so, or, for that matter, provide any
information about the state storage. WCF actually uses a bridge pattern in the form of
a provider model, which lets you specify the state store separately from the attribute.
The attribute is thus decoupled from the store, allowing you to rely on the automatic
durable behavior for any compatible storage.

If a service is configured with the DurableService attribute, you must configure its
host with a persistence provider factory. The factory derives from the abstract class
PersistenceProviderFactory, and it creates a subclass of the abstract class
PersistenceProvider:

public abstract class PersistenceProviderFactory : CommunicationObject
{
 protected PersistenceProviderFactory();
 public abstract PersistenceProvider CreateProvider(Guid id);
}

public abstract class PersistenceProvider : CommunicationObject
{
 protected PersistenceProvider(Guid id);

 public Guid Id
 {get;}

 public abstract object Create(object instance,TimeSpan timeout);
 public abstract void Delete(object instance,TimeSpan timeout);
 public abstract object Load(TimeSpan timeout);
 public abstract object Update(object instance,TimeSpan timeout);

 //Additional members
}

214 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

The most common way of specifying the persistence provider factory is to include it in
the host config file as a service behavior, and to reference that behavior in the service
definition:

<behaviors>
 <serviceBehaviors>
 <behavior name = "DurableService">
 <persistenceProvider
 type = "...type...,...assembly ..."
 <!-- Provider-specific parameters -->
 />
 </behavior>
 </serviceBehaviors>
</behaviors>

Once the host is configured with the persistence provider factory, WCF uses the created
PersistenceProvider for every call to serialize and deserialize the instance. If no per-
sistence provider factory is specified, WCF aborts creating the service host.

Custom persistence providers

A nice way to demonstrate how to write a simple custom persistence provider is my
FilePersistenceProviderFactory, defined as:

public class FilePersistenceProviderFactory : PersistenceProviderFactory
{
 public FilePersistenceProviderFactory();
 public FilePersistenceProviderFactory(string fileName);
 public FilePersistenceProviderFactory(NameValueCollection parameters);
}
public class FilePersistenceProvider : PersistenceProvider
{
 public FilePersistenceProvider(Guid id,string fileName);
}

FilePersistenceProvider wraps my FileInstanceStore<ID,T> class. The constructor
of FilePersistenceProviderFactory requires you to specify the desired filename. If
no filename is specified, FilePersistenceProviderFactory defaults the filename to
Instances.bin.

The key for using a custom persistence factory in a config file is to define a constructor
that takes a NameValueCollection of parameters. These parameters are simple text-
formatted pairs of the keys and values specified in the provider factory behavior section
in the config file. Virtually any free-formed keys and values will work. For example,
here’s how to specify the filename:

<behaviors>
 <serviceBehaviors>
 <behavior name = "Durable">
 <persistenceProvider
 type = "FilePersistenceProviderFactory,ServiceModelEx"
 fileName = "MyService.bin"
 />

Durable Services | 215

Download from Library of Wow! eBook <www.wowebook.com>

 </behavior>
 </serviceBehaviors>
</behaviors>

The constructor can then use the parameters collection to access these parameters:

string fileName = parameters["fileName"];

The SQL Server persistence provider

WCF ships with a persistence provider, which stores the instance state in a dedicated
SQL Server table. After a default installation, the installation scripts for the database
are found in C:\Windows\Microsoft.NET\Framework\v4.0.30316\SQL\EN. Note that
with the WCF-provided SQL persistence provider you can only use SQL Server 2005,
SQL Server 2008, or later for state storage. The SQL provider comes in the form
of SqlPersistenceProviderFactory and SqlPersistenceProvider, found in the
System.WorkflowServices assembly under the System.ServiceModel.Persistence
namespace.

All you need to do is specify the SQL provider factory and the connection string name:

<connectionStrings>
 <add name = "DurableServices"
 connectionString = "..."
 providerName = "System.Data.SqlClient"
 />
</connectionStrings>

<behaviors>
 <serviceBehaviors>
 <behavior name = "Durable">
 <persistenceProvider
 type = "System.ServiceModel.Persistence.SqlPersistenceProviderFactory,
 System.WorkflowServices,Version=4.0.0.0,Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 connectionStringName = "DurableServices"
 />
 </behavior>
 </serviceBehaviors>
</behaviors>

You can also instruct WCF to serialize the instances as text (instead of the default binary
serialization), perhaps for diagnostics or analysis purposes:

<persistenceProvider
 type = "System.ServiceModel.Persistence.SqlPersistenceProviderFactory,
 System.WorkflowServices,Version=4.0.0.0,Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 connectionStringName = "DurableServices"
 serializeAsText = "true"
/>

216 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Throttling
While it is not a direct instance management technique, throttling enables you to re-
strain client connections and the load they place on your service. You need throttling
because software systems are not elastic, as shown in Figure 4-7.

Figure 4-7. The inelastic nature of all software systems

That is, you cannot keep increasing the load on the system and expect an infinite,
gradual decline in its performance, as if stretching chewing gum. Most systems will
initially handle the increase in load well, but then begin to yield and abruptly snap and
break. All software systems behave this way, for reasons that are beyond the scope of
this book and are related to queuing theory and the overhead inherent in managing
resources. This snapping, inelastic behavior is of particular concern when there are
spikes in load, as shown in Figure 4-8.

Figure 4-8. A spike in load may push the system beyond its design limit

Even if a system is handling a nominal load well (the horizontal line in Figure 4-8), a
spike may push it beyond its design limit, causing it to snap and resulting in the clients

Throttling | 217

Download from Library of Wow! eBook <www.wowebook.com>

experiencing a significant degradation in their level of service. Spikes can also pose a
challenge in terms of the rate at which the load grows, even if the absolute level reached
would not otherwise cause the system problems.

Throttling enables you to avoid maxing out your service and the underlying resources
it allocates and uses. When throttling is engaged, if the settings you configure are ex-
ceeded, WCF will automatically place the pending callers in a queue and serve them
out of the queue in order. If a client’s call timeout expires while its call is pending in
the queue, the client will get a TimeoutException. Throttling is inherently an unfair
technique, because those clients whose requests are buffered will see a degradation in
their level of service. However, in this case, it is better to be smart than just: if all the
callers in the spike are allowed in, that will be fair, but all callers will then see a signif-
icant drop in the level of service as the system snaps. Throttling therefore makes sense
when the area under the spike is relatively small compared with the area under the
entire load graph, implying that the probability of the same caller being queued suc-
cessively is very low. Every once in a while, in response to a spike, some callers will get
buffered, but the system as a whole will still function well. Throttling does not work
well when the load increases to a new level and remains constant at that level for a long
time (as shown in Figure 4-9). In that case, all it does is defer the problems a bit, even-
tually causing all callers to time out. Such a system should be designed from the ground
up to handle the higher level of load.

Figure 4-9. Inadequate justification for throttling

Throttling is done per service type; that is, it affects all instances of the service and all
its endpoints. This is done by associating the throttle with every channel dispatcher the
service uses.

WCF lets you control some or all of the following service consumption parameters:

Maximum number of concurrent sessions
Indicates the overall number of outstanding clients that can have a transport ses-
sion with the service. In plain terms, this represents the maximum overall number

218 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

of outstanding clients using TCP, IPC, or either of the WS bindings (with reliability,
security, or both). Because the connectionless nature of a basic HTTP connection
implies a very short transport session that exists only for the duration of the call,
this number usually has no effect on clients using the basic binding or a WS binding
without a transport session; such clients are instead limited by the maximum al-
lowed number of concurrent calls. The default value is 100 times the processor (or
cores) count.

Maximum number of concurrent calls
Limits the total number of calls that can currently be in progress across all service
instances. This number should usually be kept at 1 to 3 percent of the maximum
number of concurrent sessions. The default value is 16 times the processor (or
cores) count.

Maximum number of concurrent instances
Controls the total number of concurrently alive contexts. Unless you set this value
explicitly, it will implicitly equate to the sum of the maximum concurrent calls and
maximum of the concurrent sessions (116 times the processor count). Once set, it
will retain its value regardless of the other two properties. How instances map to
contexts is a product of the instance context management mode, as well as context
and instance deactivation. With a per-session service, the maximum number of
instances is both the total number of concurrently active instances and the total
number of concurrent sessions. When instance deactivation is employed, there
may be far fewer instances than contexts, and yet clients will be blocked if the
number of contexts has reached the maximum number of concurrent instances.
With a per-call service, the number of instances is actually the same as the number
of concurrent calls. Consequently, the maximum number of instances with a per-
call service is the lesser of the configured maximum concurrent instances and
maximum concurrent calls. The value of this parameter is ignored with a singleton
service, since it can only have a single instance anyway.

Throttling is an aspect of hosting and deployment. When you design a
service, you should make no assumptions about throttling
configuration—always assume your service will bear the full brunt of
the client’s load. This is why, although it is fairly easy to write a throttling
behavior attribute, WCF does not offer one.

Configuring Throttling
Administrators typically configure throttling in the config file. This enables you to
throttle the same service code differently over time or across deployment sites. The host
can also programmatically configure throttling based on some runtime decisions.

Throttling | 219

Download from Library of Wow! eBook <www.wowebook.com>

Administrative throttling

Example 4-20 shows how to configure throttling in the host config file. Using the
behaviorConfiguration tag, you add to your service a custom behavior that sets throt-
tled values.

Example 4-20. Administrative throttling

<system.serviceModel>
 <services>
 <service name = "MyService" behaviorConfiguration = "ThrottledBehavior">
 ...
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name = "ThrottledBehavior">
 <serviceThrottling
 maxConcurrentCalls = "500"
 maxConcurrentSessions = "10000"
 maxConcurrentInstances = "100"
 />
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

Programmatic throttling

The host process can programmatically throttle the service based on some runtime
parameters. You can only configure the throttle programmatically before the host is
opened. Although the host can override the throttling behavior found in the config file
by removing it and adding its own, you typically should provide a programmatic throt-
tling behavior only when there is no throttling behavior in the config file.

The ServiceHostBase class offers the Description property of the type
ServiceDescription:

public abstract class ServiceHostBase : ...
{
 public ServiceDescription Description
 {get;}
 //More members
}

The service description, as its name implies, is a description of the service, with all its
aspects and behaviors. ServiceDescription contains a property called Behaviors of the
type KeyedByTypeCollection<T>, with IServiceBehavior as the generic parameter.

Example 4-21 shows how to set the throttled behavior programmatically.

220 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-21. Programmatic throttling

ServiceHost host = new ServiceHost(typeof(MyService));

ServiceThrottlingBehavior throttle;
throttle = host.Description.Behaviors.Find<ServiceThrottlingBehavior>();
if(throttle == null)
{
 throttle = new ServiceThrottlingBehavior();
 throttle.MaxConcurrentCalls = 500;
 throttle.MaxConcurrentSessions = 10000;
 throttle.MaxConcurrentInstances = 100;
 host.Description.Behaviors.Add(throttle);
}

host.Open();

First, the hosting code verifies that no service throttling behavior was provided in
the config file. This is done by calling the Find<T>() method of
KeyedByTypeCollection<T>, using ServiceThrottlingBehavior as the type parameter:

public class ServiceThrottlingBehavior : IServiceBehavior
{
 public int MaxConcurrentCalls
 {get;set;}
 public int MaxConcurrentSessions
 {get;set;}
 public int MaxConcurrentInstances
 {get;set;}
 //More members
}

If the returned throttle is null, then the hosting code creates a new ServiceThrottling
Behavior, sets its values, and adds it to the behaviors in the service description.

Streamlining with ServiceHost<T>

Using C# 3.0 extensions, you can extend ServiceHost (or any subclass of it, such as
ServiceHost<T>) to automate the code in Example 4-21, as shown in Example 4-22.

Example 4-22. Extending ServiceHost to handle throttling

public static class ServiceThrottleHelper
{
 public static void SetThrottle(this ServiceHost host,
 int maxCalls,int maxSessions,int maxInstances)
 {
 ServiceThrottlingBehavior throttle = new ServiceThrottlingBehavior();
 throttle.MaxConcurrentCalls = maxCalls;
 throttle.MaxConcurrentSessions = maxSessions;
 throttle.MaxConcurrentInstances = maxInstances;
 host.SetThrottle(throttle);
 }

Throttling | 221

Download from Library of Wow! eBook <www.wowebook.com>

 public static void SetThrottle(this ServiceHost host,
 ServiceThrottlingBehavior serviceThrottle,
 bool overrideConfig)
 {
 if(host.State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Host is already opened");
 }
 ServiceThrottlingBehavior throttle =
 host.Description.Behaviors.Find<ServiceThrottlingBehavior>();
 if(throttle == null)
 {
 host.Description.Behaviors.Add(serviceThrottle);
 return;
 }
 if(overrideConfig == false)
 {
 return;
 }
 host.Description.Behaviors.Remove(throttle);
 host.Description.Behaviors.Add(serviceThrottle);
 }
 public static void SetThrottle(this ServiceHost host,
 ServiceThrottlingBehavior serviceThrottle)
 {
 host.SetThrottle(serviceThrottle,false);
 }
}

ServiceThrottleHelper offers the SetThrottle() method, which accepts the throttle to
use, and a Boolean flag indicating whether or not to override the configured values, if
present. The default value (using an overloaded version of SetThrottle()) is false.
SetThrottle() verifies that the host hasn’t been opened yet using the State property of
the CommunicationObject base class. If it is required to override the configured throttle,
SetThrottle() removes it from the description. The rest of Example 4-22 is similar to
Example 4-21. Here is how to use ServiceHost<T> to set a throttle programmatically:

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.SetThrottle(12,34,56);
host.Open();

The InProcFactory<T> class presented in Chapter 1 was similarly exten-
ded to streamline throttling.

Reading throttle values

Service developers can read the throttle values at runtime, for diagnostic and analytical
purposes. For a service instance to access its throttle properties from its dispatcher at
runtime, it must first obtain a reference to the host from the operation context.

222 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

The host base class ServiceHostBase offers the read-only ChannelDispatchers property:

public abstract class ServiceHostBase : CommunicationObject,...
{
 public ChannelDispatcherCollection ChannelDispatchers
 {get;}
 //More members
}

ChannelDispatchers is a strongly typed collection of ChannelDispatcherBase objects:

public class ChannelDispatcherCollection :
 SynchronizedCollection<ChannelDispatcherBase>
{...}

Each item in the collection is of the type ChannelDispatcher. ChannelDispatcher offers
the property ServiceThrottle:

public class ChannelDispatcher : ChannelDispatcherBase
{
 public ServiceThrottle ServiceThrottle
 {get;set;}
 //More members
}
public sealed class ServiceThrottle
{
 public int MaxConcurrentCalls
 {get;set;}
 public int MaxConcurrentSessions
 {get;set;}
 public int MaxConcurrentInstances
 {get;set;}
}

ServiceThrottle contains the configured throttle values:

class MyService : ...
{
 public void MyMethod() //Contract operation
 {
 ChannelDispatcher dispatcher = OperationContext.Current.
 Host.ChannelDispatchers[0] as ChannelDispatcher;

 ServiceThrottle serviceThrottle = dispatcher.ServiceThrottle;

 Trace.WriteLine("Max Calls = " + serviceThrottle.MaxConcurrentCalls);
 Trace.WriteLine("Max Sessions = " + serviceThrottle.MaxConcurrentSessions);
 Trace.WriteLine("Max Instances = " + serviceThrottle.MaxConcurrentInstances);
 }
}

Note that the service can only read the throttle values and has no way of affecting them.
If the service tries to set the throttle values, it will get an InvalidOperationException.

Throttling | 223

Download from Library of Wow! eBook <www.wowebook.com>

Again, you can streamline the throttle lookup via ServiceHost<T>. First, add a Service
Throttle property:

public class ServiceHost<T> : ServiceHost
{
 public ServiceThrottle Throttle
 {
 get
 {
 if(State == CommunicationState.Created)
 {
 throw new InvalidOperationException("Host is not opened");
 }

 ChannelDispatcher dispatcher = OperationContext.Current.
 Host.ChannelDispatchers[0] as ChannelDispatcher;
 return dispatcher.ServiceThrottle;
 }
 }
 //More members
}

Then, use ServiceHost<T> to host the service and use the ServiceThrottle property to
access the configured throttle:

//Hosting code
ServiceHost<MyService> host = new ServiceHost<MyService>();
host.Open();

class MyService : ...
{
 public void MyMethod()
 {
 ServiceHost<MyService> host = OperationContext.Current.
 Host as ServiceHost<MyService>;

 ServiceThrottle serviceThrottle = host.Throttle;
 ...
 }
}

You can only access the Throttle property of ServiceHost<T> after the
host is opened, because the dispatcher collection is initialized only after
that point.

224 | Chapter 4: Instance Management

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 5

Operations

The classic object- or component-oriented programming models offered only a single
way for clients to call a method: the client would issue a call, block while the call was
in progress, and continue executing once the method returned. Any other calling model
had to be handcrafted, often incurring productivity and quality penalties. While WCF
supports this classic invocation model, it also provides built-in support for additional
operation types: one-way calls for fire-and-forget operations, duplex callbacks for al-
lowing the service to call back to the client, and streaming to allow the client or the
service to handle large payloads. In general, the type of operation used is part of the
service contract and is an intrinsic part of the service design. The operation type may
even place some constraints on the allowed bindings. Consequently, clients and serv-
ices should be designed from the ground up with the operation type in mind, and you
cannot switch easily between the various operation types. This chapter is dedicated to
the various ways of invoking WCF operations and the related design guidelines.* Two
other ways of invoking operations—asynchronously and queued—are addressed in
subsequent chapters.

Request-Reply Operations
All the samples in the previous chapters included contracts whose operations were of
the type known as request-reply. As the name implies, in these operations, the client
issues a request in the form of a message and blocks until it gets the reply message. If
the service does not respond within a default timeout of one minute, the client will get
a TimeoutException. Request-reply is the default operation mode. Programming against
request-reply operations is simple enough and resembles programming using the classic
client/server model. The returned response message containing the results or returned
values is converted to normal method return values. In addition, the proxy will throw
an exception on the client side if there are any communication or service-side

* This chapter contains excerpts from my article “WCF Essentials: What You Need to Know About One-Way
Calls, Callbacks, and Events” (MSDN Magazine, October 2006).

225

Download from Library of Wow! eBook <www.wowebook.com>

exceptions. Apart from the NetPeerTcpBinding and the NetMsmqBinding, all bindings
support request-reply operations.

One-Way Operations
There are cases when an operation has no return value, and the client does not care
about the success or failure of the invocation. To support this sort of fire-and-forget
invocation, WCF offers one-way operations: once the client issues the call, WCF gen-
erates a request message, but no correlated reply message will ever return to the client.
As a result, one-way operations cannot return values, and any exceptions thrown on
the service side will not make their way to the client.

Ideally, when the client calls a one-way method, it should be blocked only for the
briefest moment required to dispatch the call. However, in reality, one-way calls do not
equate to asynchronous calls. When one-way calls reach the service, they may not be
dispatched all at once but may instead be buffered on the service side to be dispatched
one at a time, according to the service’s configured concurrency mode behavior.
(Chapter 8 discusses concurrency management and one-way calls in depth.) The num-
ber of messages the service can buffer (be they one-way or request-reply operations) is
a product of the configured channel and reliability mode. If the number of messages
exceeds the buffer’s capacity, the client will be blocked even if it has issued a one-way
call. However, once the call is deposited in the buffer, the client will be unblocked and
can continue executing while the service processes the operation in the background.

It’s also wrong to equate one-way calls with concurrent calls. If the client uses the same
proxy yet utilizes multiple threads to invoke one-way calls, the calls may or may not
execute concurrently on the service, and the exact nature of the interaction will be
determined by the service concurrency management mode and the transport session
(see Chapter 8 for more on this subject).

All of the WCF bindings support one-way operations.

Configuring One-Way Operations
The OperationContract attribute offers the Boolean IsOneWay property:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationContractAttribute : Attribute
{
 public bool IsOneWay
 {get;set;}
 //More members
}

IsOneWay defaults to false, which means a request-reply operation (hence the WCF
default). However, setting IsOneWay to true configures the method as a one-way
operation:

226 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}

The client doesn’t have to do anything special or different when invoking a one-way
operation. The value of the IsOneWay property is reflected in the service metadata. Note
that both the service contract definition and the definition imported by the client must
have the same value for IsOneWay.

Because there is no reply associated with a one-way operation, there is no point in
having any returned values or results. For example, here is an invalid definition of a
one-way operation that returns a value:

//Invalid contract
[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 int MyMethod();
}

In fact, WCF enforces this by verifying the method signature when loading the host or
opening the proxy and throwing an InvalidOperationException in the case of a
mismatch.

One-Way Operations and Reliability
The fact that the client does not care about the result of the invocation does not mean
that the client does not care whether the invocation took place at all. In general, you
should turn on reliability for your services, even for one-way calls. This will ensure
delivery of the requests to the service. However, the client may or may not care about
the invocation order of the one-way operations. This is one of the main reasons why
WCF allows you to separate enabling reliable delivery from enabling ordered delivery
and execution of messages. Obviously, both the client and the service have to agree
beforehand on these details, or the binding configuration will not match.

One-Way Operations and Sessionful Services
WCF will let you design a sessionful contract with one-way operations:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}

One-Way Operations | 227

Download from Library of Wow! eBook <www.wowebook.com>

With this configuration, if the client issues a one-way call and then closes the proxy
while the method executes, the client will still be blocked until the operation completes.

While they are technically possible, I believe that in general one-way operations in a
sessionful contract (and per-session instantiation) indicate bad design. The reason is
that having a session usually implies that the service manages state on behalf of the
client. Any exception that may happen will be likely to fault that state, and yet the client
may be unaware of it. In addition, typically the client (or the service) will choose a
sessionful interaction because the contract used requires some lock-step execution ad-
vancing through some state machine. One-way calls do not fit this model very well.
Consequently, I recommend that one-way operations should be applied on per-call or
singleton services only.

If you do employ one-way operations on a sessionful contract, strive to make only the
last operation terminating the session a one-way operation (and make sure it complies
with one-way rules, such as having a void return type). You can use demarcating op-
erations to enforce that:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IOrderManager
{
 [OperationContract]
 void SetCustomerId(int customerId);

 [OperationContract(IsInitiating = false)]
 void AddItem(int itemId);

 [OperationContract(IsInitiating = false)]
 decimal GetTotal();

 [OperationContract(IsOneWay = true,IsInitiating = false,
 IsTerminating = true)]
 void ProcessOrders();
}

One-Way Operations and Exceptions
Although one-way operations do not return values or exceptions from the service itself,
it’s wrong to perceive them as a one-way street or a “black hole” from which nothing
can come out. The client should still expect exceptions from a one-way call, and can
even deduce that the call failed on the service. When dispatching a one-way operation,
any error because of communication problems (such as a wrong address or the host
being unavailable) will throw an exception on the side of the client trying to invoke the
operation. Furthermore, depending on the service instance mode and the binding used,
the client may be affected by service-side exceptions. (The following discussion assumes
that the service does not throw a FaultException or a derived exception, as discussed
in Chapter 6.)

228 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

When there is no transport session (for example, when using the BasicHttpBinding or
the WSHttpBinding without reliable messaging and Message security), if an exception
takes place during the invocation of a one-way operation, the client is unaffected and
can continue to issue calls on the same proxy instance:

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MethodWithError();

 [OperationContract]
 void MethodWithoutError();
}
class MyService : IMyContract
{
 public void MethodWithError()
 {
 throw new Exception();
 }
 public void MethodWithoutError()
 {}
}
//Client side without transport session:
MyContractClient proxy = new MyContractClient();
proxy.MethodWithError();
proxy.MethodWithoutError();
proxy.Close();

However, in the presence of a transport session, a service-side exception—including
one thrown by a one-way operation—will fault the channel, and the client will not be
able to issue any new calls using the same proxy instance:

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MethodWithError();

 [OperationContract]
 void MethodWithoutError();
}

class MyService : IMyContract
{
 public void MethodWithError()
 {
 throw new Exception();
 }
 public void MethodWithoutError()
 {}
}
//Client side with transport session
MyContractClient proxy = new MyContractClient();
proxy.MethodWithError();

One-Way Operations | 229

Download from Library of Wow! eBook <www.wowebook.com>

try
{
 proxy.MethodWithoutError(); //Will throw because channel faulted
 proxy.Close();
}
catch
{}

The client will not even be able to safely close the proxy.

A one-way call is therefore not fire-and-forget in nature, since the client can discover
that something went wrong on the service during a one-way invocation. Chapter 8
shows you how to use one-way operations for true asynchronous fire-and-forget
operations.

Callback Operations
WCF supports allowing a service to call back to its clients. During a callback, in many
respects the tables are turned: the service is the client, and the client becomes the service
(see Figure 5-1). Callback operations can be used in a variety of scenarios and appli-
cations, but they are especially useful when it comes to events, or notifying the client(s)
that some event has happened on the service side.

Figure 5-1. A callback allows the service to call back to the client

Callbacks are also commonly referred to as duplex operations. There are two immediate
challenges to supporting duplex communication. First, how does the service know
where the callback endpoint is? Second, how does the client facilitate hosting the call-
back object?

Not all bindings support callback operations. Only bidirectional-capable bindings sup-
port callback operations. For example, because of its connectionless nature, HTTP
cannot be used for callbacks, and therefore you cannot use callbacks over the BasicHttp
Binding or the WSHttpBinding. The only two commonly used bindings that offer call-
backs are the NetTcpBinding and the NetNamedPipeBinding, because by their very nature,
the TCP and the IPC protocols support duplex communication.

The WSDualHttpBinding
To support callbacks over HTTP, WCF offers the WSDualHttpBinding, which actually
sets up two WS channels: one for the calls from the client to the service and one for the
calls from the service to the client. Duplex callbacks are nonstandard, as there is no
industry reference that states how the client endpoint address is passed to the service

230 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

or how the service publishes the callback contract in the first place. Duplex callbacks
(including those over the WS dual binding) are a pure Microsoft feature. However, the
WSDualHttpBinding is mostly unusable, since it is practically impossible to tunnel
through various communication barriers separating the service from the client and the
need to find a specific web-server machine makes this impractical. These connectivity
problems are addressed with the Windows Azure AppFabric Service Bus (the subject
of Chapter 11), which supports duplex callbacks across the cloud using the
NetTcpRelayBinding. The NetTcpRelayBinding by and large deprecates the WSDualHttp
Binding in the vast majority of callback cases.

The Callback Contract
Callback operations are part of the service contract, and it is up to the service contract
to define its own callback contract. A service contract can have at most one callback
contract. Once defined, the clients are required to support the callback and provide the
callback endpoint to the service in every call. To define a callback contract, the
ServiceContract attribute offers the CallbackContract property of the type Type:

[AttributeUsage(AttributeTargets.Interface|AttributeTargets.Class)]
public sealed class ServiceContractAttribute : Attribute
{
 public Type CallbackContract
 {get;set;}
 //More members
}

When you define a service contract with a callback contract, you need to provide the
ServiceContract attribute with the type of the callback contract and the definition of
the callback contract, as shown in Example 5-1.

Example 5-1. Defining and configuring a callback contract

interface ISomeCallbackContract
{
 [OperationContract]
 void OnCallback();
}

[ServiceContract(CallbackContract = typeof(ISomeCallbackContract))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();
}

Note that the callback contract need not be marked with the ServiceContract
attribute—the ServiceContract attribute is implied because it is defined as a callback
contract and will be included in the service metadata. Of course, you still need to mark
all the callback interface methods with the OperationContract attribute.

Callback Operations | 231

Download from Library of Wow! eBook <www.wowebook.com>

When the client imports the metadata of the callback contract, the imported callback
interface will not have the same name on the client as in the original service-side defi-
nition. The name on the client will be the name of the service contract interface, suffixed
with the word Callback. For example, a client that imports the definitions of Exam-
ple 5-1 will end up with these definitions instead:

interface IMyContractCallback
{
 [OperationContract]
 void OnCallback();
}
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();
}

For simplicity’s sake, I recommend using this naming convention also
on the service side (i.e., naming the callback contract with the service
contract interface name suffixed by Callback).

Client Callback Setup
It is up to the client to host the callback object and expose a callback endpoint. Recall
from Chapter 1 that the innermost execution scope of the service instance is the instance
context. The InstanceContext class provides a constructor that takes the service in-
stance to the host:

public sealed class InstanceContext : CommunicationObject,...
{
 public InstanceContext(object implementation);
 public object GetServiceInstance();
 //More members
}

All the client needs to do to host a callback object is instantiate the callback object and
construct a context around it:

class MyCallback : IMyContractCallback
{
 public void OnCallback()
 {...}
}
IMyContractCallback callback = new MyCallback();
InstanceContext context = new InstanceContext(callback);

It is also worth mentioning that although the callback methods are on the client side,
they are WCF operations in every respect and therefore have an operation call context,
accessible via OperationContext.Current.

232 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

Duplex proxies

Whenever a client is interacting with a service endpoint whose contract defines a call-
back contract, the client must use a proxy that will set up the bidirectional communi-
cation and pass the callback endpoint reference to the service. To that end, the proxy
the client uses must derive from the specialized proxy class DuplexClientBase<T>, shown
in Example 5-2.

Example 5-2. The DuplexClientBase<T> class

public interface IDuplexContextChannel : IContextChannel
{
 InstanceContext CallbackInstance
 {get;set;}
 //More members
}
public abstract class DuplexClientBase<T> : ClientBase<T> where T : class
{
 protected DuplexClientBase(InstanceContext callbackContext);
 protected DuplexClientBase(InstanceContext callbackContext,string endpointName);
 protected DuplexClientBase(InstanceContext callbackContext,Binding binding,
 EndpointAddress remoteAddress);
 protected DuplexClientBase(object callbackInstance);
 protected DuplexClientBase(object callbackInstance,string endpointName);
 protected DuplexClientBase(object callbackInstance,Binding binding,
 EndpointAddress remoteAddress);

 public IDuplexContextChannel InnerDuplexChannel
 {get;}
 //More members
}

The client needs to provide the constructor of DuplexClientBase<T> with the instance
context hosting the callback object (as well as the service endpoint information, as with
a regular proxy). The proxy will construct an endpoint around the callback context,
while inferring the details of the callback endpoint from the service endpoint configu-
ration: the callback endpoint contract is the one defined by the service contract callback
type. The callback endpoint will use the same binding (and transport) as the outgoing
call. For the address, WCF will use the client’s machine name. Simply passing the
instance context to the duplex proxy and using the proxy to call the service will expose
that client-side callback endpoint. To streamline the process, DuplexClientBase<T> also
offers constructors that accept the callback object directly and wrap it internally with
a context. If for any reason the client needs to access that context, DuplexClient
Base<T> additionally offers the InnerDuplexChannel property of the type
IDuplexContextChannel, which provides access to the context via the Callback
Instance property.

When you use Visual Studio 2010 to generate a proxy class targeting a service with a
callback contract, the tool will generate a class that derives from DuplexClient
Base<T>, as shown in Example 5-3.

Callback Operations | 233

Download from Library of Wow! eBook <www.wowebook.com>

Example 5-3. VS 2010-generated duplex proxy

class MyContractClient : DuplexClientBase<IMyContract>,IMyContract
{
 public MyContractClient(InstanceContext callbackContext) : base(callbackContext)
 {}
 public MyContractClient(InstanceContext callbackContext,string endpointName) :
 base(callbackContext,endpointName)
 {}
 public MyContractClient(InstanceContext callbackContext,Binding binding,
 EndpointAddress remoteAddress) :
 base(callbackContext,binding,remoteAddress)
 {}
 //More constructors

 public void DoSomething()
 {
 Channel.DoSomething();
 }
}

Using that derived proxy class, the client can construct a callback instance, host it in a
context, create a proxy, and call the service, thus passing the callback endpoint
reference:

class MyCallback : IMyContractCallback
{
 public void OnCallback()
 {...}
}
IMyContractCallback callback = new MyCallback();
InstanceContext context = new InstanceContext(callback);

MyContractClient proxy = new MyContractClient(context);
proxy.DoSomething();

Note that as long as the client is expecting callbacks, the client cannot close the proxy.
Doing so will close the callback endpoint and cause an error on the service side when
the service tries to call back.

It is often the case that the client itself implements the callback contract, in which case
the client will typically use a member variable for the proxy and close it when the client
is disposed of, as shown in Example 5-4.

Example 5-4. Client implementing the callback contract

class MyClient : IMyContractCallback,IDisposable
{
 MyContractClient m_Proxy;

 public void CallService()
 {
 InstanceContext context = new InstanceContext(this);
 m_Proxy = new MyContractClient(context);
 m_Proxy.DoSomething();

234 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

 }
 public void OnCallback()
 {...}

 public void Dispose()
 {
 m_Proxy.Close();
 }
}

The generated proxy does not take advantage of the streamlined constructors of Duplex
ClientBase<T> that accept the callback object directly, but you can rework the proxy
manually to add that support, as shown in Example 5-5.

Example 5-5. Using a reworked object-based proxy

class MyContractClient : DuplexClientBase<IMyContract>,IMyContract
{
 public MyContractClient(object callbackInstance) : base(callbackInstance)
 {}
 //More constructors
 public void DoSomething()
 {
 Channel.DoSomething();
 }
}
class MyClient : IMyContractCallback,IDisposable
{
 MyContractClient m_Proxy;

 public void CallService()
 {
 m_Proxy = new MyContractClient(this);
 m_Proxy.DoSomething();
 }
 public void OnCallback()
 {...}
 public void Dispose()
 {
 m_Proxy.Close();
 }
}

Service-Side Callback Invocation
The client-side callback endpoint reference is passed along with every call the client
makes to the service, and it is part of the incoming message. The OperationContext class
provides the service with easy access to the callback reference via the generic method
GetCallbackChannel<T>():

public sealed class OperationContext : ...
{
 public T GetCallbackChannel<T>();

Callback Operations | 235

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

Exactly what the service does with the callback reference and when it decides to use it
is completely at the discretion of the service. The service can extract the callback ref-
erence from the operation context and store it for later use, or it can use it during the
service operation to call back to the client. Example 5-6 demonstrates the first option.

Example 5-6. Storing the callback references for later use

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{
 static List<IMyContractCallback> m_Callbacks = new List<IMyContractCallback>();
 public void DoSomething()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();

 if(m_Callbacks.Contains(callback) == false)
 {
 m_Callbacks.Add(callback);
 }
 }
 public static void CallClients()
 {
 Action<IMyContractCallback> invoke = callback => callback.OnCallback();
 m_Callbacks.ForEach(invoke);
 }
}

The service uses a static, generic linked list to store references to interfaces of the type
IMyContractCallback. Because the service is not aware of which client is calling it and
whether or not the client has called it already, in every call the service checks to see
whether the list already contains the passed-in callback reference. If the list does not
contain the reference, the service adds the callback to the list.

The service class also offers the static method CallClients(), which any party on the
host side can use to call back to the clients:

MyService.CallClients();

Here, the invoking party is using some host-side thread for the callback invocation.
That thread is unrelated to any thread executing the incoming service call.

Example 5-6 (and similar examples in this chapter) does not synchronize
access to the callback list. Obviously, real application code will need to
do that. Concurrency management (and, in particular, synchronizing
access to shared resources) is discussed in Chapter 8.

236 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

Callback reentrancy

The service may also want to invoke the callback reference that’s passed in (or a saved
copy of it) during the execution of a contract operation. However, such invocations are
disallowed by default. The reason is the default service concurrency management. By
default, the service class is configured for single-threaded access: the service instance
context is associated with a lock, and only one thread at a time can own the lock and
access the service instance inside that context. Calling out to the client during an op-
eration call requires blocking the service thread and invoking the callback. The problem
is that processing the reply message from the client on the same channel once the
callback returns requires reentering the same context and negotiating ownership of the
same lock, which will result in a deadlock. Note that the service may still invoke call-
backs to other clients or call other services; it is the callback to its calling client that
will cause the deadlock.

To prevent such a deadlock, if the single-threaded service instance tries to call back to
its client, WCF will throw an InvalidOperationException. There are three possible sol-
utions. The first is to configure the service for multithreaded access. Callbacks to the
calling client will then be allowed because the service instance will not be associated
with a lock; however, this will increase the burden on the service developer, because
of the need to provide synchronization for the service. The second solution is to con-
figure the service for reentrancy. When configured for reentrancy, the service instance
context is still associated with a lock, and only single-threaded access is allowed. How-
ever, if the service is calling back to its client, WCF will silently release the lock first.
Chapter 8 is dedicated to the synchronization modes and their implications on the
programming model. For now, all you need to know is that you can set the concurrency
behavior to either multithreaded or reentrant using the ConcurrencyMode property of
the ServiceBehavior attribute:

public enum ConcurrencyMode
{
 Single, //Default
 Reentrant,
 Multiple
}

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : ...
{
 public ConcurrencyMode ConcurrencyMode
 {get;set;}
 //More members
}

Example 5-7 demonstrates a service configured for reentrancy. During the operation
execution, the service accesses the operation context, grabs the callback reference to
its calling client, and invokes it. Control will only return to the service once the callback
returns, and the service’s own thread will need to reacquire the lock.

Callback Operations | 237

Download from Library of Wow! eBook <www.wowebook.com>

Example 5-7. Configuring for reentrancy to allow callbacks

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();
}
interface IMyContractCallback
{
 [OperationContract]
 void OnCallback();
}
[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]
class MyService : IMyContract
{
 public void DoSomething()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();
 callback.OnCallback();
 }
}

The third solution that allows the service to safely call back to the calling client is to
configure the callback contract operations as one-way operations. Doing so will enable
the service to call back even when the concurrency mode is set to single-threaded,
because there will not be any reply message to contend for the lock. Example 5-8 dem-
onstrates this configuration. Note that the service defaults to single-threaded concur-
rency mode.

Example 5-8. One-way callbacks are allowed by default

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();
}
interface IMyContractCallback
{
 [OperationContract(IsOneWay = true)]
 void OnCallback();
}
class MyService : IMyContract
{
 public void DoSomething()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();
 callback.OnCallback();
 }
}

238 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

Callback Connection Management
The callback mechanism supplies nothing like a higher-level protocol for managing the
connection between the service and the callback endpoint. It is up to the developer to
come up with some application-level protocol or a consistent pattern for managing the
lifecycle of the connection. As mentioned previously, the service can only call back to
the client if the client-side channel is still open, which is typically achieved by not closing
the proxy. Keeping the proxy open will also prevent the callback object from being
garbage-collected. If the service maintains a reference on a callback endpoint and the
client-side proxy is closed or the client application itself is gone, when the service in-
vokes the callback it will get an ObjectDisposedException from the service channel. It
is therefore preferable for the client to inform the service when it no longer wishes to
receive callbacks or when the client application is shutting down. To that end, you can
add an explicit Disconnect() method to the service contract. Since every method call
carries the callback reference with it, in the Disconnect() method the service can remove
the callback reference from its internal store.

In addition, for symmetry’s sake, I recommend adding an explicit Connect() method.
Having a Connect() method will enable the client to connect or disconnect multiple
times, as well as provide a clearly delineated point in time as to when to expect a callback
(only after a call to Connect()). Example 5-9 demonstrates this technique. In both the
Connect() and Disconnect() methods, the service needs to obtain the callback reference.
In Connect(), the service verifies that the callback list does not already contain the
callback reference before adding it to the list (this makes multiple calls to Connect()
benign). In Disconnect(), the service verifies that the list contains the callback reference,
and it throws an exception otherwise.

Example 5-9. Explicit callback connection management

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();

 [OperationContract]
 void Connect();

 [OperationContract]
 void Disconnect();
}
interface IMyContractCallback
{
 [OperationContract]
 void OnCallback();
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{
 static List<IMyContractCallback> m_Callbacks = new List<IMyContractCallback>();

Callback Operations | 239

Download from Library of Wow! eBook <www.wowebook.com>

 public void Connect()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();
 if(m_Callbacks.Contains(callback) == false)
 {
 m_Callbacks.Add(callback);
 }
 }
 public void Disconnect()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();
 if(m_Callbacks.Contains(callback))
 {
 m_Callbacks.Remove(callback);
 }
 else
 {
 throw new InvalidOperationException("Cannot find callback");
 }
 }
 public static void CallClients()
 {
 Action<IMyContractCallback> invoke = callback => callback.OnCallback();
 m_Callbacks.ForEach(invoke);
 }
 public void DoSomething()
 {...}
}

Connection management and instance mode

A per-call service can use a callback reference during the operation call itself, or store
it in some kind of a global repository such as a static variable, as you have seen in the
examples so far. The per-call service must use some static variable to store the reference,
since any instance state the service may use to store the reference will be gone when
the operation returns. Using a Disconnect()-like method is therefore especially required
for per-call services, as without it, the shared store will become bloated over time with
dead callback references. A similar need exists with a singleton service. The singleton
lifetime has no end, so it will accumulate an unlimited number of callback references,
and as time goes by most of them will become stale because the callback clients will no
longer be running. Having a Disconnect() method will keep the singleton connected
only to the relevant alive clients.

Interestingly enough, a per-session service may get by without a Disconnect() method,
as long as it maintains the callback reference in some instance member variable. The
reason is that the service instance will automatically be disposed of when the session
ends (when the client closes the proxy or times out), and there is no danger in keeping
the reference throughout the session, as it is guaranteed to always be valid. However,

240 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

if the sessionful service stores its callback reference in some global repository for the
use of other host-side parties or across sessions, adding a Disconnect() method is re-
quired in order to remove the callback reference explicitly, because the callback refer-
ence is not available during the call to Dispose().

You may also want to add the Connect() and Disconnect() pair on a sessionful service
simply as a feature, because it enables the client to decide when to start or stop receiving
callbacks during the session.

The Duplex Proxy and Type Safety
The WCF-provided DuplexClientBase<T> is not strongly typed to the callback interface
used. The compiler will let you pass in any object, including an invalid callback inter-
face. The compiler will even let you use for T a service contract type that has no callback
contract defined at all. At runtime, you can successfully instantiate the proxy. The
incompatibility will be discovered only when you try to use the proxy, yielding an
InvalidOperationException. Much the same way, InstanceContext is object-based and
is not verified at compile time to actually have a valid callback contract instance. When
it’s passed as a constructor parameter to the duplex proxy, there is no compile-time
check to correlate the InstanceContext with the callback instance the duplex proxy
expects, and the error will be discovered only when you try to use the proxy. You can
use generics to compensate to some degree for these oversights and discover the error
at runtime, as soon as you declare the proxy.

First, define the type-safe, generic InstanceContext<T> class, shown in Example 5-10.

Example 5-10. The InstanceContext<T> class

public class InstanceContext<T>
{
 public InstanceContext Context
 {get;private set;}

 public InstanceContext(T callbackInstance)
 {
 Context = new InstanceContext(callbackInstance);
 }
 public void ReleaseServiceInstance()
 {
 Context.ReleaseServiceInstance();
 }
 public T ServiceInstance
 {
 get
 {
 return (T)Context.GetServiceInstance();
 }
 }
}

Callback Operations | 241

Download from Library of Wow! eBook <www.wowebook.com>

By using generics, you also provide type-safe access to the hosted callback object and
capture the desired callback type.

Next, define a new type-safe, generic subclass of DuplexClientBase<T>, as shown in
Example 5-11.

Example 5-11. The DuplexClientBase<T,C>class

//T is the service contract and C is the callback contract
public abstract class DuplexClientBase<T,C> : DuplexClientBase<T> where T : class
{
 protected DuplexClientBase(InstanceContext<C> context) : base(context.Context)
 {}
 protected DuplexClientBase(InstanceContext<C> context,string endpointName) :
 base(context.Context,endpointName)
 {}
 protected DuplexClientBase(InstanceContext<C> context,Binding binding,
 EndpointAddress remoteAddress) :
 base(context.Context,binding,remoteAddress)
 {}
 protected DuplexClientBase(C callback) : base(callback)
 {}
 protected DuplexClientBase(C callback,string endpointName) :
 base(callback,endpointName)
 {}
 protected DuplexClientBase(C callback,Binding binding,
 EndpointAddress remoteAddress) :
 base(callback,binding,remoteAddress)
 {}

 /* More constructors */

 static DuplexClientBase()
 {
 VerifyCallback();
 }
 internal static void VerifyCallback()
 {
 Type contractType = typeof(T);
 Type callbackType = typeof(C);

 object[] attributes = contractType.GetCustomAttributes(
 typeof(ServiceContractAttribute),false);
 if(attributes.Length == 0)
 {
 throw new InvalidOperationException("Type of " + contractType +
 " is not a service contract");
 }
 ServiceContractAttribute serviceContractAttribute;
 serviceContractAttribute = attributes[0] as ServiceContractAttribute;
 if(callbackType != serviceContractAttribute.CallbackContract)
 {
 throw new InvalidOperationException("Type of " + callbackType +
 " is not configured as callback contract for " + contractType);
 }

242 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

 }
}

The DuplexClientBase<T,C> class uses two type parameters: T is used for the service
contract type parameter and C is used for the callback contract type parameter. The
constructors of DuplexClientBase<T,C> can accept either a raw C instance or an instance
of InstanceContext<C> wrapping a C instance. These enable the compiler to ensure that
only compatible contexts are used. However, .NET does not support a way to constrain
a declarative relationship between T and C. The workaround is to perform a single
runtime check before any use of DuplexClientBase<T,C>, and abort the use of the wrong
type immediately, before any damage can be done. The trick is to place the runtime
verification in the C# static constructor. The static constructor of DuplexClient
Base<T,C> calls the static helper method VerifyCallback(). VerifyCallback() uses re-
flection to first verify that T is decorated with the ServiceContract attribute. Then it
verifies that it has a type set for the callback contract that is the type parameter C. If
not, an exception will be thrown in the static constructor, enabling you to discover the
error as soon as possible at runtime.

Performing the callback contract verification in the static constructor is
a technique applicable to any constraint that you cannot enforce at
compile time, yet you have some programmatic way of determining and
enforcing it at runtime.

Next, if you used Visual Studio 2010 to generate the proxy, you need to rework the
proxy to derive from the type-safe DuplexClientBase<T,C> class:

class MyContractClient : DuplexClientBase<IMyContract,IMyContractCallback>,
 IMyContract
{
 public MyContractClient(InstanceContext<IMyContractCallback> context) :
 base(context)
 {}
 public MyContractClient(IMyContractCallback callback) : base(callback)
 {}

 /* Rest of the constructors */

 public void DoSomething()
 {
 Channel.DoSomething();
 }
}

You can provide the reworked proxy either with a type-safe instance context, or with
the callback instance directly:

//Client code
class MyCallback : IMyContractCallback
{...}

Callback Operations | 243

Download from Library of Wow! eBook <www.wowebook.com>

IMyContractCallback callback = new MyCallback();
MyContractClient proxy1 = new MyContractClient(callback);

InstanceContext<IMyContractCallback> context =
 new InstanceContext<IMyContractCallback>(callback);
MyContractClient proxy2 = new MyContractClient(context);

Either way, the compiler will verify that the type parameters provided to the proxy
match the context type parameter or the callback instance, and the static constructor
will verify the relationship between the service contract and the callback instance upon
instantiation.

The Duplex Factory
Similar to the ChannelFactory<T> class, WCF also offers DuplexChannelFactory<T>,
which can be used for setting up duplex proxies programmatically:

public class DuplexChannelFactory<T> : ChannelFactory<T>
{
 public DuplexChannelFactory(object callback);
 public DuplexChannelFactory(object callback,string endpointName);
 public DuplexChannelFactory(InstanceContext context,string endpointName);

 public T CreateChannel(InstanceContext context);
 public static T CreateChannel(object callback,string endpointName);
 public static T CreateChannel(InstanceContext context,string endpointName);
 public static T CreateChannel(object callback,Binding binding,
 EndpointAddress endpointAddress);
 public static T CreateChannel(InstanceContext context,Binding binding,
 EndpointAddress endpointAddress);
 //More members
}

DuplexChannelFactory<T> is used just like its base class, ChannelFactory<T>, except its
constructors expect either a callback instance or a callback context. Note again the use
of object for the callback instance and the lack of type safety. Example 5-12 shows my
reworked DuplexChannelFactory<T,C> class, which provides both compile-time and
runtime type safety (similar to the fixed-up DuplexClientBase<T> class presented in
Example 5-11).

Example 5-12. The DuplexChannelFactory<T,C> class

public class DuplexChannelFactory<T,C> : DuplexChannelFactory<T> where T : class
{
 static DuplexChannelFactory()
 {
 DuplexClientBase<T,C>.VerifyCallback();
 }

 public static T CreateChannel(C callback,string endpointName)
 {
 return DuplexChannelFactory<T>.CreateChannel(callback,endpointName);
 }

244 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

 public static T CreateChannel(InstanceContext<C> context,string endpointName)
 {
 return DuplexChannelFactory<T>.CreateChannel(context.Context,endpointName);
 }
 public static T CreateChannel(C callback,Binding binding,
 EndpointAddress endpointAddress)
 {
 return DuplexChannelFactory<T>.CreateChannel(callback,binding,
 endpointAddress);
 }
 public static T CreateChannel(InstanceContext<C> context,Binding binding,
 EndpointAddress endpointAddress)
 {
 return DuplexChannelFactory<T>.CreateChannel(context,binding,
 endpointAddress);
 }
 public DuplexChannelFactory(C callback) : base(callback)
 {}
 public DuplexChannelFactory(C callback,string endpointName) :
 base(callback,endpointName)
 {}
 public DuplexChannelFactory(InstanceContext<C> context,string endpointName) :
 base(context.Context,endpointName)
 {}
 //More constructors
}

As an example of utilizing the duplex channel factory, consider Example 5-13, which
adds callback ability to the InProcFactory static helper class presented in Chapter 1.

Example 5-13. Adding duplex support to InProcFactory

public static class InProcFactory
{
 public static I CreateInstance<S,I,C>(C callback) where I : class
 where S : class,I
 {
 InstanceContext<C> context = new InstanceContext<C>(callback);
 return CreateInstance<S,I,C>(context);
 }
 public static I CreateInstance<S,I,C>(InstanceContext<C> context)
 where I : class
 where S : class,I
 {
 HostRecord hostRecord = GetHostRecord<S,I>();
 return DuplexChannelFactory<I,C>.CreateChannel(context,Binding,
 hostRecord.Address);
 }
 //More members
}
//Sample client
IMyContractCallback callback = new MyCallback();

IMyContract proxy = InProcFactory.CreateInstance<MyService,IMyContract,
 IMyContractCallback>(callback);

Callback Operations | 245

Download from Library of Wow! eBook <www.wowebook.com>

proxy.DoSomething();
InProcFactory.CloseProxy(proxy);

Callback Contract Hierarchy
An interesting constraint on the design of callback contracts is that a service contract
can designate a callback contract only if that contract is a sub-interface of all callback
contracts defined by the contract’s own base contracts. For example, here is an invalid
callback contract definition:

interface ICallbackContract1
{...}

interface ICallbackContract2
{...}

[ServiceContract(CallbackContract = typeof(ICallbackContract1))]
interface IMyBaseContract
{...}

//Invalid
[ServiceContract(CallbackContract = typeof(ICallbackContract2))]
interface IMySubContract : IMyBaseContract
{...}

IMySubContract cannot designate ICallbackContract2 as a callback contract because
ICallbackContract2 is not a sub-interface of ICallbackContract1, which IMyBase
Contract (the base of IMySubContract) defines as its own callback contract.

The reason for this constraint is obvious: if a client passes an endpoint reference to a
service implementation of IMySubContract, that callback reference must satisfy the call-
back type expected by IMyBaseContract. WCF verifies the callback contract hierarchy
at service load time and throws an InvalidOperationException in the case of a violation.

The straightforward way to satisfy the constraint is to reflect the service contract hier-
archy in the callback contract hierarchy:

interface ICallbackContract1
{...}

interface ICallbackContract2 : ICallbackContract1
{...}

[ServiceContract(CallbackContract = typeof(ICallbackContract1))]
interface IMyBaseContract
{...}

[ServiceContract(CallbackContract = typeof(ICallbackContract2))]
interface IMySubContract : IMyBaseContract
{...}

However, you can also use multiple interface inheritance by a single callback contract
and avoid mimicking the service contract hierarchy:

246 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

interface ICallbackContract1
{...}
interface ICallbackContract2
{...}
interface ICallbackContract3 : ICallbackContract2,ICallbackContract1
{...}

[ServiceContract(CallbackContract = typeof(ICallbackContract1))]
interface IMyBaseContract1
{...}
[ServiceContract(CallbackContract = typeof(ICallbackContract2))]
interface IMyBaseContract2
{...}
[ServiceContract(CallbackContract = typeof(ICallbackContract3))]
interface IMySubContract : IMyBaseContract1,IMyBaseContract2
{...}

Note, also, that a service can implement its own callback contract:

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{...}
[ServiceContract]
interface IMyContractCallback
{...}
class MyService : IMyContract,IMyContractCallback
{...}

The service can even store a reference to itself in some callback store (if it wishes to be
called back as if it were a client).

Events
The basic WCF callback mechanism does not indicate anything about the nature of
the interaction between the client and the service. They may be equal peers in a com-
mutative interaction, each calling and receiving calls from the other. However, the
canonical use for duplex callbacks is with events. Events allow the client or clients to
be notified about something that has occurred on the service side. An event may result
from a direct client call, or it may be the result of something the service monitors. The
service firing the event is called the publisher, and the client receiving the event is called
the subscriber. Events are a required feature in almost any type of application, as shown
in Figure 5-2.

While events in WCF are nothing more than callback operations, by their very nature
events usually imply a looser relationship between the publisher and the subscriber
than the typical relationship between a client and a service. When dealing with events,
the service typically publishes the same event to multiple subscribing clients. The pub-
lisher often does not care about the order of invocation of the subscribers, or any errors
the subscribers might have while processing the events. All the publisher knows is that
it should deliver the event to the subscribers. If they have a problem with the event,

Events | 247

Download from Library of Wow! eBook <www.wowebook.com>

there is nothing the service can do about it anyway. In addition, the service does not
care about returned results from the subscribers. Consequently, event-handling oper-
ations should have a void return type, should not have any outgoing parameters, and
should be marked as one-way. I also recommend factoring the events to a separate
callback contract, and not mixing events with regular callbacks in the same contract:

interface IMyEvents
{
 [OperationContract(IsOneWay = true)]
 void OnEvent1();

 [OperationContract(IsOneWay = true)]
 void OnEvent2(int number);

 [OperationContract(IsOneWay = true)]
 void OnEvent3(int number,string text);
}

On the subscriber side, even when using one-way callback operations, the implemen-
tation of the event-handling methods should be of short duration. There are two rea-
sons for this. First, if there is a large volume of events to publish, the publisher may get
blocked if a subscriber has maxed out its ability to queue up callbacks because it is still
processing the previous events. Blocking the publisher may prevent the event from
reaching other subscribers in a timely manner. Second, if there are a large number of
subscribers to the event, the accumulated processing time of each subscriber could
exceed the publisher’s timeout.

The publisher may add dedicated operations to its contract, allowing clients to explic-
itly subscribe to or unsubscribe from the events. If the publisher supports multiple event
types, it may want to allow the subscribers to choose exactly which event(s) they want
to subscribe to or unsubscribe from.

Figure 5-2. A publishing service can fire events at multiple subscribing clients

248 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

How the service internally goes about managing the list of subscribers and their pref-
erences is a completely service-side implementation detail that should not affect the
clients. The publisher can even use .NET delegates to manage the list of subscribers
and the publishing act itself. Example 5-14 demonstrates this technique, as well as the
other design considerations discussed so far.

Example 5-14. Events management using delegates

enum EventType
{
 Event1 = 1,
 Event2 = 2,
 Event3 = 4,
 AllEvents = Event1|Event2|Event3
}
[ServiceContract(CallbackContract = typeof(IMyEvents))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();

 [OperationContract]
 void Subscribe(EventType mask);

 [OperationContract]
 void Unsubscribe(EventType mask);
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyPublisher : IMyContract
{
 static Action m_Event1 = delegate{};
 static Action <int> m_Event2 = delegate{};
 static Action <int,string> m_Event3 = delegate{};

 public void Subscribe(EventType mask)
 {
 IMyEvents subscriber = OperationContext.Current.
 GetCallbackChannel<IMyEvents>();

 if((mask & EventType.Event1) == EventType.Event1)
 {
 m_Event1 += subscriber.OnEvent1;
 }
 if((mask & EventType.Event2) == EventType.Event2)
 {
 m_Event2 += subscriber.OnEvent2;
 }
 if((mask & EventType.Event3) == EventType.Event3)
 {
 m_Event3 += subscriber.OnEvent3;
 }
 }
 public void Unsubscribe(EventType mask)
 {

Events | 249

Download from Library of Wow! eBook <www.wowebook.com>

 //Similar to Subscribe() but uses -=
 }
 public static void FireEvent(EventType eventType)
 {
 switch(eventType)
 {
 case EventType.Event1:
 {
 m_Event1();
 return;
 }
 case EventType.Event2:
 {
 m_Event2(42);
 return;
 }
 case EventType.Event3:
 {
 m_Event3(42,"Hello");
 return;
 }
 default:
 {
 throw new InvalidOperationException("Unknown event type");
 }
 }
 }
 public void DoSomething()
 {...}
}

The service contract IMyContract defines the Subscribe() and Unsubscribe() methods.
These methods each take an enum of the type EventType, whose individual fields are
set to integer powers of 2. This enables the subscribing client to combine the values
into a mask indicating the types of events it wants to subscribe to or unsubscribe from.
For example, to subscribe to Event1 and Event3 but not Event2, the subscriber would
call Subscribe() like this:

class MySubscriber : IMyEvents
{
 void OnEvent1()
 {...}
 void OnEvent2(int number)
 {...}
 void OnEvent3(int number,string text)
 {...}
}
IMyEvents subscriber = new MySubscriber();
InstanceContext context = new InstanceContext(subscriber);
MyContractClient proxy = new MyContractClient(context);
proxy.Subscribe(EventType.Event1|EventType.Event3);

Internally, MyPublisher maintains three static delegates, each corresponding to an event
type.

250 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

Both the Subscribe() and Unsubscribe() methods check the supplied EventType value
and either add the subscriber’s callback to or remove it from the corresponding dele-
gate. To fire an event, MyPublisher offers the static FireEvent() method. FireEvent()
accepts the event to fire and invokes the corresponding delegate.

Again, the fact that the MyPublisher service uses delegates is purely an implementation
detail simplifying event lookup. The service could have used a linked list, although that
would require more complex code.

Appendix D presents a number of approaches for supporting a better
design of events, called the publish-subscribe pattern.

Streaming
By default, when the client and the service exchange messages, these messages are
buffered on the receiving end and delivered only once the entire message has been
received. This is true whether it is the client sending a message to the service or the
service returning a message to the client. As a result, when the client calls the service,
the service is invoked only after the client’s message has been received in its entirety;
likewise, the client is unblocked only once the returned message with the results of the
invocation has been received in its entirety.

For sufficiently small messages, this exchange pattern provides for a simple program-
ming model because the latency caused by receiving the message is usually negligible
compared with the message processing itself. However, when it comes to much larger
messages—such as ones involving multimedia content, large files, or batches of data—
blocking until the entire message has been received may be impractical. To handle such
cases, WCF enables the receiving side (be it the client or the service) to start processing
the data in the message while the message is still being received by the channel. This
type of processing is known as streaming transfer mode. With large payloads, streaming
provides improved throughput and responsiveness because neither the receiving nor
the sending side is blocked while the message is being sent or received.

I/O Streams
For message streaming, WCF requires the use of the .NET Stream class. In fact, the
contract operations used for streaming look just like conventional I/O methods. The
Stream class is the base class of all the I/O streams in .NET (such as the FileStream,
NetworkStream, and MemoryStream classes), allowing you to stream content from any of
these I/O sources. All you need to do is return or receive a Stream as an operation
parameter, as shown in Example 5-15.

Streaming | 251

Download from Library of Wow! eBook <www.wowebook.com>

Example 5-15. Streaming operations

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 Stream StreamReply1();

 [OperationContract]
 void StreamReply2(out Stream stream);

 [OperationContract]
 void StreamRequest(Stream stream);

 [OperationContract(IsOneWay = true)]
 void OneWayStream(Stream stream);
}

Note that you can only define as an operation parameter the abstract class Stream or a
specific serializable subclass such as MemoryStream. Subclasses such as FileStream are
not serializable; you will have to use the base Stream instead.

WCF lets services stream the reply, the request, or both the request and the reply.

Streaming and Binding
Only the TCP, IPC, and basic HTTP bindings support streaming. With all of these
bindings streaming is disabled by default, and the binding will buffer the message in
its entirety even when a Stream is used. You have to enable streaming by setting the
TransferMode property according to the desired streaming mode. For example, when
using the BasicHttpBinding:

public enum TransferMode
{
 Buffered, //Default
 Streamed,
 StreamedRequest,
 StreamedResponse
}
public class BasicHttpBinding : Binding,...
{
 public TransferMode TransferMode
 {get;set;}
 //More members
}

TransferMode.Streamed supports all streaming modes, and this is the only transfer mode
that can support all the operations in Example 5-15. However, if the contract contains
only a specific type of streaming, such as streamed reply:

[ServiceContract]
interface IMyContract
{

252 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

 //Stream reply
 [OperationContract]
 Stream GetStream1();

 [OperationContract]
 int MyMethod();
}

you can have a buffered request and streamed reply by selecting TransferMode.
StreamedResponse.

You will need to configure the binding on the client or service side (or both) per the
required stream mode:

<configuration>
 <system.serviceModel>
 <client>
 <endpoint
 binding = "basicHttpBinding"
 bindingConfiguration = "StreamedHTTP"
 ...
 />
 </client>
 <bindings>
 <basicHttpBinding>
 <binding name = "StreamedHTTP"
 transferMode = "Streamed"
 />
 </basicHttpBinding>
 </bindings>
 </system.serviceModel>
</configuration>

Streaming and Transport
It is important to realize that WCF streaming is merely a programming model nicety.
The underlying transport itself is not streamed, and the default maximum message size
is set to 64K. This may be a problem with the sort of data you are likely to use streaming
with, because streamed messages tend to be very large (hence the motivation for
streaming in the first place). If the default limit proves insufficient, you can increase the
maximum message size on the receiving side by setting the MaxReceivedMessageSize
property to the expected maximum message size:

public class BasicHttpBinding : Binding,...
{
 public long MaxReceivedMessageSize
 {get;set;}
 //More members
}

You can even use trial-and-error at runtime to find out what the streamed message size
is and set the binding accordingly.

Streaming | 253

Download from Library of Wow! eBook <www.wowebook.com>

Typically, though, you would place that piece of configuration in the config file and
avoid doing it programmatically, as message size tends to be deployment-specific:

<bindings>
 <basicHttpBinding>
 <binding name = "StreamedHTTP"
 transferMode = "Streamed"
 maxReceivedMessageSize = "120000"
 />
 </basicHttpBinding>
</bindings>

When you use streaming, you cannot use message-level transfer secur-
ity. This is the main reason why only the TCP, IPC, and basic bindings
(and their subclasses) support streaming: with these bindings, you typ-
ically do not (and, in the case of IPC, cannot) use message security.
When streaming with the TCP binding, you also cannot enable reliable
messaging. You’ll see more on security in Chapter 10.

Using streamed messages has a few additional implications. First, you need to syn-
chronize access to the streamed content; for example, by opening the file stream in a
read-only mode to allow other parties to access the file, or opening the stream in an
exclusive mode to prevent others from accessing it if so required. In addition, you
cannot use streaming when the contract is configured with SessionMode.Required.

254 | Chapter 5: Operations

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 6

Faults

Any service operation can, at any moment, encounter an unexpected error. The ques-
tion is how (if at all) that error should be reported back to the client. Concepts such as
exceptions and exception handling are technology-specific and should not transcend
the service boundary. In addition, attempts by clients to handle errors invariably lead
to increased coupling. Typically, error handling is a local implementation detail that
should not affect the client, partly because the client may not care about the details of
the errors (other than the fact that something went wrong), but mostly because in a
well-designed application, the service is encapsulated so that the client does not have
to do anything meaningful about the error anyway. A well-designed service should be
as autonomous as possible, and should not depend on its clients to handle and recover
errors. Anything beyond a blank error notification should in fact be part of the con-
tractual interaction between the client and the service. This chapter describes just how
the service and the client should handle these declared faults, and how you can extend
and improve on the basic mechanism.

Error Isolation and Decoupling
In traditional .NET programming, any unhandled exception (except ThreadAbort
Exception) immediately terminated the app domain (and thus, often the process) in
which it occurred. While this is a very conservative behavior, it does not provide for
proper fault isolation, which would enable the client to keep functioning even after the
object blew up. Much the same way, after any unhandled error on the client side, the
object would go down with the ship. Developers that did not like this had to provide
for process (or app domain) isolation between the client and the object, which greatly
complicated the programming model. That is not the WCF behavior, however. If a
service call on behalf of one client causes an exception, it must not be allowed to take
down the hosting process. Other clients accessing the service, or other services hosted
by the same process, should not be affected. As a result, when an unhandled exception
leaves the service scope, the dispatcher silently catches and handles it by serializing it
in the returned message to the client. When the returned message reaches the proxy,

255

Download from Library of Wow! eBook <www.wowebook.com>

the proxy throws an exception on the client side. This behavior provides every WCF
service with process-level isolation. The client and service can share a process, and yet
be completely isolated as far as errors. The only exceptions that will take down the host
process are critical errors that blow up .NET itself, such as stack overflows. Fault iso-
lation, however, is only one of three key error-decoupling features of WCF. The second
is error masking, and the third is faulting the channel.

Error Masking
The client can actually encounter three types of errors when trying to invoke a service.
The first type of error is a communication error, which may occur because of network
unavailability, an incorrect address, the host process not running, and so on. Commu-
nication exceptions are manifested on the client side by a CommunicationException or a
CommunicationException-derived class such as EndpointNotFoundException.

The second type of error the client might encounter is related to the state of the proxy
and the channels. There are many such possible exceptions. For example, these errors
may occur when the client is trying to access an already closed proxy, resulting in an
ObjectDisposedException; when there is a mismatch between the contract and the
binding security protection level, resulting in an InvalidOperationException; when the
client’s credentials are denied by the service, resulting in a SecurityNegotiation
Exception in case of authentication failure, or SecurityAccessDeniedException in case
of authorization failure; or when the transport session times out, resulting in a
TimeoutException.

The third type of error is an error that originates in the execution of the service call
itself, as a result of either the service throwing an exception, or the service calling an-
other object or resource and having that internal call throw an exception.

As stated at the beginning of this chapter, it is a common illusion that clients care about
errors or have anything meaningful to do when they occur. Any attempt to bake such
capabilities into the client creates an inordinate degree of coupling between the client
and the object, raising serious design questions. How could the client possibly know
more about the error than the service, unless it is tightly coupled to it? What if the error
originated several layers below the service—should the client be coupled to those low-
level layers? Should the client try the call again? How often and how frequently? Should
the client inform the user of the error? Is there a user?

All that the client cares about is that something went wrong. The best practice for most
clients is to simply let the exception go up the call chain. The topmost client typically
will catch the exception, not in order to handle it, but simply to prevent the application
from shutting down abruptly. A well-designed client should never care about the actual
error; WCF enforces this. In the interest of encapsulation and decoupling, by default
all exceptions thrown on the service side always reach the client as FaultExceptions:

256 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

[...]
public class FaultException : CommunicationException
{...}

By having all service exceptions be indistinguishable from one another, WCF decouples
the client from the service. The less the client knows about what happened on the
service side, the more decoupled the interaction will be.

Channel Faulting
In traditional .NET programming, the client can catch the exception and keep calling
the object. Consider this definition of a class and an interface:

interface IMyContract
{
 void MyMethod();
}
class MyClass : IMyContract
{...}

If the client snuffs out the exception thrown by the object, it can call it again:

IMyContract obj = new MyClass();
try
{
 obj.MyMethod();
}
catch
{}
obj.MyMethod();

This is a fundamental flaw of .NET as a platform. Exceptions, by their very nature, are
for exceptional cases. Here, something totally unexpected and horrible has happened.
How could the client possibly pretend otherwise? The object may be hopelessly broken,
and yet the client keeps using it. In classic .NET, developers that did not approve of
this behavior had to maintain a flag in each object, set the flag before throwing an
exception (or after catching any downstream exceptions), and check the flag inside any
public method, refusing to use the object if it was called after an exception had been
thrown. This, of course, is cumbersome and tedious. WCF automates this best practice.
If the service has a transport session, any unhandled exceptions (save those derived
from FaultException, as described next) fault the channel (the proxy’s state is changed
to CommunicationState.Faulted), thus preventing the client from using the proxy, and
the object behind it, after an exception. In other words, for this service and proxy
definition:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

Error Isolation and Decoupling | 257

Download from Library of Wow! eBook <www.wowebook.com>

class MyClass : IMyContract
{...}

class MyContractClient : ClientBase<IMyContract>,IMyContract
{...}

the following client code results in a CommunicationObjectFaultedException:

IMyContract proxy = new MyContractClient();
try
{
 proxy.MyMethod();
}
catch
{}

//Throws CommunicationObjectFaultedException
proxy.MyMethod();

The obvious conclusion is that the client should never try to use a WCF proxy after an
exception. If there was a transport session, the client cannot even close the proxy.

If there is no transport-level session, the client can technically keep using
the proxy after an exception, except again, it should not.

The only thing a client might safely do after an exception is to abort the proxy, perhaps
to trigger tracing, or to raise events for state changes in the proxy, or to prevent others
from using the proxy (even if there was no transport session):

MyContractClient proxy = new MyContractClient();
try
{
 proxy.MyMethod();
}
catch
{
 proxy.Abort();
}

The problem now is that you have to repeat this over and over for every method invo-
cation. It is better to encapsulate this in the proxy itself:

class MyContractClient : ClientBase<IMyContract>,IMyContract
{
 public void MyMethod()
 {
 try
 {
 Channel.MyMethod();
 }
 catch

258 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

 {
 Abort();
 throw;
 }
 }
}

Closing the proxy and the using statement

I recommend against relying on the using statement to close the proxy. The reason is
that in the presence of a transport session, any service-side exception will fault the
channel. Trying to dispose of the proxy when the channel is faulted throws a
CommunicationObjectFaultedException, so code after the using statement will never get
called, even if you catch all exceptions inside the using statement:

using(MyContractClient proxy = new MyContractClient())
{
 try
 {
 proxy.MyMethod();
 }
 catch
 {}
}
Trace.WriteLine("This trace may never get called");

This reduces the readability of the code and may introduce defects, since the code will
behave differently than most developers will expect. The only remedy is to encase the
using statement itself in a try/catch statement:

try
{
 using(MyContractClient proxy = new MyContractClient())
 {
 try
 {
 proxy.MyMethod();
 }
 catch
 {}
 }
}
catch
{}
Trace.WriteLine("This trace always gets called");

It is therefore far better to call Close(). In the case of an exception, the exception will
skip over the call to Close():

MyContractClient proxy = new MyContractClient();
proxy.MyMethod();
proxy.Close();

Error Isolation and Decoupling | 259

Download from Library of Wow! eBook <www.wowebook.com>

You can, of course, catch the exception, but now the code is readable:

MyContractClient proxy = new MyContractClient();

try
{
 proxy.MyMethod();
 proxy.Close();
}
catch
{
 proxy.Abort();
}
Trace.WriteLine("This trace always gets called");

Exceptions and instance management

When the service is configured as per-call or as sessionful (which mandates the use of
a transport session), the client can never access the same instance after an exception
occurs. With a per-call service this is, of course, always true, but with a sessionful service
this is the result of faulting the channel and terminating the transport session. The one
exception to the rule here is a singleton. When the client calls a singleton service and
encounters an exception, the singleton instance is not terminated and continues run-
ning. If there was no transport session (or if the exception was a FaultException-derived
class, as described next), the client can keep using the proxy to connect to the singleton
object. Even if the channel is faulted, the client can create a new proxy instance and
reconnect to the singleton.

In the case of a durable service, the DurableService attribute offers the Unknown
ExceptionAction property, defined as:

public enum UnknownExceptionAction
{
 TerminateInstance,
 AbortInstance
}

[AttributeUsage(AttributeTargets.Class)]
public sealed class DurableServiceAttribute : ...
{
 public UnknownExceptionAction UnknownExceptionAction
 {get;set;}
 //More members
}

UnknownExceptionAction defaults to UnknownExceptionAction.TerminateInstance,
meaning that any unhandled exception will not only fault the channel but also remove
the instance state from the store, thus terminating the workflow. This behavior is anal-
ogous to simply faulting the channel with a regular service, preventing future use of the
object. The value UnknownExceptionAction.AbortInstance, on the other hand, termi-
nates the channel to the client but keeps the state in the store. While any changes made

260 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

to the instance are not persisted, this value is analogous to not faulting the channel in
the case of a regular service.

Fault Propagation
While the default error-masking policy of WCF is a best practice, there are times when
you should refrain from relying on it. This is typically the case when there is an existing
application (or communication pattern) in place, and the service is required to throw
particular exceptions as it processes inputs, reaches certain states, or encounters errors.
The client is required to respond to these exceptions in a prescribed way. Obviously,
controlling the flow of the application using exceptions is hardly a good idea, as it leads
to nonstructured programming and couples the client to the service. And yet, the un-
derlying requirements remain: the service is required to report specific errors to the
client, and the default masking of the errors by WCF precludes that. Another funda-
mental problem pertaining to propagating the error to the client is that exceptions are
technology-specific, and as such should not be shared across the service boundary. For
seamless interoperability, you need a way to map technology-specific exceptions to
some neutral error information. This representation is called a SOAP fault. SOAP faults
are based on an industry standard that is independent of any technology-specific
exceptions, such as CLR, Java, or C++ exceptions. To return a SOAP fault (or just a
fault, for short), the service cannot throw a raw CLR exception. Instead, the service
could throw an instance of the FaultException<T> class, defined in Example 6-1.

Example 6-1. The FaultException<T> class

[Serializable]
[...]
public class FaultException : CommunicationException
{
 public FaultException();
 public FaultException(string reason);
 public FaultException(FaultReason reason);
 public virtual MessageFault CreateMessageFault();
 //More members
}

[Serializable]
public class FaultException<T> : FaultException
{
 public FaultException(T detail);
 public FaultException(T detail,string reason);
 public FaultException(T detail,FaultReason reason);
 //More members
}

FaultException<T> is a specialization of FaultException, so any client that programs
against FaultException will be able to handle FaultException<T> as well. Deriving

Fault Propagation | 261

Download from Library of Wow! eBook <www.wowebook.com>

FaultException from CommunicationException also enables clients to handle all com-
munication and service-side exceptions in a single catch.

The type parameter T for FaultException<T> conveys the error details. The detailing
type can be any type, and doesn’t necessarily have to be an Exception-derived class.
The only constraint is that the type can be serialized by WCF.

Example 6-2 demonstrates a simple calculator service that throws a FaultExcep
tion<DivideByZeroException> in its implementation of the Divide() operation when
asked to divide by zero.

Example 6-2. Throwing a FaultException<T>

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 double Divide(double number1,double number2);
 //More methods
}

class Calculator : ICalculator
{
 public double Divide(double number1,double number2)
 {
 if(number2 == 0)
 {
 DivideByZeroException exception = new DivideByZeroException();
 throw new FaultException<DivideByZeroException>(exception);
 }
 return number1 / number2;
 }
 //Rest of the implementation
}

Instead of FaultException<DivideByZeroException>, the service could also have thrown
a non-Exception-derived class:

throw new FaultException<double>(number2);

However, I find that using an Exception-derived detailing type is more in line with
conventional .NET programming practices and results in more readable code. In ad-
dition, it allows for exception promotion, discussed later in this chapter.

The reason parameter passed to the constructor of FaultException<T> is used as the
exception message. You can pass a string for the reason:

DivideByZeroException exception = new DivideByZeroException("number2 is 0");
throw new FaultException<DivideByZeroException>(exception,"Reason: " +
 exception.Message);

or you can pass a FaultReason, which is useful when localization is required.

262 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

Fault Contracts
By default, any exception thrown by a service reaches the client as a FaultException.
This is the case even if the service throws a FaultException<T>. The reason is that any-
thing beyond communication errors that the service wishes to share with the client
must be part of the service contract in order for the service to inform WCF that it wishes
to pierce the error mask. To that end, WCF provides fault contracts, which are a way
for the service to list the types of errors it can throw. The idea is that these types of
errors should be the same as the type parameters used with FaultException<T>, and by
listing them in fault contracts, the service enables its WCF clients to distinguish be-
tween contracted faults and other errors.

The service defines its fault contracts using the FaultContractAttribute:

[AttributeUsage(AttributeTargets.Method,AllowMultiple = true,Inherited = false)]
public sealed class FaultContractAttribute : Attribute
{
 public FaultContractAttribute(Type detailType);
 //More members
}

You apply the FaultContract attribute directly on a contract operation, specifying the
error detailing type, as shown in Example 6-3.

Example 6-3. Defining a fault contract

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 double Add(double number1,double number2);

 [OperationContract]
 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);
 //More methods
}

The effect of the FaultContract attribute is limited to the method it decorates. That is,
only that method can throw that fault and have it propagated to the client.

In addition, if the operation throws an exception that is not in the contract, it will reach
the client as a plain FaultException. To propagate the exception, the service must throw
exactly the same detailing type listed in the fault contract. For example, to satisfy this
fault contract definition:

[FaultContract(typeof(DivideByZeroException))]

Fault Propagation | 263

Download from Library of Wow! eBook <www.wowebook.com>

The service must throw a FaultException<DivideByZeroException>. The service cannot
even throw a subclass of the fault contract’s detailing type and have it satisfy the
contract:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [FaultContract(typeof(Exception))]
 void MyMethod();
}

class MyService : IMyContract
{
 public void MyMethod()
 {
 //Will not satisfy contract
 throw new FaultException<DivideByZeroException>(new DivideByZeroException());
 }
}

The FaultContract attribute is configured to allow multiple usages, so you can list
multiple fault contracts in a single operation:

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 [FaultContract(typeof(InvalidOperationException))]
 [FaultContract(typeof(string))]
 double Add(double number1,double number2);

 [OperationContract]
 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);
 //More methods
}

This enables the service to throw any of the exceptions in the contracts and have them
propagate to the client.

You cannot provide a fault contract on a one-way operation, because
there is no reply message returned from a one-way operation:

//Invalid definition
[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 [FaultContract(...)]
 void MyMethod();
}

Trying to do so will result in an InvalidOperationException at service
load time (or when the proxy is created).

264 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

Fault handling

The fault contracts are published along with the rest of the service metadata. When a
WCF client imports that metadata, the contract definitions contain the fault contracts
as well as the fault detailing type definition, including the relevant data contracts. This
last point is important if the detailing type is some custom exception type with various
dedicated fields.

The client can expect to catch and handle the imported fault types. For example, when
you write a client against the contract shown in Example 6-3, the client can catch
FaultException<DivideByZeroException>:

CalculatorClient proxy = new CalculatorClient();
try
{
 proxy.Divide(2,0);
 proxy.Close();
}

catch(FaultException<DivideByZeroException> exception)
{...}

catch(FaultException exception)
{...}

catch(CommunicationException exception)
{...}

catch(TimeoutException exception)
{...}

catch(Exception exception)
{...}

Note that the client can still encounter communication exceptions, or any other ex-
ception thrown by the service.

The client can choose to treat all non-communication service-side exceptions uniformly
by simply handling only the FaultException base exception:

CalculatorClient proxy = new CalculatorClient();
try
{
 proxy.Divide(2,0);
 proxy.Close();
}

catch(FaultException exception)
{...}

catch(CommunicationException exception)
{...}

Fault Propagation | 265

Download from Library of Wow! eBook <www.wowebook.com>

You can improve on the tools-generated proxy: manually change the
definition of the imported contract by removing the fault contract on
the client side. In this case, even when the service throws an exception
listed in a service-side fault contract, the exception will manifest itself
on the client as a plain FaultException, not as the contracted fault. This
will decouple the client from the specific errors the service throws.

Faults and channels

Listing an expected error in a fault contract hardly makes it an exceptional unexpected
case. As a result, when the service throws an exception listed in a service-side fault
contract, the exception will not fault the communication channel. The client can catch
that exception and continue using the proxy, or safely close the proxy. This enables
the service class to treat the errors listed in the fault contracts differently from regular
exceptions, knowing that they will not fault the channel. This ability is not limited to
the service class, though. If any downstream .NET class the service invokes throws such
an error, it will not fault the channel to the client. The problem is, how can downstream
classes know about the fault contracts of the upstream services that call them? Clearly,
having this knowledge present downstream introduces undesirable coupling into the
system.

To support the ability of a downstream class to throw an exception without faulting
the channel, WCF treats any FaultException (or FaultException-derived class) as a
special case that does not fault the channel. In fact, WCF does not actually treat
FaultException<T> itself as a special case at all—the reason a fault listed in the contract
does not fault the channel is because it is derived from FaultException, not because it
is listed in the contract.

Even without any fault contracts, the service (or any downstream object it uses) can
throw an instance of FaultException directly:

throw new FaultException("Some reason");

The Message property of the exception object on the client side will be set to the
reason construction parameter of FaultException. I call this throwing an unknown
fault that will not fault the communication channel, so the client can keep using the
proxy as if the exception was part of a fault contract. Throwing an unknown fault also
allows the client to handle the exception separately from any other communication
error.

Any FaultException<T> thrown by the service will reach the client as
either a FaultException<T> or a FaultException. If no fault contract is in
place (or if T is not in the contract), both a FaultException and a
FaultException<T> thrown by the service will reach the client as
FaultException.

266 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

Fault Debugging
A deployed service should be decoupled as much as possible from its clients, declaring
in the service fault contracts only the absolute bare minimum and providing as little
information as possible about any errors that occur. However, during testing and de-
bugging, it is very useful to include all exceptions in the information sent back to the
client. In fact, for a test client, it is instrumental to know exactly which error was thrown
as a result of a particular input or use case, to see if the test cases break the service as
they should. In such a case, dealing with the all-encompassing yet opaque
FaultException is simply inadequate. For that purpose, you should use the Exception
Detail class, defined as:

[DataContract]
public class ExceptionDetail
{
 public ExceptionDetail(Exception exception);

 [DataMember]
 public string HelpLink
 {get;}

 [DataMember]
 public ExceptionDetail InnerException
 {get;}

 [DataMember]
 public string Message
 {get;}

 [DataMember]
 public string StackTrace
 {get;}

 [DataMember]
 public string Type
 {get;}
}

You need to create an instance of ExceptionDetail and initialize it with the exception
you want to propagate to the client. Next, instead of throwing the intended exception,
throw a FaultException<ExceptionDetail> with the instance of ExceptionDetail as a
construction parameter, and also provide the original exception’s message as the fault
reason. This sequence is shown in Example 6-4.

Example 6-4. Including the service exception in the fault message

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MethodWithError();
}

Fault Propagation | 267

Download from Library of Wow! eBook <www.wowebook.com>

class MyService : IMyContract
{
 public void MethodWithError()
 {
 InvalidOperationException exception =
 new InvalidOperationException("Some error");
 ExceptionDetail detail = new ExceptionDetail(exception);
 throw new FaultException<ExceptionDetail>(detail,exception.Message);
 }
}

Doing so will enable the client to discover the original exception type and message. The
client-side fault object will have a Detail.Type property containing the name of the
original service exception, and the Message property will contain the original exception
message. Example 6-5 shows the client code processing the exception thrown in
Example 6-4.

Example 6-5. Processing the included exception

MyContractClient proxy = new MyContractClient();
try
{
 proxy.MethodWithError();
}
catch(FaultException<ExceptionDetail> exception)
{
 Debug.Assert(exception.Detail.Type ==
 typeof(InvalidOperationException).ToString());
 Debug.Assert(exception.Message == "Some error");
}

Since FaultException<ExceptionDetail> derives from FaultException, throwing it will
not fault the channel. I do not consider this the desired behavior.

Including exceptions declaratively

The ServiceBehavior attribute offers IncludeExceptionDetailInFaults, a Boolean prop-
erty defined as:

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : Attribute, ...
{
 [DefaultValue(false)]
 public bool IncludeExceptionDetailInFaults
 {get;set;}
 //More members
}

IncludeExceptionDetailInFaults defaults to false. Setting it to true, as in this snippet:

268 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceBehavior(IncludeExceptionDetailInFaults = true)]
class MyService : IMyContract
{...}

has a similar effect as the code in Example 6-4, only automated. All non-contractual
faults and exceptions thrown by the service or any of its downstream objects are propa-
gated to the client and included in the returned fault message for the client program to
process them, as in Example 6-5:

[ServiceBehavior(IncludeExceptionDetailInFaults = true)]
class MyService : IMyContract
{
 public void MethodWithError()
 {
 throw new InvalidOperationException("Some error");
 }
}

Any fault thrown by the service (or its downstream objects) that is listed in the fault
contracts is unaffected and is propagated as-is to the client.

Another important difference between using the declarative support for including the
fault details compared with manually throwing FaultException<ExceptionDetail> is
that it will correctly fault the channel, preventing the client from reusing the proxy (if
a transport session was present).

While including all exceptions is beneficial for debugging, great care should be taken
to avoid shipping and deploying the service with IncludeExceptionDetailInFaults set
to true. To avoid this potential pitfall automatically you can use conditional compila-
tion, as shown in Example 6-6.

Example 6-6. Setting IncludeExceptionDetailInFaults to true in debug only

public static class DebugHelper
{
 public const bool IncludeExceptionDetailInFaults =
#if DEBUG
 true;
#else
 false;
#endif
}
[ServiceBehavior(IncludeExceptionDetailInFaults =
 DebugHelper.IncludeExceptionDetailInFaults)]
class MyService : IMyContract
{...}

Host and exception diagnostics

Obviously, including all exceptions in the fault message contributes greatly in debug-
ging, but it’s also useful when you’re trying to analyze a problem in an already deployed
service. Fortunately, you can set IncludeExceptionDetailInFaults to true both pro-
grammatically and administratively in the host config file. To set this behavior

Fault Propagation | 269

Download from Library of Wow! eBook <www.wowebook.com>

programmatically, before opening the host you need to find the service behavior in the
service description and set the IncludeExceptionDetailInFaults property:

ServiceHost host = new ServiceHost(typeof(MyService));

ServiceBehaviorAttribute debuggingBehavior =
 host.Description.Behaviors.Find<ServiceBehaviorAttribute>();

debuggingBehavior.IncludeExceptionDetailInFaults = true;

host.Open();

You can streamline this procedure by encapsulating it in ServiceHost<T>, as shown in
Example 6-7.

Example 6-7. ServiceHost<T> and returning unknown exceptions

public class ServiceHost<T> : ServiceHost
{
 public bool IncludeExceptionDetailInFaults
 {
 set
 {
 if(State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Host is already opened");
 }
 Description.Behaviors.Find<ServiceBehaviorAttribute>().debuggingBehavior.
 IncludeExceptionDetailInFaults = value;
 }
 get
 {
 return Description.Behaviors.Find<ServiceBehaviorAttribute>().
 debuggingBehavior.IncludeExceptionDetailInFaults;
 }
 }
 //More members
}

Using ServiceHost<T> is trivial and readable:

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.IncludeExceptionDetailInFaults = true;
host.Open();

To apply this behavior administratively, add a custom behavior section in the host
config file and reference it in the service definition, as shown in Example 6-8.

Example 6-8. Administratively including exceptions in the fault message

<system.serviceModel>
 <services>
 <service name = "MyService" behaviorConfiguration = "Debugging">
 ...
 </service>
 </services>

270 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

 <behaviors>
 <serviceBehaviors>
 <behavior name = "Debugging">
 <serviceDebug includeExceptionDetailInFaults = "true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

The advantage of administrative configuration in this case is the ability to toggle the
behavior in production post-deployment without affecting the service code.

Exception extraction

While including the exception details in the fault is a useful diagnostic technique, it is
a cumbersome programming model: the client has to take extra steps to extract the
error information out of the ExceptionDetail object. More deterring is the fact that
the client must use a single massive catch statement (that catches a single
FaultException<ExceptionDetail>) to catch all possible exceptions, and sort them all
inside the catch statement. In the world of .NET, this is akin to always catching a mere
Exception, and avoiding cascading catch statements.

In addition, when writing a test client, you want to know as much as possible about
the original exception that happened on the service side, since your test cases are pre-
dicated on producing specific errors. The test client could extract the original exception
from the ExceptionDetail object and recursively build the inner exception chain. How-
ever, that would be tedious and redundant, and it would require repeated code on every
use of the service by the test client. It is therefore better to encapsulate these steps in
the proxy using C# extensions. To that end, I wrote the ExtractException() extension
method to FaultException<ExceptionDetail>, defined as:

public static class DebugHelper
{
 public static Exception ExtractException(
 this FaultException<ExceptionDetail> fault);
 //More members
}

The implementation of FaultException<ExceptionDetail> has nothing to do with WCF,
so I won’t show it here (but it is available with ServiceModelEx). The best way of using
the extension is to encapsulate it within the proxy, as shown in Example 6-9.

Example 6-9. Automatically extracting the exception

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MethodWithError();
}
class MyContractClient : ClientBase<IMyContract>,IMyContract

Fault Propagation | 271

Download from Library of Wow! eBook <www.wowebook.com>

{
 public MyContractClient()
 {}
 /* More constructors */

 public void MethodWithError()
 {
 try
 {
 Channel.MethodWithError();
 }
 catch(FaultException<ExceptionDetail> exception)
 {
 Abort();
 throw exception.ExtractException();
 }
 }
}

In Example 6-9, in the case of a FaultException<ExceptionDetail>, the proxy aborts
itself (to prevent the proxy from being used again) regardless of whether a transport
session is present or how exactly the service threw the exception. The proxy uses the
extension method to throw the extracted exception, allowing the client to catch the
raw CLR exception. For example, for this service definition in debug mode:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

[ServiceBehavior(IncludeExceptionDetailInFaults =
 DebugHelper.IncludeExceptionDetailInFaults)]
class MyService : IMyContract
{
 public void MyMethod()
 {
 throw new InvalidOperationException();
 }
}

when using the proxy from Example 6-9, the client can expect to catch an
InvalidOperationException:

MyContractClient proxy = new MyContractClient();
try
{
 proxy.MyMethod();
}
catch(InvalidOperationException exception)
{...}

272 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

Exception extraction should be used judiciously, only in specific diag-
nostic and testing cases, since it negates the core benefit of fault masking
and decoupling from the nature of the error and the technology.

Faults and Callbacks
Callbacks to the client can, of course, fail due to communication exceptions, or because
the callback itself threw an exception. Similar to service contract operations, callback
contract operations can define fault contracts, as shown in Example 6-10.

Example 6-10. Callback contract with fault contract

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();
}
interface IMyContractCallback
{
 [OperationContract]
 [FaultContract(typeof(InvalidOperationException))]
 void OnCallBack();
}

Callbacks in WCF are usually configured as one-way calls, and as such
cannot define their own fault contracts.

However, unlike with a normal service invocation, what is propagated to the service
and how the error manifests itself also depend upon the following:

• When the callback is being invoked (i.e., whether the callback is invoked during a
service call to its calling client or is invoked out-of-band by some other party on
the host side)

• The type of the exception thrown

If the callback is invoked out-of-band—that is, by some party other than the service
during a service operation—the callback behaves like a normal WCF operation invo-
cation. Example 6-11 demonstrates out-of-band invocation of the callback contract
defined in Example 6-10.

Example 6-11. Fault handling in out-of-band invocation

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{
 static List<IMyContractCallback> m_Callbacks = new List<IMyContractCallback>();

Fault Propagation | 273

Download from Library of Wow! eBook <www.wowebook.com>

 public void DoSomething()
 {
 IMyContractCallback callback =
 OperationContext.Current.GetCallbackChannel<IMyContractCallback>();

 if(m_Callbacks.Contains(callback) == false)
 {
 m_Callbacks.Add(callback);
 }
 }
 public static void CallClients()
 {
 Action<IMyContractCallback> invoke = (callback)=>
 {
 try
 {
 callback.OnCallBack();
 }
 catch(FaultException<...> exception)
 {...}
 catch(FaultException exception)
 {...}
 catch(CommunicationException exception)
 {...}
 };
 m_Callbacks.ForEach(invoke);
 }
}

As you can see, it is valid to expect to handle the callback fault contract, because faults
are propagated to the host side according to it. If the client callback throws a
FaultException or any of its subclasses, it will not fault the callback channel, and you
can catch the exception and continue using the callback channel. However, as with
service calls, after an exception that is not part of the fault contract occurs, you should
avoid using the callback channel.

Likewise, when the service calls back to its calling client, if the callback throws a
FaultException or any of its subclasses it will not fault the callback channel, and the
service can catch the exception and continue using the callback channel (just as with
the out-of-band invocation):

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]
class MyService : IMyContract
{
 public void DoSomething()
 {
 IMyContractCallback callback =
 OperationContext.Current.GetCallbackChannel<IMyContractCallback>();
 try
 {
 callback.OnCallBack();
 }
 catch(FaultException exception)
 {...}

274 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

 }
}

Note that the service must be configured for reentrancy to avoid a deadlock, as ex-
plained in Chapter 5.

The scenario gets considerably more complex when the service invokes the callback
during a service operation, calling back to its calling client, and the exception is not
FaultException and does not derive from FaultException. Recall that all bindings ca-
pable of duplex communication maintain a transport-level session. The exception dur-
ing the callback terminates the transport session from the client to the service.

Since both the TCP and IPC bindings use the same transport for calls from the client
to the service and callbacks from the service to the client, when the callback throws
such an exception the client that called the service in the first place immediately receives
a CommunicationException, even if the service catches the exception. This is a direct
result of reusing the same transport for both directions, and having faulted the callback
transport (which is tantamount to faulting the client-to-service transport as well). The
service can catch and handle the exception, but the client still gets its exception:

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]
class MyService : IMyContract
{
 public void DoSomething()
 {
 IMyContractCallback callback =
 OperationContext.Current.GetCallbackChannel<IMyContractCallback>();
 try
 {
 callback.OnCallBack();
 }
 catch(FaultException exception) //Client still gets CommunicationException
 {...}
 }
}

Callback debugging

While the callback can use the same technique shown in Example 6-4 to manually
include the exception in the fault message, the CallbackBehavior attribute provides the
Boolean property IncludeExceptionDetailInFaults, which can be used to include all
non-contract exceptions in the message:

[AttributeUsage(AttributeTargets.Class)]
public sealed class CallbackBehaviorAttribute : Attribute,...
{
 public bool IncludeExceptionDetailInFaults
 {get;set;}
 //More members
}

Fault Propagation | 275

Download from Library of Wow! eBook <www.wowebook.com>

As for the service, including the exceptions is instrumental in debugging:

[CallbackBehavior(IncludeExceptionDetailInFaults =
 DebugHelper.IncludeExceptionDetailInFaults)]
class MyClient : IMyContractCallback
{
 public void OnCallBack()
 {
 ...
 throw new InvalidOperationException();
 }
}

You can also configure this behavior administratively in the client config file:

<client>
 <endpoint ... behaviorConfiguration = "Debugging"
 ...
 />
</client>
<behaviors>
 <endpointBehaviors>
 <behavior name = "Debugging">
 <callbackDebug includeExceptionDetailInFaults = "true"/>
 </behavior>
 </endpointBehaviors>
</behaviors>

Note the use of the endpointBehaviors tag to affect the client’s callback endpoint.

Error-Handling Extensions
WCF enables developers to customize the default exception reporting and propagation
behavior, and even to provide for a hook for custom logging. This extensibility is ap-
plied per channel dispatcher (that is, per endpoint), although you are most likely to
simply utilize it across all dispatchers.

To install your own error-handling extension, you need to provide the dispatchers with
an implementation of the IErrorHandler interface, defined as:

public interface IErrorHandler
{
 bool HandleError(Exception error);
 void ProvideFault(Exception error,MessageVersion version,ref Message fault);
}

Any party can provide this implementation, but typically it will be provided either by
the service itself or by the host. In fact, you can have multiple error-handling extensions
chained together. You will see how to install the extensions later in this section.

276 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

Providing a Fault
The ProvideFault() method of the extension object is called immediately after any
unhandled exception is thrown by the service or any object on the call chain down-
stream from a service operation. WCF calls ProvideFault() before returning control to
the client, and before terminating the session (if present) and disposing of the service
instance (if required). Because ProvideFault() is called on the incoming call thread
while the client is still blocked waiting for the operation to complete, you should avoid
lengthy execution inside ProvideFault().

Using ProvideFault()

ProvideFault() is called regardless of the type of exception thrown, be it a regular CLR
exception, an unlisted fault, or a fault listed in the fault contract. The error parameter
is a reference to the exception just thrown. If ProvideFault() does nothing, the excep-
tion the client gets will be determined by the fault contract (if any) and the exception
type being thrown, as discussed previously in this chapter:

class MyErrorHandler : IErrorHandler
{
 public bool HandleError(Exception error)
 {...}

 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {
 //Nothing here — exception will go up as usual
 }
}

However, ProvideFault() can examine the error parameter and either return it to the
client as-is, or provide an alternative fault. This alternative behavior will affect even
exceptions that are in the fault contracts. To provide an alternative fault, you need to
use the CreateMessageFault() method of FaultException to create an alternative fault
message. If you are providing a new fault contract message, you must create a new
detailing object, and you cannot reuse the original error reference. You then provide
the created fault message to the static CreateMessage() method of the Message class:

public abstract class Message : ...
{
 public static Message CreateMessage(MessageVersion version,
 MessageFault fault,string action);
 //More members
}

Note that you need to provide CreateMessage() with the action of the fault message
used. This intricate sequence is demonstrated in Example 6-12.

Error-Handling Extensions | 277

Download from Library of Wow! eBook <www.wowebook.com>

Example 6-12. Creating an alternative fault

class MyErrorHandler : IErrorHandler
{
 public bool HandleError(Exception error)
 {...}
 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {
 FaultException<int> faultException = new FaultException<int>(3);
 MessageFault messageFault = faultException.CreateMessageFault();
 fault = Message.CreateMessage(version,messageFault,faultException.Action);
 }
}

In Example 6-12, the ProvideFault() method provides FaultException<int> with a
value of 3 as the fault thrown by the service, irrespective of the actual exception that
was thrown.

The implementation of ProvideFault() can also set the fault parameter to null:

class MyErrorHandler : IErrorHandler
{
 public bool HandleError(Exception error)
 {...}
 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {
 fault = null; //Suppress any faults in contract
 }
}

Doing so will result in all exceptions being propagated to the client as
FaultExceptions, even if the exceptions were listed in the fault contracts. Setting
fault to null is therefore an effective way of suppressing any fault contracts that may
be in place.

Exception promotion

One possible use for ProvideFault() is a technique I call exception promotion. A service
may use downstream objects, which could be called by a variety of services. In the
interest of decoupling, these objects may very well be unaware of the particular fault
contracts of the service calling them. In case of errors, the objects simply throw regular
CLR exceptions. If a downstream object throws an exception of type T, where
FaultException<T> is part of the operation fault contract, by default the service will
report that exception to the client as an opaque FaultException. What the service could
do instead is use an error-handling extension to examine the exception thrown. If that
exception is of the type T, where FaultException<T> is part of the operation fault con-
tract, the service could then promote that exception to a full-fledged FaultExcep
tion<T>. For example, given this service contract:

278 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [FaultContract(typeof(InvalidOperationException))]
 void MyMethod();
}

if the downstream object throws an InvalidOperationException, ProvideFault() will
promote it to FaultException<InvalidOperationException>, as shown in Example 6-13.

Example 6-13. Exception promotion

class MyErrorHandler : IErrorHandler
{
 public bool HandleError(Exception error)
 {...}
 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {
 if(error is InvalidOperationException)
 {
 FaultException<InvalidOperationException> faultException =
 new FaultException<InvalidOperationException>(
 new InvalidOperationException(error.Message));
 MessageFault messageFault = faultException.CreateMessageFault();
 fault = Message.CreateMessage(version,messageFault,
 faultException.Action);
 }
 }
}

The problem with such explicit exception promotion is that the code is coupled to a
specific fault contract, and implementing it across all services requires a lot of tedious
work—not to mention that any change to the fault contract will necessitate a change
to the error extension.

Fortunately, you can automate exception promotion using my ErrorHandlerHelper
static class:

public static class ErrorHandlerHelper
{
 public static void PromoteException(Type serviceType,
 Exception error,
 MessageVersion version,
 ref Message fault);
 //More members
}

The ErrorHandlerHelper.PromoteException() method requires the service type as a pa-
rameter. It uses reflection to examine all the interfaces and operations on that service
type, looking for fault contracts for the particular operation (it gets the faulted operation
by parsing the error object). PromoteException() lets exceptions in the contract go up
the call stack unaffected, but it will promote a CLR exception to a contracted fault if

Error-Handling Extensions | 279

Download from Library of Wow! eBook <www.wowebook.com>

the exception type matches any one of the detailing types defined in the fault contracts
for that operation.

Using ErrorHandlerHelper, Example 6-13 can be reduced to one or two lines of code:

class MyErrorHandler : IErrorHandler
{
 public bool HandleError(Exception error)
 {...}
 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {
 Type serviceType = ...;
 ErrorHandlerHelper.PromoteException(serviceType,error,version,ref fault);
 }
}

The implementation of PromoteException() has little to do with WCF, so it is not listed
in this chapter. However, you can examine it as part of the source code available with
ServiceModelEx. The implementation makes use of some advanced C# programming
techniques, such as generics and reflection, and generics late binding.

Handling a Fault
The HandleError() method of IErrorHandler is defined as:

bool HandleError(Exception error);

HandleError() is called by WCF after control returns to the client. HandleError() is
strictly for service-side use, and nothing it does affects the client in any way. Calling in
the background enables you to perform lengthy processing, such as logging to a data-
base without impeding the client.

Because you can have multiple error-handling extensions installed in a list, WCF also
enables you to control whether extensions down the list should be used. If
HandleError() returns false, WCF will continue to call HandleError() on the rest of
the installed extensions. If HandleError() returns true, WCF stops invoking the error-
handling extensions. Obviously, most extensions should return false.

The error parameter of HandleError() is the original exception thrown. The classic use
for HandleError() is for logging and tracing, as shown in Example 6-14.

Example 6-14. Logging the error log to a logbook service

class MyErrorHandler : IErrorHandler
{
 public bool HandleError(Exception error)
 {
 try
 {
 LogbookServiceClient proxy = new LogbookServiceClient();
 proxy.Log(...);
 proxy.Close();

280 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

 }
 catch
 {}
 return false;
 }
 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {...}
}

The logbook service

The source code available with this book in ServiceModelEx contains a standalone
service called LogbookManager that is dedicated to error logging. LogbookManager logs the
errors into a SQL Server database. The service contract also provides operations for
retrieving the entries in the logbook and clearing the logbook. ServiceModelEx also
contains a simple logbook viewer and management tool. In addition to error logging,
LogbookManager allows you to log entries explicitly into the logbook, independently of
exceptions. The architecture of this framework is depicted in Figure 6-1.

Figure 6-1. The logbook service and viewer

You can automate error logging to LogbookManager using the LogError() method of my
ErrorHandlerHelper static class:

public static class ErrorHandlerHelper
{
 public static void LogError(Exception error);
 //More members
}

Error-Handling Extensions | 281

Download from Library of Wow! eBook <www.wowebook.com>

The error parameter is simply the exception you wish to log. LogError() encapsulates
the call to LogbookManager. For example, instead of the code in Example 6-14, you can
simply write a single line:

class MyErrorHandler : IErrorHandler
{
 public bool HandleError(Exception error)
 {
 ErrorHandlerHelper.LogError(error);
 return false;
 }
 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {...}
}

In addition to capturing the raw exception information, LogError() performs extensive
parsing of the exception and other environment variables for a comprehensive record
of the error and its related information.

Specifically, LogError() captures the following information:

• Where the exception occurred (machine name and host process name)

• The code where the exception took place (the assembly name, the filename, and
the line number if debug symbols are provided)

• The type where the exception took place and the member being accessed

• The date and time when the exception occurred

• The exception name and message

Implementing LogError() has little to do with WCF, so this method is not shown in
this chapter. The code, however, makes extensive use of interesting .NET programming
techniques such as string and exception parsing, along with obtaining the environment
information. The error information is passed to LogbookManager in a dedicated data
contract.

Installing Error-Handling Extensions
Every channel dispatcher in WCF offers a collection of error extensions:

public class ChannelDispatcher : ChannelDispatcherBase
{
 public Collection<IErrorHandler> ErrorHandlers
 {get;}
 //More members
}

Installing your own custom implementation of IErrorHandler requires merely adding
it to the desired dispatcher (usually all of them).

282 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

You must add the error extensions before the first call arrives to the service, but after
the host constructs the collection of dispatchers. This narrow window of opportunity
exists after the host is initialized, but before it is opened. To act in that window, the
best solution is to treat error extensions as custom service behaviors, because the be-
haviors are given the opportunity to interact with the dispatchers at just the right time.
As mentioned in Chapter 4, all service behaviors implement the IServiceBehavior
interface, defined as:

public interface IServiceBehavior
{
 void AddBindingParameters(ServiceDescription description,
 ServiceHostBase host,
 Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection bindingParameters);

 void ApplyDispatchBehavior(ServiceDescription description,
 ServiceHostBase host);

 void Validate(ServiceDescription description,ServiceHostBase host);
}

The ApplyDispatchBehavior() method is your cue to add the error extensions to the
dispatchers. You can safely ignore all other methods of IServiceBehavior and provide
empty implementations for them.

In ApplyDispatchBehavior(), you need to access the collection of dispatchers available
in the ChannelDispatchers property of ServiceHostBase:

public class ChannelDispatcherCollection :
 SynchronizedCollection<ChannelDispatcherBase>
{}
public abstract class ServiceHostBase : ...
{
 public ChannelDispatcherCollection ChannelDispatchers
 {get;}
 //More members
}

Each item in ChannelDispatchers is of the type ChannelDispatcher. You can add the
implementation of IErrorHandler to all dispatchers, or just add it to specific dispatchers
associated with a particular binding. Example 6-15 demonstrates adding an imple-
mentation of IErrorHandler to all of a service’s dispatchers.

Example 6-15. Adding an error extension object

class MyErrorHandler : IErrorHandler
{...}

class MyService : IMyContract,IServiceBehavior
{
 public void ApplyDispatchBehavior(ServiceDescription description,
 ServiceHostBase host)
 {

Error-Handling Extensions | 283

Download from Library of Wow! eBook <www.wowebook.com>

 IErrorHandler handler = new MyErrorHandler();
 foreach(ChannelDispatcher dispatcher in host.ChannelDispatchers)
 {
 dispatcher.ErrorHandlers.Add(handler);
 }
 }
 public void Validate(...)
 {}
 public void AddBindingParameters(...)
 {}
 //More members
}

In Example 6-15, the service itself implements IServiceBehavior. In ApplyDispatch
Behavior(), the service obtains the dispatchers collection and adds an instance of the
MyErrorHandler class to each dispatcher.

Instead of relying on an external class to implement IErrorHandler, the service class
itself can support IErrorHandler directly, as shown in Example 6-16.

Example 6-16. Service class supporting IErrorHandler

class MyService : IMyContract,IServiceBehavior,IErrorHandler
{
 public void ApplyDispatchBehavior(ServiceDescription description,
 ServiceHostBase host)
 {
 foreach(ChannelDispatcher dispatcher in host.ChannelDispatchers)
 {
 dispatcher.ErrorHandlers.Add(this);
 }
 }
 public bool HandleError(Exception error)
 {...}

 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {...}
 //More members
}

The ErrorHandlerBehavior

The problem with Example 6-15 and Example 6-16 is that they pollute the service class
code with WCF plumbing; instead of focusing exclusively on the business logic, the
service also has to wire up error extensions. Fortunately, you can provide the same
plumbing declaratively using my ErrorHandlerBehaviorAttribute, defined as:

public class ErrorHandlerBehaviorAttribute : Attribute,IErrorHandler,
 IServiceBehavior
{
 protected Type ServiceType
 {get;set;}
}

284 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

Applying the ErrorHandlerBehavior attribute is straightforward:

[ErrorHandlerBehavior]
class MyService : IMyContract
{...}

The attribute installs itself as an error-handling extension. Its implementation uses
ErrorHandlerHelper both to automatically promote exceptions to fault contracts, if re-
quired, and to automatically log the exceptions to LogbookManager. Example 6-17 lists
the implementation of the ErrorHandlerBehavior attribute.

Example 6-17. The ErrorHandlerBehavior attribute

[AttributeUsage(AttributeTargets.Class)]
public class ErrorHandlerBehaviorAttribute : Attribute,IServiceBehavior,
 IErrorHandler
{
 protected Type ServiceType
 {get;set;}

 void IServiceBehavior.ApplyDispatchBehavior(ServiceDescription description,
 ServiceHostBase host)
 {
 ServiceType = description.ServiceType;
 foreach(ChannelDispatcher dispatcher in host.ChannelDispatchers)
 {
 dispatcher.ErrorHandlers.Add(this);
 }
 }
 bool IErrorHandler.HandleError(Exception error)
 {
 ErrorHandlerHelper.LogError(error);
 return false;
 }
 void IErrorHandler.ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {
 ErrorHandlerHelper.PromoteException(ServiceType,error,version,ref fault);
 }
 void IServiceBehavior.Validate(...)
 {}
 void IServiceBehavior.AddBindingParameters(...)
 {}
}

Note in Example 6-17 that ApplyDispatchBehavior() saves the service type in a protec-
ted property. The reason is that the call to ErrorHandlerHelper.PromoteException() in
ProvideFault() requires the service type.

The Host and Error Extensions
While the ErrorHandlerBehavior attribute greatly simplifies the act of installing an error
extension, the attribute does require the service developer to apply the attribute. It

Error-Handling Extensions | 285

Download from Library of Wow! eBook <www.wowebook.com>

would be nice if the host could add error extensions independently of whether or not
the service provides any. However, due to the narrow timing window available for
installing extensions, having the host add such an extension requires multiple steps.
First, you need to provide an error-handling extension type that supports both
IServiceBehavior and IErrorHandler. The implementation of IServiceBehavior will
add the error extension to the dispatchers, as shown previously. Next, you must derive
a custom host class from ServiceHost and override the OnOpening() method defined by
the CommunicationObject base class:

public abstract class CommunicationObject : ICommunicationObject
{
 protected virtual void OnOpening();
 //More members
}
public abstract class ServiceHostBase : CommunicationObject ,...
{...}
public class ServiceHost : ServiceHostBase,...
{...}

In OnOpening(), you need to add the custom error-handling type to the collection of
service behaviors in the service description. That behaviors collection was described in
Chapter 1 and Chapter 4:

public class Collection<T> : IList<T>,...
{
 public void Add(T item);
 //More members
}
public abstract class KeyedCollection<K,T> : Collection<T>
{...}
public class KeyedByTypeCollection<I> : KeyedCollection<Type,I>
{...}
public class ServiceDescription
{
 public KeyedByTypeCollection<IServiceBehavior> Behaviors
 {get;}
}
public abstract class ServiceHostBase : ...
{
 public ServiceDescription Description
 {get;}
 //More members
}

This sequence of steps is already encapsulated and automated in ServiceHost<T>:

public class ServiceHost<T> : ServiceHost
{
 public void AddErrorHandler(IErrorHandler errorHandler);
 public void AddErrorHandler();
 //More members
}

286 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

ServiceHost<T> offers two overloaded versions of the AddErrorHandler() method. The
one that takes an IErrorHandler object will internally associate it with a behavior,
so you can provide it with any class that supports just IErrorHandler, not
IServiceBehavior:

class MyService : IMyContract
{...}

class MyErrorHandler : IErrorHandler
{...}

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.AddErrorHandler(new MyErrorHandler());
host.Open();

The AddErrorHandler() method that takes no parameters will install an error-handling
extension that uses ErrorHandlerHelper, just as if the service class was decorated with
the ErrorHandlerBehavior attribute:

class MyService : IMyContract
{...}

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.AddErrorHandler();
host.Open();

Actually, for this last example, ServiceHost<T> does internally use an instance of the
ErrorHandlerBehavior attribute.

Example 6-18 shows the implementation of the AddErrorHandler() method.

Example 6-18. Implementing AddErrorHandler()

public class ServiceHost<T> : ServiceHost
{
 class ErrorHandlerBehavior : IServiceBehavior,IErrorHandler
 {
 IErrorHandler m_ErrorHandler;

 public ErrorHandlerBehavior(IErrorHandler errorHandler)
 {
 m_ErrorHandler = errorHandler;
 }
 void IServiceBehavior.ApplyDispatchBehavior(ServiceDescription description,
 ServiceHostBase host)
 {
 foreach(ChannelDispatcher dispatcher in host.ChannelDispatchers)
 {
 dispatcher.ErrorHandlers.Add(this);
 }
 }
 bool IErrorHandler.HandleError(Exception error)
 {
 return m_ErrorHandler.HandleError(error);
 }

Error-Handling Extensions | 287

Download from Library of Wow! eBook <www.wowebook.com>

 void IErrorHandler.ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {
 m_ErrorHandler.ProvideFault(error,version,ref fault);
 }
 //Rest of the implementation
 }

 List<IServiceBehavior> m_ErrorHandlers = new List<IServiceBehavior>();

 public void AddErrorHandler(IErrorHandler errorHandler)
 {
 if(State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Host is already opened");
 }
 IServiceBehavior errorHandlerBehavior =
 new ErrorHandlerBehavior(errorHandler);
 m_ErrorHandlers.Add(errorHandlerBehavior);
 }
 public void AddErrorHandler()
 {
 AddErrorHandler(new ErrorHandlerBehaviorAttribute());
 }
 protected override void OnOpening()
 {
 foreach(IServiceBehavior behavior in m_ErrorHandlers)
 {
 Description.Behaviors.Add(behavior);
 }
 base.OnOpening();
 }
 //Rest of the implementation
}

To avoid forcing the provided IErrorHandler reference to also support
IServiceBehavior, ServiceHost<T> defines a private nested class called ErrorHandlerBe
havior. ErrorHandlerBehavior implements both IErrorHandler and IServiceBehavior.
To construct ErrorHandlerBehavior, you need to provide it with an implementation of
IErrorHandler. That implementation is saved for later use. The implementation of
IServiceBehavior adds the instance itself to the error-handler collection of all dispatch-
ers. The implementation of IErrorHandler simply delegates to the saved construction
parameter. ServiceHost<T> defines a list of IServiceBehavior references in the
m_ErrorHandlers member variable. The AddErrorHandler() method that accepts an
IErrorHandler reference uses it to construct an instance of ErrorHandlerBehavior and
then adds it to m_ErrorHandlers. The AddErrorHandler() method that takes no param-
eter uses an instance of the ErrorHandlerBehavior attribute, because the attribute is
merely a class that supports IErrorHandler. Finally, the OnOpening() method iterates
over m_ErrorHandlers, adding each behavior to the behaviors collection.

288 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

Callbacks and Error Extensions
The client-side callback object can also provide an implementation of IErrorHandler
for error handling. Compared with the service-error extensions, the main difference is
that to install the callback extension you need to use the IEndpointBehavior interface,
defined as:

public interface IEndpointBehavior
{
 void AddBindingParameters(ServiceEndpoint endpoint,
 BindingParameterCollection bindingParameters);
 void ApplyClientBehavior(ServiceEndpoint endpoint,
 ClientRuntime clientRuntime);
 void ApplyDispatchBehavior(ServiceEndpoint endpoint,
 EndpointDispatcher endpointDispatcher);
 void Validate(ServiceEndpoint endpoint);
}

IEndpointBehavior is the interface all callback behaviors support. The only relevant
method for the purpose of installing an error extension is the ApplyClientBehavior()
method, which lets you associate the error extension with the single dispatcher of the
callback endpoint. The clientRuntime parameter is of the type ClientRuntime, which
offers the CallbackDispatchRuntime property of the type DispatchRuntime. The
DispatchRuntime class offers the ChannelDispatcher property, with its collection of error
handlers:

public sealed class ClientRuntime
{
 public DispatchRuntime CallbackDispatchRuntime
 {get;}
 //More members
}
public sealed class DispatchRuntime
{
 public ChannelDispatcher ChannelDispatcher
 {get;}
 //More members
}

As with a service-side error-handling extension, you need to add to that collection your
custom error-handling implementation of IErrorHandler.

The callback object itself can implement IEndpointBehavior, as shown in Example 6-19.

Example 6-19. Implementing IEndpointBehavior

class MyErrorHandler : IErrorHandler
{...}

class MyClient : IMyContractCallback,IEndpointBehavior
{
 public void OnCallBack()
 {...}

Error-Handling Extensions | 289

Download from Library of Wow! eBook <www.wowebook.com>

 void IEndpointBehavior.ApplyClientBehavior(ServiceEndpoint serviceEndpoint,
 ClientRuntime clientRuntime)
 {
 IErrorHandler handler = new MyErrorHandler();

 clientRuntime.CallbackDispatchRuntime.ChannelDispatcher.ErrorHandlers.
 Add(handler);
 }

 void IEndpointBehavior.AddBindingParameters(...)
 {}
 void IEndpointBehavior.ApplyDispatchBehavior(...)
 {}
 void IEndpointBehavior.Validate(...)
 {}
 //More members
}

Instead of using an external class for implementing IErrorHandler, the callback class
itself can implement IErrorHandler directly:

class MyClient : IMyContractCallback,IEndpointBehavior,IErrorHandler
{
 public void OnCallBack()
 {...}

 void IEndpointBehavior.ApplyClientBehavior(ServiceEndpoint serviceEndpoint,
 ClientRuntime clientRuntime)
 {
 clientRuntime.CallbackDispatchRuntime.ChannelDispatcher.ErrorHandlers.
 Add(this);
 }
 public bool HandleError(Exception error)
 {...}
 public void ProvideFault(Exception error,MessageVersion version,
 ref Message fault)
 {...}
 //More members
}

The CallbackErrorHandlerBehavior attribute

Code such as that shown in Example 6-19 can be automated with the CallbackError
HandlerBehaviorAttribute, defined as:

public class CallbackErrorHandlerBehaviorAttribute :
 ErrorHandlerBehaviorAttribute,IEndpointBehavior
{
 public CallbackErrorHandlerBehaviorAttribute(Type clientType);
}

The CallbackErrorHandlerBehavior attribute derives from the service-side Error
HandlerBehavior attribute and adds explicit implementation of IEndpointBehavior. The
attribute uses ErrorHandlerHelper to promote and log the exception.

290 | Chapter 6: Faults

Download from Library of Wow! eBook <www.wowebook.com>

In addition, the attribute requires as a construction parameter the type of the callback
on which it is applied:

[CallbackErrorHandlerBehavior(typeof(MyClient))]
class MyClient : IMyContractCallback
{
 public void OnCallBack()
 {...}
}

The type is required because there is no other way to get hold of the callback type,
which is required by ErrorHandlerHelper.PromoteException().

The implementation of the CallbackErrorHandlerBehavior attribute is shown in
Example 6-20.

Example 6-20. Implementing the CallbackErrorHandlerBehavior attribute

public class CallbackErrorHandlerBehaviorAttribute :
 ErrorHandlerBehaviorAttribute,IEndpointBehavior
{
 public CallbackErrorHandlerBehaviorAttribute(Type clientType)
 {
 ServiceType = clientType;
 }
 void IEndpointBehavior.ApplyClientBehavior(ServiceEndpoint serviceEndpoint,
 ClientRuntime clientRuntime)
 {
 clientRuntime.CallbackDispatchRuntime.ChannelDispatcher.ErrorHandlers.
 Add(this);
 }
 void IEndpointBehavior.AddBindingParameters(...)
 {}
 void IEndpointBehavior.ApplyDispatchBehavior(...)
 {}
 void IEndpointBehavior.Validate(...)
 {}
}

Note in Example 6-20 how the provided callback client type is stored in the Service
Type property, defined as protected in Example 6-17.

Error-Handling Extensions | 291

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 7

Transactions

Transactions are the key to building robust, high-quality applications. WCF provides
simple, declarative transaction support for service developers, enabling you to config-
ure parameters such as enlistment and voting, all outside the scope of your service. In
addition, WCF allows client applications to create transactions and to propagate trans-
actions across service boundaries. This chapter starts by introducing the problem space
transactions address and the basic transactions terminology, and then discusses the
support for transactions and transaction management offered by WCF and .NET. The
rest of the chapter is dedicated to transactional programming models, both for services
and clients, and to how transactions relate to other aspects of WCF, such as instance
management and callbacks.

The Recovery Challenge
Proper error handling and recovery is the Achilles’ heel of many applications. When
an application fails to perform a particular operation, you should recover from it and
restore the system—that is, the collection of interacting services and clients—to a con-
sistent state (usually, the state the system was at before the operation that caused the
error took place). Operations that can fail typically consist of multiple potentially con-
current smaller steps. Some of those steps can fail while others succeed. The problem
with recovery is the sheer number of partial success and partial failure permutations
that you have to code against. For example, an operation comprising 10 smaller con-
current steps has some three million recovery scenarios, because for the recovery logic,
the order in which the suboperations fail matters as well, and the factorial of 10 is
roughly three million.

Trying to handcraft recovery code in a decent-sized application is often a futile attempt,
resulting in fragile code that is very susceptible to any changes in the application exe-
cution or the business use case, incurring both productivity and performance penalties.
The productivity penalty results from all the effort required for handcrafting the re-
covery logic. The performance penalty is inherited with such an approach because you
need to execute huge amounts of code after every operation to verify that all is well. In

293

Download from Library of Wow! eBook <www.wowebook.com>

reality, developers tend to deal only with the easy recovery cases; that is, the cases that
they are both aware of and know how to handle. More insidious error scenarios, such
as intermediate network failures or disk crashes, go unaddressed. In addition, because
recovery is all about restoring the system to a consistent state (typically the state before
the operations), the real problem has to do with the steps that succeeded, rather than
those that failed. The failed steps failed to affect the system; the challenge is actually
the need to undo successful steps, such as deleting a row from a table, or a node from
a linked list, or a call to a remote service. The scenarios involved could be very complex,
and your manual recovery logic is almost certain to miss a few successful suboperations.

The more complex the recovery logic becomes, the more error-prone the recovery itself
becomes. If you have an error in the recovery, how would you recover the recovery?
How do developers go about designing, testing, and debugging complex recovery logic?
How do they simulate the endless number of errors and failures that are possible? Not
only that, but what if before the operation failed, as it was progressing along executing
its suboperations successfully, some other party accessed your application and acted
upon the state of the system—the state that you are going to roll back during the re-
covery? That other party is now acting on inconsistent information and, by definition,
is in error too. Moreover, your operation may be just one step in some other, much
wider operation that spans multiple services from multiple vendors on multiple ma-
chines. How would you recover the system as a whole in such a case? Even if you have
a miraculous way of recovering your service, how would that recovery logic plug into
the cross-service recovery? As you can see, it is practically impossible to write error-
recovery code by hand.

Transactions
The best (and perhaps only) way of maintaining system consistency and dealing prop-
erly with the error-recovery challenge is to use transactions. A transaction is a set of
potentially complex operations, in which the failure of any single operation causes the
entire set to fail, as one atomic operation. As illustrated in Figure 7-1, while the trans-
action is in progress the system is allowed to be in a temporary inconsistent state, but
once the transaction is complete it is guaranteed to be in a consistent state. That state
may be either a new consistent state (B), or the original consistent state the system was
in before the transaction started (A).

A transaction that executes successfully and manages to transfer the system from the
consistent state A to the consistent state B is called a committed transaction. If the
transaction encounters an error during its execution and rolls back all the intermediate
steps that have already succeeded, it is called an aborted transaction. If the transaction
failed to either commit or abort, it is called an in-doubt transaction. In-doubt transac-
tions usually require administrator or user assistance to resolve and are beyond the
scope of this book.

294 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Transactional Resources
Transactional programming requires working with a resource (such as a database or a
message queue) that is capable of participating in a transaction, and being able to com-
mit or roll back the changes made during the transaction. Such resources have been
around in one form or another for decades. Traditionally, you had to inform a resource
that you would like to perform transactional work against it. This act is called enlist-
ing the resource in the transaction. Some resources support autoenlistment; that is, they
can detect that they are being accessed by a transaction and automatically enlist in it.
Once the resource is enlisted, you can then perform work against the resource. If no
error occurs, the resource is asked to commit the changes made to its state; if any error
is encountered, the resource is asked to roll back the changes. During a transaction, it
is vital that you do not access any nontransactional resources (such as the file system
on Windows XP), because changes made to those resources will not roll back if the
transaction is aborted.

Transaction Properties
When you make use of transactions in your service-oriented applications, you must
abide by four core properties, known as ACID (atomic, consistent, isolated, and du-
rable). When you design transactional services, you must adhere to the ACID require-
ments—they are not optional. As you will see throughout this chapter, WCF enforces
them rigorously.

The atomic property

In order for it to be atomic,* when a transaction completes, all the individual changes
it has made to the resource state must be made as if they were all one atomic, indivisible
operation. The changes made to the resource are made as if everything else in the uni-
verse stops, the changes are made, and then everything resumes. It must not be possible

Figure 7-1. A transaction transfers the system between consistent states

* The word “atom” comes from the Greek word “atomos,” meaning indivisible. The ancient Greeks thought
that if you started dividing matter, and continued dividing it, eventually you would get to indivisible pieces,
which they called “atomos.” The ancient Greeks were, of course, wrong, as atoms can be divided into
subatomic particles such as electrons, protons, and neutrons. Transactions, however, are truly atomic.

Transactions | 295

Download from Library of Wow! eBook <www.wowebook.com>

for a party outside the transaction to observe the resources involved with only some of
the changes made, but not all of them. A transaction should not leave anything to be
done in the background once it is done, as those operations would violate atomicity.
Every operation resulting from the transaction must be included in the transaction
itself.

Atomic transactions make client applications a lot easier to develop. The client does
not have to manage partial failures of its requests, or have complex recovery logic. The
client knows that the transaction will either succeed or fail as a whole. In the case of
failure, the client can choose to issue a new request (start a new transaction), or do
something else, such as alerting the user. The important thing is that the client does
not have to recover the system.

The consistent property

Consistent means the transaction must leave the system in a consistent state. Note that
consistency is different from atomicity. Even if all the changes are committed as one
atomic operation, the transaction is required to guarantee that all those changes are
consistent (i.e., that they “make sense”). Usually, it is up to the developer to ensure
that the semantics of the operations are consistent. All the transaction is required to
do is to transfer the system from one consistent state to another.

The isolated property

Isolated means no other entity (transactional or not) is able to see the intermediate state
of the resources during the transaction, because that state may be inconsistent. In fact,
even if it is consistent, the transaction could still abort, and the changes could be rolled
back. Isolation is crucial to overall system consistency. Suppose transaction A allows
transaction B access to its intermediate state, and then transaction A aborts while
transaction B decides to commit. The problem is that transaction B based its execution
on a system state that was rolled back, and therefore transaction B is left unknowingly
inconsistent.

Managing isolation is not trivial. The resources participating in a transaction must lock
the data accessed by the transaction from all other parties, and must unlock access to
that data when the transaction commits or aborts.

The durable property

Traditionally, transactional support by a resource implies not just a transaction-aware
resource, but also a durable one. This is because at any moment the application could
crash, and the memory it was using could be erased. If the changes to the system’s state
were in-memory changes, they would be lost, and the system would be left in an in-
consistent state. However, durability is really a range of options. How resilient to such
catastrophes the resource should be is an open question that depends on the nature

296 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

and sensitivity of the data, your budget, available time and available system adminis-
tration staff, and so on.

If durability is a range that actually means various degrees of persistence, then you can
also consider the far end of the spectrum: volatile, in-memory resources. The advantage
of volatile resources is that they offer better performance than durable resources, and,
more importantly, they allow you to approximate much better conventional program-
ming models while using transaction support for error recovery. You will see later in
this chapter how and when your services can benefit from volatile resource managers
(VRMs).

Transaction Management
WCF services can work directly against a transactional resource and manage the trans-
action explicitly using a programming model such as that offered by ADO.NET. As
shown in Example 7-1, using this model, you are responsible for explicitly starting and
managing the transaction.

Example 7-1. Explicit transaction management

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()
 {
 //Avoid this programming model:

 string connectionString = "...";

 using (IDbConnection connection = new SqlConnection(connectionString))
 {
 connection.Open();

 using(IDbCommand command = new SqlCommand())
 {
 command.Connection = connection;

 using(IDbTransaction transaction =
 connection.BeginTransaction())//Enlisting
 {
 command.Transaction = transaction;

 try
 {
 /* Interact with database here, then commit the transaction */
 transaction.Commit();
 }

Transactions | 297

Download from Library of Wow! eBook <www.wowebook.com>

 catch
 {
 transaction.Rollback(); //Abort transaction

 throw;
 }
 }
 }
 }
 }
}

You obtain an object representing the underlying database transaction by calling Begin
Transaction() on the connection object. BeginTransaction() returns an implementa-
tion of the interface IDbTransaction, used to manage the transaction. When the data-
base is enlisted, it does not really execute any of the requests that are made. Instead, it
merely logs the requests against the transaction. If at the end all updates and other
changes made to the database are consistent and no error has taken place, you simply
call Commit() on the transaction object. This instructs the database to commit the
changes as one atomic operation. If any exception occurred, the call to Commit() is
skipped over, and the catch block aborts the transaction by calling Rollback(). Aborting
the transaction instructs the database to discard all the changes logged so far.

The transaction management challenge

While the explicit programming model is straightforward, requiring nothing of the
service performing the transaction, it is most suitable for a client calling a single service
interacting with a single database (or a single transactional resource), where the service
starts and manages the transaction, as shown in Figure 7-2.

Figure 7-2. Single service/single resource transaction

This is due to the transaction coordination problem. Consider, for example, a service-
oriented application where the client interacts with multiple services that in turn
interact with each other and with multiple resources, as shown in Figure 7-3.

The question now is, which one of the participating services is responsible for beginning
the transaction and enlisting each resource? If all of them will do that, you will end up
with multiple transactions. Putting the enlistment logic in the service code will create
a great deal of coupling between the services and the resources. Furthermore, which

298 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

one of the services is responsible for committing or rolling back the transaction? How
would one service know what the rest of the services feel about the transaction? How
would the service managing the transaction inform the other services about the trans-
action’s ultimate outcome? Trying to pass the transaction object or some identifier as
an operation parameter is not service-oriented, because the clients and the services
could all be using different implementation platforms and technologies. The services
could also be deployed in different processes or even across different machines or sites.
In this case, issues such as network failures or machine crashes introduce additional
complexity for managing the transaction, because one service might crash while others
continue processing the transaction.

One possible solution is to couple the clients and the services by adding logic for
coordinating the transaction, but such an approach is very fragile and would not with-
stand even minor changes to the business flow or the number of participating services.
In addition, if different vendors developed the services, this will preclude any such
coordination. And even if you find a way of solving the coordination problem at the
service level, when multiple resources are involved you have multiple independent
points of failure, because each of the resources could fail independently of the services.

Distributed transactions

The type of transaction just described is called a distributed transaction. A distributed
transaction contains two or more independent services (often in different execution
contexts), or even just a single service with two or more transactional resources. It is
impractical to try to explicitly manage the potential error cases of a distributed trans-
action. For a distributed transaction, you need to rely on the two-phase commit pro-
tocol, and a dedicated transaction manager. A transaction manager is a third party that
will manage the transaction for you, because the last thing you want is to place the
transaction management logic in your service code.

Figure 7-3. Distributed transactional service-oriented application

Transactions | 299

Download from Library of Wow! eBook <www.wowebook.com>

The two-phase commit protocol

To overcome the complexity of a distributed transaction, the transaction manager uses
a transaction management protocol called the two-phase commit protocol to decide on
the outcome of the transaction as well as to commit or roll back the changes to the
system state. The two-phase commit protocol is what enforces atomicity and consis-
tency in a distributed system. The protocol enables WCF to support transactions that
involve multiple clients, services, and resources. You will see later in this chapter just
how transactions start and how they flow across service boundaries. For now, the im-
portant thing to note is that while a transaction is in progress, the transaction manager
stays largely out of the way. New services may join the transaction, and every resource
accessed is enlisted with that transaction. The services execute business logic, and the
resources record the changes made under the scope of the transaction. During the
transaction, all the services (and the clients participating in the transaction) must
vote on whether they want to commit the changes they’ve performed or abort the
transaction for whatever reason.

When the transaction ends (you will see when transactions end later in this chapter),
the transaction manager checks the combined vote of the participating services. If any
service or client voted to abort, the transaction is doomed: all the participating resources
are instructed to discard the changes made during the transaction. If, however, all the
services in the transaction voted to commit, the two-phase commit protocol starts. In
the first phase, the transaction manager asks all the resources that took part in the
transaction if they have any reservations about committing the changes recorded during
the transaction. That is, if they were asked to commit, would they? Note that the trans-
action manager is not instructing the resources to commit the changes at this point; it
is merely asking for their votes on the matter. At the end of the first phase, the trans-
action manager has the combined vote of the resources. The second phase of the
protocol is acting upon that combined vote. If all the resources voted to commit the
transaction in the first phase, the transaction manager instructs all of them to commit
the changes. But if even one of the resources said in phase one that it would not commit
the changes, then in phase two the transaction manager instructs all the resources to
roll back the changes made, thus aborting the transaction and restoring the system to
its pre-transaction state.

It is important to emphasize that a resource voting that it would commit if asked to
constitutes an unbreakable promise. If a resource votes to commit a transaction, it
means that it cannot fail if subsequently, in the second phase, it is instructed to commit.
The resource should verify before voting to commit that all the changes are consistent
and legitimate. A resource can never go back on its vote. This is the basis for enabling
distributed transactions, and the various resource vendors have gone to great lengths
to implement this behavior exactly.

300 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Resource Managers
A resource manager (RM) is any resource that supports both automatic enlistment and
the two-phase commit protocol managed by one of the transaction managers. The
resource must be able to detect that it is being accessed by a transaction and automat-
ically enlist in it exactly once. The RM can be either a durable resource or a volatile
resource, such as a transactional integer, string, or collection. While the RM must sup-
port the two-phase commit protocol, it can optionally also implement an optimized
protocol used when it is the only RM in the transaction. That optimized protocol is
called the single-phase commit protocol, when the RM is the one informing the trans-
action manager in one step about the success or failure of an attempt to commit.

Transaction Propagation
WCF can propagate transactions across the service boundary. This enables a service to
participate in a client’s transaction, and the client to include operations on multiple
services in the same transaction. The client itself may or may not be a WCF service.
Both the binding and the operation contract configuration control the decision as to
whether or not the client’s transaction is propagated to the service. I call any binding
that is capable of propagating the client’s transaction to the service if configured to do
so a transaction-aware binding. Only the TCP, IPC, and WS bindings are transaction-
aware.

Transaction Flow and Bindings
By default, transaction-aware bindings do not propagate transactions. The reason is
that, like most everything else in WCF, this is an opt-in setting: the service host or
administrator has to explicitly give its consent to accepting incoming transactions, po-
tentially from across the organization or the business boundaries. To propagate a
transaction, you must explicitly enable it in the binding on both the service host and
client sides. All transaction-aware bindings offer the Boolean property Transaction
Flow, such as:

public class NetTcpBinding : Binding,...
{
 public bool TransactionFlow
 {get;set;}
 //More members
}

TransactionFlow defaults to false. To enable propagation, simply set this property to
true, either programmatically or in the host config file. For example, in the case of the
TCP binding:

NetTcpBinding tcpBinding = new NetTcpBinding();
tcpBinding.TransactionFlow = true;

Transaction Propagation | 301

Download from Library of Wow! eBook <www.wowebook.com>

or when using a config file:

<bindings>
 <netTcpBinding>
 <binding name = "TransactionalTCP"
 transactionFlow = "true"
 />
 </netTcpBinding>
</bindings>

Transactions and Reliability
Strictly speaking, transactions do not require reliable messaging. The reason is that
when reliability is disabled, if WCF messages are dropped or the client or service be-
comes disconnected, the transaction will abort. Because the client is guaranteed com-
plete success or complete failure of the transactional operation, transactions are reliable
in their own way. However, enabling reliability will decrease the likelihood of aborted
transactions, because it will make the communication reliable; this means the trans-
action will be less likely to abort due to communication problems. I therefore recom-
mend as a best practice also enabling reliability when enabling transactions with the
NetTcpBinding and WSHttpBinding:

<netTcpBinding>
 <binding name = "TransactionalTCP" transactionFlow = "true">
 <reliableSession enabled = "true"/>
 </binding>
</netTcpBinding>

There is no need to enable reliability for the NetNamedPipeBinding because, as discussed
in Chapter 1, this binding is always reliable.

Transaction Flow and the Operation Contract
Using a transaction-aware binding and even enabling transaction flow does not mean
that the service wants to use the client’s transaction in every operation, or that the client
necessarily has a transaction to propagate in the first place. Such service-level decisions
should be part of the contractual agreement between the client and the service. To that
end, WCF provides the TransactionFlowAttribute method attribute, which controls if
and when the client’s transaction flows into the service:

public enum TransactionFlowOption
{
 Allowed,
 NotAllowed,
 Mandatory
}

[AttributeUsage(AttributeTargets.Method)]
public sealed class TransactionFlowAttribute : Attribute,IOperationBehavior
{
 public TransactionFlowAttribute(TransactionFlowOption flowOption);
}

302 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Note that the TransactionFlow attribute is a method-level attribute because WCF insists
that the decision on transaction flow be made on a per-operation level, not at the service
level:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void MyMethod();
}

This is deliberate, to enable the granularity of having some methods that use the client’s
transaction and some that do not.

The value of the TransactionFlow attribute is included in the published metadata of the
service, so when you import a contract definition, the imported definition will contain
the configured value. WCF will also let you apply the TransactionFlow attribute directly
on the service class implementing the operation:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 [TransactionFlow(TransactionFlowOption.Allowed)]
 public void MyMethod()
 {...}
}

However, such use is discouraged because it splits the definition of the logical service
contract that will be published.

TransactionFlowOption.NotAllowed

When the operation is configured to disallow transaction flow, the client cannot prop-
agate its transaction to the service. Even if transaction flow is enabled at the binding
and the client has a transaction, it will be silently ignored and will not propagate to the
service. As a result, the service will never use the client’s transaction, and the service
and the client can select any binding with any configuration. TransactionFlowOption.
NotAllowed is the default value of the TransactionFlowOption attribute, so these two
definitions are equivalent:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

Transaction Propagation | 303

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.NotAllowed)]
 void MyMethod();
}

TransactionFlowOption.Allowed

When the operation is configured to allow transaction flow, if the client has a trans-
action, the service will allow the client’s transaction to flow across the service boundary.
However, just because the client propagates its transaction doesn’t mean the service
will necessarily use it. When you choose TransactionFlowOption.Allowed, the service
can be configured to use any binding, be it transaction-aware or not, but the client and
the service must be compatible in their binding configuration. In the context of trans-
action flow, “compatible” means that when the service operation allows transaction
flow but the binding disallows it, the client should also disallow it in the binding on its
side: trying to flow the client’s transaction will cause an error, because the service will
not understand the transaction information in the message. However, when the service-
side binding configuration is set to allow transaction flow, the client may or may not
want to enable propagation on its side, so it may elect to set TransactionFlow to
false in the binding even if the service has it set to true.

TransactionFlowOption.Mandatory

When the operation is configured with TransactionFlowOption.Mandatory, the service
and the client must use a transaction-aware binding with transaction flow enabled.
WCF verifies this requirement at the service load time and throws an
InvalidOperationException if the service has at least one incompatible endpoint.
TransactionFlowOption.Mandatory means the client must have a transaction to propa-
gate to the service. Trying to call a service operation without a transaction results in a
FaultException on the client side stating that the service requires a transaction. With
mandatory flow, the client’s transaction always propagates to the service, but again,
the service may or may not use the client’s transaction.

The test client WcfTestClient.exe discussed in Chapter 1 does not sup-
port mandatory transaction flow. It does not create a transaction on the
client side, and therefore will fail all calls to an operation that mandates
transaction flow.

One-Way Calls
Propagating the client’s transaction to the service requires, by its very nature, allowing
the service to abort the client’s transaction if so desired. This implies that you cannot
flow the client’s transaction to a service over a one-way operation, because that call

304 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

does not have a reply message. WCF validates this at the service load time and will
throw an exception when a one-way operation is configured with anything but
TransactionFlowOption.NotAllowed:

//Invalid definition:
[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void MyMethod();
}

Transaction Protocols and Managers
By and large, WCF developers need never concern themselves with transaction proto-
cols and transaction managers. You should rely on WCF (and .NET) to select the cor-
rect protocol and transaction manager, and focus instead on implementing your logic.
However, I have found that developers typically care a great deal about this issue, so
I’ve chosen to include a discussion of transaction protocols and managers (mostly to
demonstrate that there is no practical reason to actually deal with them in the first
place).

The transaction management protocol WCF chooses depends on the execution scope
of the participating parties in the transaction. The word protocol may be misleading
here, because in the abstract the protocol being used is the two-phase commit protocol.
The differences between the transaction management protocols have to do with the
type of remote calls and communication protocol used, and the kind of boundaries it
can cross. The options are:

The lightweight protocol
This protocol is used to manage transactions in a local context only, inside the
same app domain. It cannot propagate the transaction across the app domain
boundary (let alone the process or machine boundary), nor can it flow the trans-
action across any service boundary (that is, from a client to a service). The light-
weight protocol is used only inside a service or between two parties in the same
app domain, never between services. The lightweight protocol yields the best
performance compared with the other protocols.

The OleTx protocol
This protocol is used to propagate transactions across app domain, process, and
machine boundaries, and to manage the two-phase commit protocol. The protocol
uses RPC calls, and the exact binary format of the calls is Windows-specific. As a
result of the use of both the RPC and the Windows-specific format, it cannot be
used across firewalls or to interoperate with non-Windows parties. This is usually
not a problem, because the primary use for the OleTx protocol is for managing
transactions in an intranet, in a homogeneous Windows environment.

Transaction Protocols and Managers | 305

Download from Library of Wow! eBook <www.wowebook.com>

The WS-Atomic Transaction (WSAT) protocol
This protocol is similar to the OleTx protocol in that it too can propagate trans-
actions across app domain, process, and machine boundaries and can be used to
manage the two-phase commit protocol. However, unlike the OleTx protocol, the
WSAT protocol is based on an industry standard and can typically be used across
firewalls. Although you can use the WSAT protocol in an intranet in a heteroge-
neous environment, its primary use is for transaction management across the In-
ternet, where multiple transaction managers are involved.

Protocols and Bindings
No binding supports the lightweight protocol, because the protocol cannot propagate
transactions across the service boundary anyway. However, the various transaction-
aware bindings differ in their support for the two other transaction-management pro-
tocols. The TCP and IPC bindings can be configured to work with both the OleTx and
WSAT protocols, or with just one of them. Both bindings default to the OleTx protocol
and will switch to the WSAT protocol if required. In addition, these two intranet bind-
ings let you configure the protocol either in a config file or programmatically, like any
other binding property.

WCF provides the TransactionProtocol abstract class, defined as:

public abstract class TransactionProtocol
{
 public static TransactionProtocol Default
 {get;}
 public static TransactionProtocol OleTransactions
 {get;}
 public static TransactionProtocol WSAtomicTransactionOctober2004
 {get;}
 public static TransactionProtocol WSAtomicTransaction11
 {get;}
}

Both the TCP and IPC bindings offer the TransactionProtocol property of the matching
type. For example:

public class NetTcpBinding : Binding,...
{
 TransactionProtocol TransactionProtocol
 {get;set;}
 //More members
}

To set the protocol programmatically, first construct the specific binding type, then set
the property using one of the static methods:

NetTcpBinding tcpBinding = new NetTcpBinding();
//Protocol only matters with propagation
tcpBinding.TransactionFlow = true;

306 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

tcpBinding.TransactionProtocol =
 TransactionProtocol.WSAtomicTransactionOctober2004;

Note that the transaction protocol configuration is meaningful only when transaction
propagation is enabled as well.

To configure the protocol in a config file, define a binding section as usual:

<bindings>
 <netTcpBinding>
 <binding name = "TransactionalTCP"
 transactionFlow = "true"
 transactionProtocol = "WSAtomicTransactionOctober2004"
 />
 </netTcpBinding>
</bindings>

When you configure a protocol for the TCP or IPC binding, the service and the client
must use the same protocol.

Since the TCP and IPC bindings can be used only in an intranet, there is really no
practical value to configuring them for the WSAT protocol, and this ability is available
largely for the sake of completeness.

The WS bindings (WSHttpBinding, WS2007HttpBinding, WSDualHttpBinding, WSFedera
tionHttpBinding, and WS2007FederationHttpBinding) are designed for use across the
Internet, when multiple transaction managers are involved, using the WSAT protocol.
However, in an Internet scenario where only a single transaction manager is involved,
these bindings will default to the OleTx protocol. There is no need or ability to con-
figure a particular protocol.

Transaction Managers
Recall from the discussion at the beginning of this chapter that the last thing you should
do is manage a transaction yourself. The best solution is to have a third party, called
the transaction manager, manage the two-phase commit protocol for your clients and
services. WCF can work with not one but three different transaction managers in a
provider model, as shown in Figure 7-4.

Figure 7-4. WCF transaction managers

The three transaction managers are the Lightweight Transaction Manager (LTM), the
Kernel Transaction Manager (KTM), and the Distributed Transaction Coordinator (DTC).

Transaction Protocols and Managers | 307

Download from Library of Wow! eBook <www.wowebook.com>

As a function of the platform used, what the application does, the services it calls, and
the resources it consumes, .NET (and Windows) will assign the appropriate transaction
manager. Because the transaction manager is assigned automatically, your code is de-
coupled from the transaction management and from the transaction protocol used.
Again, developers need never bother themselves with the transaction managers, and
the following discussion is intended only to alleviate some common concerns regarding
performance and efficiency.

The LTM

The LTM can manage only a local transaction; that is, a transaction inside a single app
domain. The LTM uses the lightweight transaction protocol to manage the two-phase
commit protocol. It can only manage a transaction that involves at most a single durable
resource manager. The LTM can also manage as many volatile resource managers as
are present. If only a single resource manager is present, and that resource supports
single-phase commit, the LTM will use that optimized protocol. Most importantly, the
LTM can only manage a transaction inside a single service, and only when that service
does not flow the transaction to other services. The LTM is the most performant trans-
action manager, on a par performance-wise with performing direct transactions against
the resource.

The KTM

The KTM can be used to manage transactional kernel resource managers (KRMs) on
Windows Vista, Windows Server 2008, and Windows 7 or later—specifically, the
transactional files system (TxF) and the transactional registry (TxR). The KTM uses
the lightweight transaction protocol over both direct memory and kernel calls. The
KTM can only manage the transaction if it involves at most a single durable KRM, but
the transaction can have as many volatile resource managers as desired. As with the
LTM, the transaction can involve at most one service, as long as that service does not
propagate the transaction to other services.

The DTC

The DTC is capable of managing transactions across any execution boundary, from
the most local (a transaction within the same app domain) scope to the most remote
(a transaction that crosses process, machine, or site boundaries). The DTC can use
either the OleTx or the WSAT protocol. The DTC is the transaction manager used
when transactions flow across the service boundary. The DTC can easily manage a
transaction that involves any number of services and resource managers.

The DTC is a system service available by default on every machine running WCF, and
WCF (and .NET) is tightly integrated with the DTC. The DTC creates new transac-
tions, collects the votes of the resource managers, and instructs the resource managers
to abort or commit the transaction. For example, consider the application shown in
Figure 7-5, where a nontransactional client calls to a service on Machine A. The service

308 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

on Machine A is configured to use a transaction. That service becomes the root of the
transaction, and it will get the opportunity not just to start the transaction but also to
indicate when the transaction is done.

Every transaction in WCF has at most one root service, because a non-
service client can also be the root of the transaction.

When a service that is part of a transaction on Machine A tries to access another service
or a resource on Machine B, it actually has a proxy to the remote service or resource.
That proxy propagates the transaction ID to Machine B. The call interception on Ma-
chine B contacts the local DTC on Machine B, passing it the transaction ID and in-
forming it to start managing that transaction on Machine B. Because the transaction
ID gets propagated to Machine B, resource managers on Machine B can now auto-enlist
in it. Similarly, the transaction ID is propagated to Machine C.

When the transaction is done, if the combined services’ vote was to try to commit the
transaction, it is time to start the two-phase commit protocol. The DTC on the root
machine collects the resource managers’ votes on that machine and contacts the DTC
on every other machine that took part in the transaction, instructing them to conduct
the first phase on their machines. The DTCs on the remote machines collect the re-
source managers’ votes on their machines and forward the results back to the DTC on
the root machine. After the DTC on the root machine receives the results from all the
remote DTCs, it has the combined resource managers’ vote. If all of them vote to

Figure 7-5. A DTC-managed transaction

Transaction Protocols and Managers | 309

Download from Library of Wow! eBook <www.wowebook.com>

commit, the DTC on the root machine again contacts all the DTCs on the remote
machines, instructing them to conduct phase two on their respective machines and to
commit the transaction. If even one resource manager voted to abort the transaction,
however, the DTC on the root machine informs all the DTCs on the remote machines
to conduct phase two on their respective machines and to abort the transaction. Note
that only the DTC on the root machine has the combined vote of phase one, and only
it can instruct the final abort or commit.

Transaction Manager Promotion
.NET dynamically assigns the appropriate transaction manager for the transaction. If
one transaction manager is inadequate, .NET will promote the transaction; that is, ask
the next-level-up transaction manager to handle the transaction. A single transaction
can be promoted multiple times. Once promoted, the transaction stays elevated and
cannot be demoted. The previous transaction manager used to manage the transaction
is relegated to a pass-through mode. Because of this dynamic promotion, developers
are precluded from interacting with the transaction managers directly (doing so would
bypass promotion). Promotion is yet another reason why you should not write code
such as that in Example 7-1: it eliminates any chance of promotion.

LTM promotion

Every transaction in .NET always starts out as a transaction managed by the LTM. As
long as the transaction interacts with a single durable resource and as long as there is
no attempt to flow the transaction to a WCF service, the LTM can manage the trans-
action and yield the best throughput and performance. The LTM can manage as many
volatile resource managers as required. However, if the transaction tries to enlist a
second durable resource or the transaction is propagated to a service, .NET will pro-
mote the transaction from the LTM to the DTC. Another type of promotion takes place
if the first durable resource accessed is a KTM resource, in which case .NET (actually,
Windows itself) will promote the transaction from the LTM to the KTM.

KTM promotion

The KTM can manage a transaction as long as it interacts with a single KRM and as
long as the transaction is local. The KTM can manage as many volatile resource man-
agers as required. The KTM transaction is promoted to the DTC when the transaction
flows to another service or if a second durable resource (kernel or regular) is enlisted.

Resources and promotion

At the time of this writing, the only resources that can participate in an LTM transaction
and promote from it are volatile resource managers and the various flavors of SQL
Server, from SQL Server 2005 and later. Legacy resource managers such as SQL Server
2000, Oracle, DB2, and MSMQ can only participate in DTC transactions.

310 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Consequently, when a legacy resource is accessed by an LTM transaction, even if it is
the single resource in the transaction, the transaction is automatically promoted to the
DTC.

The relationship between resources and transaction managers is summarized in
Table 7-1.

Table 7-1. Resources and transaction managers

Resource LTM KTM DTC

Volatile Yes Yes Yes

SQL Server 2005/2008 Yes No Yes

Kernel No Yes Yes

Any other RM No No Yes

With an Oracle database, ODP.NET Release 10.2.0.3 can support a
local LTM transaction only or a distributed DTC transaction only, but
cannot promote from the LTM to the DTC. An LTM transaction en-
countering a promotion event is not promoted to the DTC, but rather
aborts with an exception. A transaction can also be configured to always
start as a DTC transaction.

The Transaction Class
The Transaction class from the System.Transactions namespace, introduced in .NET
2.0, represents the transaction that all .NET transaction managers work with:

[Serializable]
public class Transaction : IDisposable,ISerializable
{
 public static Transaction Current
 {get;set;}

 public void Rollback(); //Abort the transaction
 public void Dispose();

 //More members
}

Developers rarely need to interact with the Transaction class directly. The main use of
the Transaction class is to manually abort a transaction by calling the Rollback()
method. Additional features of the Transaction class include enlisting resource man-
agers, setting the isolation level, subscribing to transaction events, cloning the trans-
action for concurrent threads, and obtaining the transaction status and other
information.

The Transaction Class | 311

Download from Library of Wow! eBook <www.wowebook.com>

The Ambient Transaction
.NET 2.0 defined a concept called the ambient transaction, which is the transaction in
which your code executes. To obtain a reference to the ambient transaction, call the
static Current property of Transaction:

Transaction ambientTransaction = Transaction.Current;

If there is no ambient transaction, Current will return null. Every piece of code, be it
client or service, can always reach out for its ambient transaction. The ambient trans-
action object is stored in the thread local storage (TLS). As a result, when the thread
winds its way across multiple objects and methods on the same call chain, all objects
and methods can access their ambient transactions.

In the context of WCF, the ambient transaction is paramount. When present, any
resource manager will automatically enlist in the ambient transaction. When a client
calls a WCF service, if the client has an ambient transaction and the binding and the
contract are configured to allow transaction flow, the ambient transaction will propa-
gate to the service.

The client cannot propagate an already aborted transaction to the serv-
ice. Doing so will yield an exception.

Local Versus Distributed Transactions
The Transaction class is used both for local and distributed transactions. Each trans-
action object has two identifiers used to identify the local and the distributed transac-
tion. You obtain the transaction identifiers by accessing the TransactionInformation
property of the Transaction class:

[Serializable]
public class Transaction : IDisposable,ISerializable
{
 public TransactionInformation TransactionInformation
 {get;}
 //More members
}

The TransactionInformation property is of the type TransactionInformation, defined
as:

public class TransactionInformation
{
 public Guid DistributedIdentifier
 {get;}
 public string LocalIdentifier
 {get;}
 //More members
}

312 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

TransactionInformation offers access to the two identifiers. The main use of these
identifiers is for logging, tracing, and analysis. In this chapter, I will use the identifiers
as a convenient way to demonstrate transaction flow in code as a result of configuration.

The local transaction identifier

The local transaction identifier (local ID) contains both an identifier for the LTM in the
current app domain as well as an ordinal number enumerating the transaction. You
access the local ID via the LocalIdentifier property of TransactionInformation. The
local ID is always available with the ambient transaction, and as such is never null: as
long as there is an ambient transaction, it will have a valid local ID.

The value of the local ID has two parts: a constant GUID that is unique for each app
domain and represents the assigned LTM for that app domain, and an incremented
integer enumerating the transactions managed so far by that LTM.

For example, if a service traces three consecutive transactions, starting with the first
call, it will get something like this:

8947aec9-1fac-42bb-8de7-60df836e00d6:1
8947aec9-1fac-42bb-8de7-60df836e00d6:2
8947aec9-1fac-42bb-8de7-60df836e00d6:3

The GUID is constant per app domain. If the service is hosted in the same app domain
as the client, they will have the same GUID. If the client makes a cross-app domain call,
the client will have its own unique GUID identifying its own local LTM.

The distributed transaction identifier

The distributed transaction identifier (distributed ID) is generated automatically when-
ever an LTM- or KTM-managed transaction is promoted to a DTC-managed transac-
tion (for example, when the ambient transaction flows to another service). You access
the distributed ID via the DistributedIdentifier property of TransactionInformation.
The distributed ID is unique per transaction, and no two transactions will ever have
the same distributed ID. Most importantly, the distributed ID will be uniform across
the service boundaries and across the entire call chain, from the topmost client through
every service and object down the call chain. As such, it is useful in logging and tracing.
Note that for a transaction that has not yet been promoted, the value of the distributed
ID will be Guid.Empty. The distributed ID is usually Guid.Empty on the client side when
the client is the root of the transaction and it has not yet called a service, and on the
service side it will be empty if the service does not use the client’s transaction and instead
starts its own local transaction.

The Transaction Class | 313

Download from Library of Wow! eBook <www.wowebook.com>

Transactional Service Programming
For services, WCF offers a simple and elegant declarative programming model. This
model is, however, unavailable for non-service code called by services and for non-
service WCF clients.

Setting the Ambient Transaction
By default, the service class and all its operations have no ambient transaction. This is
the case even when the client’s transaction is propagated to the service. Consider the
following service:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Mandatory)]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction == null);
 }
}

The ambient transaction of the service will be null, even though the mandatory
transaction flow guarantees the client’s transaction propagation. To have an ambient
transaction, for each contract method the service must indicate that it wants WCF to
scope the body of the method with a transaction. For that purpose, WCF provides the
TransactionScopeRequired property of the OperationBehaviorAttribute:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationBehaviorAttribute : Attribute,...
{
 public bool TransactionScopeRequired
 {get;set;}
 //More members
}

The default value of TransactionScopeRequired is false, which is why by default the
service has no ambient transaction. Setting TransactionScopeRequired to true provides
the operation with an ambient transaction:

class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;

314 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 Debug.Assert(transaction != null);
 }
}

If the client’s transaction is propagated to the service, WCF will set the client’s trans-
action as the operation’s ambient transaction. If not, WCF will create a new transaction
for that operation and set the new transaction as the ambient transaction.

The service class constructor does not have a transaction: it can never
participate in the client’s transaction, and you cannot ask WCF to scope
it with a transaction. Unless you manually create a new ambient trans-
action (as shown later), do not perform transactional work in the service
constructor and never expect to participate in the transaction of the
client that created the instance inside the constructor.

Figure 7-6 demonstrates which transaction a WCF service uses as a product of the
binding configuration, the contract operation, and the local operation behavior
attribute.

Figure 7-6. Transaction propagation as the product of contract, binding, and operation behavior

In the figure, a nontransactional client calls Service 1. The operation contract is con-
figured with TransactionFlowOption.Allowed. Even though transaction flow is enabled
in the binding, since the client has no transaction, no transaction is propagated. The
operation behavior on Service 1 is configured to require a transaction scope. As a result,
WCF creates a new transaction for Service 1 (Transaction A in Figure 7-6). Service 1

Transactional Service Programming | 315

Download from Library of Wow! eBook <www.wowebook.com>

then calls three other services, each configured differently. The binding used for Service
2 has transaction flow enabled, and the operation contract mandates the flow of the
client transaction. Since the operation behavior is configured to require transaction
scope, WCF sets Transaction A as the ambient transaction for Service 2. The call to
Service 3 has the binding and the operation contract disallow transaction flow. How-
ever, since Service 3 has its operation behavior require a transaction scope, WCF creates
a new transaction for Service 3 (Transaction B) and sets it as the ambient transaction
for Service 3. Similar to Service 3, the call to Service 4 has the binding and the operation
contract disallow transaction flow. But since Service 4 does not require a transaction
scope, it has no ambient transaction.

Transaction Propagation Modes
Which transaction the service uses is determined by the flow property of the binding
(two values), the flow option in the operation contract (three values), and the value of
the transaction scope property in the operation behavior (two values). There are there-
fore 12 possible configuration settings. Out of these 12, 4 are inconsistent and are
precluded by WCF (such as flow disabled in the binding, yet mandatory flow in the
operation contract) or are just plain impractical or inconsistent. Table 7-2 lists the
remaining eight permutations.†

Table 7-2. Transaction modes as the product of binding, contract, and behavior

Binding transaction flow TransactionFlowOption
TransactionScopeRe-
quired Transaction mode

False Allowed False None

False Allowed True Service

False NotAllowed False None

False NotAllowed True Service

True Allowed False None

True Allowed True Client/Service

True Mandatory False None

True Mandatory True Client

Those eight permutations actually result in only four transaction propagation modes.
I call these four modes Client/Service, Client, Service, and None. Table 7-2 uses bold
type to indicate the recommended way to configure each mode. Each of these modes
has its place in designing your application, and understanding how to select the correct
mode is not only a key to sound design, but also greatly simplifies thinking about and
configuring transaction support.

† I first presented my designation of transaction propagation modes in the article “WCF Transaction
Propagation” (MSDN Magazine, May 2007).

316 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Client/Service transaction mode

The Client/Service mode, as its name implies, ensures the service uses the client’s
transaction if possible, or a service-side transaction when the client does not have a
transaction. To configure this mode:

1. Select a transactional binding and enable transaction flow by setting Transaction
Flow to true.

2. Set the transaction flow option in the operation contract to TransactionFlow
Option.Allowed.

3. Set the TransactionScopeRequired property of the operation behavior to true.

The Client/Service mode is the most decoupled configuration, because in this mode
the service minimizes its assumptions about what the client is doing. The service will
join the client’s transaction if the client has a transaction to flow, which is always good
for overall system consistency: if the service has a transaction separate from that of the
client, one of those transactions could commit while the other aborts, leaving the system
in an inconsistent state. However, if the service joins the client’s transaction, all the
work done by the client and the service (and potentially other services the client calls)
will be committed or aborted as one atomic operation. If the client does not have a
transaction, the service still requires the protection of a transaction, so this mode pro-
vides a contingent transaction to the service by making it the root of a new transaction.

Example 7-2 shows a service configured for the Client/Service transaction mode.

Example 7-2. Configuring for the Client/Service transaction mode

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void MyMethod();
}

class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction != null);
 }
}

Note in Example 7-2 that the service can assert that it always has a transaction, but it
cannot assume or assert whether it is the client’s transaction or a locally created one.
The Client/Service mode is applicable when the service can be used standalone or as
part of a bigger transaction. When you select this mode, you should be mindful of
potential deadlocks—if the resulting transaction is a service-side transaction, it may

Transactional Service Programming | 317

Download from Library of Wow! eBook <www.wowebook.com>

deadlock with other transactions trying to access the same resources, because the re-
sources will isolate access per transaction and the service-side transaction will be a new
transaction. When you use the Client/Service mode, the service may or may not be the
root of the transaction, and the service must not behave differently when it is the root
and when it is joining the client’s transaction.

Requiring transaction flow

The Client/Service mode requires the use of a transaction-aware binding with transac-
tion flow enabled, but this is not enforced by WCF at service load time. To tighten this
loose screw, you can use my BindingRequirementAttribute:

[AttributeUsage(AttributeTargets.Class)]
public class BindingRequirementAttribute : Attribute,IServiceBehavior
{
 public bool TransactionFlowEnabled //Default is false
 {get;set;}
 //More members
}

You apply the attribute directly on the service class. The default of TransactionFlow
Enabled is false. However, when you set it to true, per endpoint, if the contract of the
endpoint has at least one operation with the TransactionFlow attribute configured with
TransactionFlowOption.Allowed, the BindingRequirement attribute
will enforce that the endpoint uses a transaction-aware binding with the
TransactionFlowEnabled property set to true:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void MyMethod();
}

[BindingRequirement(TransactionFlowEnabled = true)]
class MyService : IMyContract
{...}

To enforce the binding requirement, in the case of a mismatch an
InvalidOperationException is thrown when the host is launched. Example 7-3 shows
a somewhat simplified implementation of the BindingRequirement attribute.

Example 7-3. BindingRequirement attribute implementation

[AttributeUsage(AttributeTargets.Class)]
public class BindingRequirementAttribute : Attribute,IServiceBehavior
{
 public bool TransactionFlowEnabled
 {get;set;}

 void IServiceBehavior.Validate(ServiceDescription description,
 ServiceHostBase host)

318 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 {
 if(TransactionFlowEnabled == false)
 {
 return;
 }
 foreach(ServiceEndpoint endpoint in description.Endpoints)
 {
 foreach(OperationDescription operation in endpoint.Contract.Operations)
 {
 TransactionFlowAttribute attribute =
 operation.Behaviors.Find<TransactionFlowAttribute>();
 if(attribute != null)
 {
 if(attribute.Transactions == TransactionFlowOption.Allowed)
 {
 try
 {
 dynamic binding = endpoint.Binding;
 if(binding.TransactionFlow == false)
 {
 throw new InvalidOperationException(...);
 }
 continue;
 }
 catch(RuntimeBinderException)//Not transaction aware binding
 {
 throw new InvalidOperationException(...);
 }
 }
 }
 }
 }
 }
 void IServiceBehavior.AddBindingParameters(...)
 {}
 void IServiceBehavior.ApplyDispatchBehavior(...)
 {}
}

The BindingRequirementAttribute class is a service behavior, so it supports the
IServiceBehavior interface introduced in Chapter 6. The Validate() method of
IServiceBehavior is called during the host launch time, enabling you to abort the service
load sequence. The first thing Validate() does is to check whether the
TransactionFlowEnabled property is set to false. If so, Validate() does nothing and
returns. If TransactionFlowEnabled is true, Validate() iterates over the collection of
service endpoints available in the service description. For each endpoint, it obtains the
collection of operations, and for each operation, it accesses its collection of operation
behaviors. All operation behaviors implement the IOperationBehavior interface, in-
cluding the TransactionFlowAttribute. If the TransactionFlowAttribute behavior is
found, Validate() checks whether the attribute is configured with Transaction
FlowOption.Allowed. If so, Validate() checks the binding. For each transaction-aware
binding, it verifies that the TransactionFlow property is set to true, and if not, it throws

Transactional Service Programming | 319

Download from Library of Wow! eBook <www.wowebook.com>

an InvalidOperationException. Validate() also throws an InvalidOperationException
if a nontransactional binding is used for the endpoint.

The technique shown in Example 7-3 for implementing the
BindingRequirement attribute is a general-purpose technique you can use
to enforce any binding requirement or custom validation rule. For ex-
ample, the BindingRequirement attribute has another property, called
WCFOnly, that enforces the use of WCF-to-WCF bindings only, and a
ReliabilityRequired property that insists on the use of a reliable binding
with reliability enabled:

[AttributeUsage(AttributeTargets.Class)]
public class BindingRequirementAttribute :
 Attribute,IServiceBehavior
{
 public bool ReliabilityRequired
 {get;set;}
 public bool TransactionFlowEnabled
 {get;set;}
 public bool WCFOnly
 {get;set;}
}

Client transaction mode

The Client mode ensures the service uses only the client’s transaction. To configure
this mode:

1. Select a transactional binding and enable transaction flow by setting Transaction
Flow to true.

2. Set the transaction flow option in the operation contract to Transaction
FlowOption.Mandatory.

3. Set the TransactionScopeRequired property of the operation behavior to true.

You should select the Client transaction mode when the service must use its client’s
transactions and can never be used standalone, by design. The main motivation for this
is to maximize overall system consistency, since the work of the client and the service
is always treated as one atomic operation. Another motivation is that by having the
service share the client’s transaction you reduce the potential for a deadlock, because
all resources accessed will enlist in the same transaction. This means no other trans-
actions will compete for access to the same resources and underlying locks.

Example 7-4 shows a service configured for the Client transaction mode.

Example 7-4. Configuring for the Client transaction mode

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Mandatory)]

320 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 void MyMethod();
}
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction.TransactionInformation.
 DistributedIdentifier != Guid.Empty);
 }
}

Note in Example 7-4 that MyMethod() asserts the fact that the ambient transaction is a
distributed one, meaning it originated with the client.

Service transaction mode

The Service mode ensures that the service always has a transaction, separate from any
transaction its clients may or may not have. The service will always be the root of a new
transaction. To configure this mode:

1. You can select any binding. If you select a transaction-aware binding, leave its
default value for the TransactionFlow property, or explicitly set it to false.

2. Do not apply the TransactionFlow attribute, or configure it with
TransactionFlowOption.NotAllowed.

3. Set the TransactionScopeRequired property of the operation behavior to true.

You should select the Service transaction mode when the service needs to perform
transactional work outside the scope of the client’s transaction (e.g., when you want
to perform some logging or audit operations, or when you want to publish events to
subscribers regardless of whether the client’s transaction commits or aborts). As an
example, consider a logbook service that performs error logging into a database. When
an error occurs on the client side, the client will use the logbook service to log it or
some other entries. But after it’s logged, the error on the client side aborts the client’s
transaction. If the service were to use the client’s transaction, once the client’s trans-
action aborts, the logged error would be discarded from the database, and you would
have no trace of it (defeating the purpose of the logging in the first place). Configuring
the service to have its own transaction, on the other hand, ensures that the log of the
error is committed even when the client’s transaction aborts.

The downside, of course, is the potential for jeopardizing the consistency of the system,
because the service’s transaction could abort while the client’s commits. To avoid this
pitfall, if the service-side transaction aborts, WCF throws an exception on the calling
client side, even if the client was not using transactions or if the binding did not prop-
agate any transaction. I therefore recommend that you only choose the Service mode
if you have a supporting heuristic. The heuristic must be that the service’s transaction
is much more likely to succeed and commit than the client’s transaction. In the example

Transactional Service Programming | 321

Download from Library of Wow! eBook <www.wowebook.com>

of the logging service, this is often the case, because once deterministic logging is in
place it will usually work (unlike business transactions, which may fail for a variety of
reasons).

In general, you should be extremely careful when using the Service transaction mode,
and verify that the two transactions (the client’s and the service’s) do not jeopardize
consistency if one aborts and the other commits. Logging and auditing services are the
classic candidates for this mode.

Example 7-5 shows a service configured for the Service transaction mode.

Example 7-5. Configuring for the Service transaction mode

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction.TransactionInformation.
 DistributedIdentifier == Guid.Empty);
 }
}

Note in Example 7-5 that the service can assert that it actually has a local transaction.

None transaction mode

If the None transaction mode is configured, the service never has a transaction. To
configure this mode:

1. You can select any binding. If you select a transaction-aware binding, leave its
default value for the TransactionFlow property, or explicitly set it to false.

2. Do not apply the TransactionFlow attribute, or configure it with TransactionFlow
Option.NotAllowed.

3. You do not need to set the TransactionScopeRequired property of the operation
behavior, but if you do, you should set it to false.

The None transaction mode is useful when the operations performed by the service are
nice to have but not essential, and should not abort the client’s transaction if they fail.
For example, a service that prints a receipt for a money transfer should not be able to
abort the client transaction if it fails because the printer is out of paper. Another example
where the None mode is useful is when you want to provide some custom behavior,
and you need to perform your own programmatic transaction support or manually

322 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

enlist resources (for example, when calling legacy code, as in Example 7-1). Obviously,
there is danger when using the None mode because it can jeopardize the system’s con-
sistency. Say the calling client has a transaction and it calls a service configured for the
None transaction mode. If the client aborts its transaction, changes made to the system
state by the service will not roll back. Another pitfall of this mode is that if a service
configured for the None mode calls another service configured for the Client mode, the
call will fail because the calling service has no transaction to propagate.

Example 7-6 shows a service configured for the None transaction mode.

Example 7-6. Configuring for the None transaction mode

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction == null);
 }
}

Note that the service in Example 7-6 can assert that it has no ambient transaction.

The None mode allows you to have a nontransactional service be called by a transac-
tional client. As stated previously, the None mode is typically used for services that
perform nice-to-have operations. The problem with this usage is that any exception
thrown by the None service will abort the calling client’s transaction, which should be
avoided for mere nice-to-have operations. The solution is to have the client catch all
exceptions from the None service to avoid contaminating the client’s transaction. For
example, here’s how a client could call the service from Example 7-6:

MyContractClient proxy = new MyContractClient();
try
{
 proxy.MyMethod();
 proxy.Close();
}
catch
{}

You need to encase the call to the None service in a try/catch statement
even when configuring that service’s operations as one-way operations,
because one-way operations can still throw delivery exceptions.

Transactional Service Programming | 323

Download from Library of Wow! eBook <www.wowebook.com>

Choosing a service transaction mode

The Service and None transaction modes are somewhat esoteric. They are useful in the
context of the particular scenarios I’ve mentioned, but in other scenarios they harbor
the danger of jeopardizing the system’s consistency. You should typically use the Cli-
ent/Service or Client transaction mode. Choose between these two based on the ability
of the service to be used standalone (that is, based on the consistency consequences of
using the service in its own transaction, and the potential for a deadlock). Avoid the
Service and None modes.

Voting and Completion
Although WCF (and .NET underneath) is responsible for every aspect of transaction
propagation and the overall management of the two-phase commit protocol across the
resource managers, it does not itself know whether a transaction should commit or
abort. WCF simply has no way of knowing whether the changes made to the system
state are consistent (that is, if they make sense). Every participating service must vote
on the outcome of the transaction and voice an opinion about whether the transaction
should commit or abort. In addition, WCF does not know when to start the two-phase
commit protocol; that is, when the transaction ends and when all the services are done
with their work. That too is something the services (actually, just the root service) need
to indicate to WCF. WCF offers two programming models for services to vote on the
outcome of the transaction: a declarative model and an explicit model. As you will see,
voting is strongly related to completing and ending the transaction.

Declarative voting

WCF can automatically vote on behalf of a service to commit or abort the transaction.
Automatic voting is controlled via the Boolean TransactionAutoComplete property of
the OperationBehavior attribute:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationBehaviorAttribute : Attribute,...
{
 public bool TransactionAutoComplete
 {get;set;}
 //More members
}

The TransactionAutoComplete property defaults to true, so these two definitions are
equivalent:

[OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = true)]
public void MyMethod()
{...}

[OperationBehavior(TransactionScopeRequired = true)]

324 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

public void MyMethod()
{...}

When this property is set to true, if there were no unhandled exceptions in the oper-
ation, WCF will automatically vote to commit the transaction. If there was an unhan-
dled exception, WCF will vote to abort the transaction. Note that even though WCF
has to catch the exception in order to abort the transaction, it then rethrows it, allowing
it to go up the call chain.

In order to rely on automatic voting, the service method must have
TransactionScopeRequired set to true, because automatic voting only works when it
was WCF that set the ambient transaction for the service.

It is very important when TransactionAutoComplete is set to true to avoid catching and
handling exceptions and explicitly voting to abort:

//Avoid
[OperationBehavior(TransactionScopeRequired = true)]
public void MyMethod()
{
 try
 {
 ...
 }
 catch
 {
 Transaction.Current.Rollback();
 }
}

Even though your service catches the exception, the operation will still result in an
exception since WCF will throw an exception such as TransactionAbortedException on
the client side. WCF does that because your service could be part of a much larger
transaction that spans multiple services, machines, and sites. All other parties involved
in this transaction are working hard, consuming system resources and locking out other
parties, yet it is all in vain because your service has voted to abort, and nobody knows
about it. By returning an exception to the client WCF ensures that the exception will
abort all objects in its path, eventually reaching the root service or client and terminating
the transaction. This will improve throughput and performance. If you want to catch
the exception for some local handling such as logging, make sure to rethrow it:

[OperationBehavior(TransactionScopeRequired = true)]
public void MyMethod()
{
 try
 {
 ...
 }
 catch
 {

Transactional Service Programming | 325

Download from Library of Wow! eBook <www.wowebook.com>

 /* Some local handling here */
 throw;
 }
}

Explicit voting

Explicit voting is required when TransactionAutoComplete is set to false. You can only
set TransactionAutoComplete to false when TransactionScopeRequired is set to true.

When declarative voting is disabled, WCF will vote to abort all transactions by default,
regardless of exceptions or a lack thereof. You must explicitly vote to commit using the
SetTransactionComplete() method of the operation context:

public sealed class OperationContext : ...
{
 public void SetTransactionComplete();
 //More members
}

Make sure you do not perform any work, especially transactional work, after the call
to SetTransactionComplete(). Calling SetTransactionComplete() should be the last line
of code in the operation just before it returns:

[OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
public void MyMethod()
{
 /* Do transactional work here, then: */
 OperationContext.Current.SetTransactionComplete();
}

If you try to perform any transactional work (including accessing Transaction.
Current) after the call to SetTransactionComplete(), WCF will throw an
InvalidOperationException and abort the transaction.

Not performing any work after SetTransactionComplete() ensures that any exception
raised before the call to SetTransactionComplete() will cause SetTransactionCom
plete() to be skipped, so WCF will default to aborting the transaction. As a result,
there is no need to catch the exception, unless you want to do some local handling.
As with declarative voting, since the method aborts, WCF will return a
TransactionAbortedException to the client. In the interest of readability, if you do catch
the exception, make sure to rethrow it:

[OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
public void MyMethod()
{
 try
 {
 /* Do transactional work here, then: */
 OperationContext.Current.SetTransactionComplete();
 }

326 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 catch
 {
 /* Do some error handling then */
 throw;
 }
}

Explicit voting is designed for the case when the vote depends on other information
obtained throughout the transaction (besides exceptions and errors). However, for the
vast majority of applications and services, you should prefer the simplicity of declarative
voting.

Setting TransactionAutoComplete to false should not be done lightly. In
fact, it is only allowed for per-session services with required session
mode, because it has drastic effects on the service instance’s affinity to
a transaction. (In order to obtain information for the vote throughout a
transaction, it must be the same transaction and the same instance.)
You will see later why, when, and how you can set
TransactionAutoComplete to false.

Terminating a transaction

When the transaction ends is determined by who starts it. Consider a client that either
does not have a transaction or just does not propagate its transaction to the service. If
that client calls a service operation configured with TransactionScopeRequired set to
true, that service operation becomes the root of the transaction. The root service can
call other services and propagate the transaction to them. The transaction will end once
the root operation completes the transaction, which it can do either declaratively by
setting TransactionAutoComplete to true, or explicitly by setting it to false and calling
SetTransactionComplete(). This is partly why both TransactionAutoComplete and Set
TransactionComplete() are named the way they are; they are used for more than just
voting; they complete and terminate the transaction for a root service. Note, however,
that any of the downstream services called by the root operation can only use them to
vote on the transaction, not to complete it. Only the root both votes on and completes
the transaction.

When a non-service client starts the transaction, the transaction ends when the client
disposes of the transaction object. You will see more on that in the section on explicit
transaction programming.

Transaction Isolation
In general, the more isolated transactions are, the more consistent their results will be.
The highest degree of isolation is called Serializable. At this level, the results obtained
from a set of concurrent transactions are identical to the results that would be obtained
by running each transaction serially. To achieve this goal, all the resources a transaction
touches must be locked from any other transaction. If other transactions try to access

Transactional Service Programming | 327

Download from Library of Wow! eBook <www.wowebook.com>

those resources, they are blocked and cannot continue executing until the original
transaction commits or aborts.

The isolation level is defined using the IsolationLevel enumeration, found in the
System.Transactions namespace:

public enum IsolationLevel
{
 Serializable,
 RepeatableRead,
 ReadCommitted,
 ReadUncommitted,
 Snapshot, //Special form of ReadCommitted supported by SQL 2005 and later
 Chaos, //No isolation whatsoever
 Unspecified
}

The difference between the four isolation levels (ReadUncommitted, ReadCommitted,
RepeatableRead, and Serializable) is in the way the different levels use read and write
locks. A lock can be held only while the transaction is accessing the data in the resource
manager, or it can be held until the transaction is committed or aborted: the former is
better for throughput; the latter for consistency. The two kinds of locks and the two
kinds of operations (read/write) give four basic isolation levels. However, not all re-
source managers support all levels of isolation, and they may elect to take part in the
transaction at a higher level than the one configured for it. Every isolation level apart
from Serializable is susceptible to some sort of inconsistency resulting from more than
one transaction accessing the same information.

Selecting an isolation level other than Serializable is commonly used for read-intensive
systems, and it requires a solid understanding of transaction processing theory and of
the semantics of the transaction itself, the concurrency issues involved, and the con-
sequences for system consistency. The reason other isolation levels are available is that
a high degree of isolation comes at the expense of overall system throughput, because
the resource managers involved have to hold on to both read and write locks for as long
as a transaction is in progress, and all other transactions are blocked. However, there
are some situations where you may be willing to trade system consistency for through-
put by lowering the isolation level. Imagine, for example, a banking system where one
of the requirements is to retrieve the total amount of money in all customer accounts
combined. Although it would be possible to execute that transaction with the
Serializable isolation level, if the bank has hundreds of thousands of accounts, it might
take quite a while to complete. The transaction might also time out and abort, because
some accounts could be accessed by other transactions at the same time. However, the
number of accounts may be a blessing in disguise. On average (statistically speaking),
if the transaction is allowed to run at a lower transaction level, it may get the wrong
balance for some accounts, but those incorrect balances will tend to cancel each other
out. The actual resulting error may be acceptable for the bank’s needs.

328 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

In WCF, the isolation level is a service behavior, so all service operations use the same
configured isolation level. Isolation is configured via the TransactionIsolationLevel
property of the ServiceBehavior attribute:

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : Attribute,...
{
 public IsolationLevel TransactionIsolationLevel
 {get;set;}
 //More members
}

You can only set the TransactionIsolationLevel property if the service has at least one
operation configured with TransactionScopeRequired set to true. There is no way to
configure the isolation level in the host configuration file.

Isolation and transaction flow

The default value of TransactionIsolationLevel is IsolationLevel.Unspecified, so
these two statements are equivalent:

class MyService : IMyContract
{...}

[ServiceBehavior(TransactionIsolationLevel = IsolationLevel.Unspecified)]
class MyService : IMyContract
{...}

When a service configured with IsolationLevel.Unspecified joins the client transac-
tion, the service will use the client’s isolation level. However, if the service specifies an
isolation level other than IsolationLevel.Unspecified, the client must match that level,
and a mismatch will throw an exception.

When the service is the root of the transaction and the service is configured
with IsolationLevel.Unspecified, WCF will set the isolation level to
IsolationLevel.Serializable. If the root service provides a level other than Isolation
Level.Unspecified, WCF will use that specified level.

Transaction Timeout
The introduction of isolation locks raises the possibility of a deadlock when one trans-
action tries to access a resource manager owned by another. If a transaction takes a
long time to complete, it may be indicative of a transactional deadlock. To address that
possibility, the transaction will automatically abort if it takes longer than a predeter-
mined timeout (60 seconds, by default) to complete, even if no exceptions took place.
Once it’s aborted, any attempt to flow that transaction to a service will result in an
exception.

Transactional Service Programming | 329

Download from Library of Wow! eBook <www.wowebook.com>

The timeout is a service behavior property, and all operations across all endpoints of
the service use the same timeout. You configure the timeout by setting the Trans
actionTimeout time-span string property of ServiceBehaviorAttribute:

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : Attribute,...
{
 public string TransactionTimeout
 {get;set;}
 //More members
}

For example, you would use the following to configure a 30-second timeout:

[ServiceBehavior(TransactionTimeout = "00:00:30")]
class MyService : ...
{...}

You can also configure the transaction timeout in the host config file by creating a
custom behavior section and referencing it in the service section:

<services>
 <service name = "MyService" behaviorConfiguration = "ShortTransactionBehavior">
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "ShortTransactionBehavior"
 transactionTimeout = "00:00:30"
 />
 </serviceBehaviors>
</behaviors>

The maximum allowed transaction timeout is 10 minutes, and this value will be used
even when a larger value is specified. If you want to override the default maximum
timeout of 10 minutes and specify, say, 40 minutes, add (or modify) the following in
machine.config:

<configuration>
 <system.transactions>
 <machineSettings maxTimeout = "00:40:00"/>
 </system.transactions>
</configuration>

Setting any value in machine.config will affect all applications on the
machine.

Configuring such a long timeout is useful mostly for debugging, when you want to try
to isolate a problem in your business logic by stepping through your code and you do
not want the transaction you’re debugging to time out while you figure out the problem.

330 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Be extremely careful with using a long timeout in all other cases, because it means there
are no safeguards against transaction deadlocks.

You may also want to set the timeout to a value less than the default 60 seconds. You
typically do this in two cases. The first is during development, when you want to test
the way your application handles aborted transactions. By setting the timeout to a small
value (such as one millisecond), you can cause your transactions to fail so you can
observe your error-handling code.

The second case where it can be useful to set the transaction timeout to less than the
default value is when you have reason to believe that a service is involved in more than
its fair share of resource contention, resulting in deadlocks. If you are unable to redesign
and redeploy the service, you want to abort the transaction as soon as possible and not
wait for the default timeout to expire.

Transaction flow and timeout

When a transaction flows into a service that is configured with a shorter timeout than
that of the incoming transaction, the transaction adopts the service’s timeout and the
service gets to enforce the shorter timeout. This behavior is designed to support re-
solving deadlocks in problematic services, as just discussed. When a transaction flows
into a service that is configured with a longer timeout than the incoming transaction,
the service configuration has no effect.

Explicit Transaction Programming
The transactional programming model described so far can only be used declaratively
by transactional services. Non-service clients, nontransactional services, and
plain .NET objects called downstream by a service cannot take advantage of it. For all
these cases, WCF relies on the transactional infrastructure available with .NET in the
System.Transactions namespace. You may also rely on System.Transactions even in
transactional services, when exploiting some advanced features such as transaction
events, cloning, asynchronous commits, and manual transactions. I described the
capabilities of System.Transactions in my MSDN whitepaper “Introducing Sys-
tem.Transactions in the .NET Framework 2.0” (published April 2005; updated
December 2005). The following sections contain excerpts from that article describing
how to use the core aspects of System.Transactions in the context of WCF. Please refer
to the whitepaper for detailed discussions of the rest of the features.

The TransactionScope Class
The most common way of using transactions explicitly is via the TransactionScope class:

public sealed class TransactionScope : IDisposable
{
 public TransactionScope();

Explicit Transaction Programming | 331

Download from Library of Wow! eBook <www.wowebook.com>

 //Additional constructors

 public void Complete();
 public void Dispose();
}

As its name implies, the TransactionScope class is used to scope a code section with a
transaction, as demonstrated in Example 7-7.

Example 7-7. Using TransactionScope

using(TransactionScope scope = new TransactionScope())
{
 /* Perform transactional work here */

 //No errors — commit transaction
 scope.Complete();
}

The scope constructor can create a new LTM transaction and make it the ambient
transaction by setting Transaction.Current, or can join an existing ambient transaction.
TransactionScope is a disposable object—if the scope creates a new transaction, the
transaction will end once the Dispose() method is called (this is done at the end of the
using statement in Example 7-7). The Dispose() method also restores the original am-
bient transaction (null, in the case of Example 7-7).

Finally, if the TransactionScope object is not used inside a using statement, it will be-
come eligible for garbage collection once the transaction timeout has expired and the
transaction is aborted.

TransactionScope voting

The TransactionScope object has no way of knowing whether the transaction should
commit or abort. To address this, every TransactionScope object has a consistency bit,
which by default is set to false. You can set the consistency bit to true by calling the
Complete() method. Note that you can only call Complete() once; subsequent calls to
Complete() will raise an InvalidOperationException. This is deliberate, to encourage
developers to have no transactional code after the call to Complete().

If the transaction ends (due to calling Dispose() or garbage collection) and the consis-
tency bit is set to false, the transaction will abort. For example, the following scope
object will abort its transaction, because the consistency bit is never changed from its
default value:

using(TransactionScope scope = new TransactionScope())
{}

By having the call to Complete() as the last action in the scope, you have an automated
way for voting to abort in the case of an error: any exception thrown inside the scope
will skip over the call to Complete(), the finally block in the using statement will
dispose of the TransactionScope object, and the transaction will abort. On the other

332 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

hand, if you do call Complete() and the transaction ends with the consistency bit set to
true, as in Example 7-7, the transaction will try to commit. Note that after calling
Complete(), you cannot access the ambient transaction, and an attempt to do so will
result in an InvalidOperationException. You can access the ambient transaction again
(via Transaction.Current) once the scope object has been disposed of.

The fact that the code in the scope called Complete() does not guarantee that the trans-
action will be committed. Even if you call Complete() and the scope is disposed of, all
that will do is try to commit the transaction. The ultimate success or failure of that
attempt depends upon the outcome of the two-phase commit protocol, which may
involve multiple resources and services of which your code is unaware. As a result,
Dispose() will throw a TransactionAbortedException if it fails to commit the transac-
tion. You can catch and handle that exception, perhaps by alerting the user, as shown
in Example 7-8.

Example 7-8. TransactionScope and error handling

try
{
 using(TransactionScope scope = new TransactionScope())
 {
 /* Perform transactional work here */
 //No errors — commit transaction
 scope.Complete();
 }
}
catch(TransactionAbortedException exception)
{
 Trace.WriteLine(exception.Message);
}
catch //Any other exception took place
{
 Trace.WriteLine("Cannot complete transaction");
 throw;
}

Transaction Flow Management
Transaction scopes can nest both directly and indirectly. In Example 7-9, scope2 simply
nests directly inside scope1.

Example 7-9. Direct scope nesting

using(TransactionScope scope1 = new TransactionScope())
{
 using(TransactionScope scope2 = new TransactionScope())
 {
 scope2.Complete();
 }
 scope1.Complete();
}

Explicit Transaction Programming | 333

Download from Library of Wow! eBook <www.wowebook.com>

The scope can also nest indirectly. This happens when you call a method that uses
TransactionScope from within a method that uses its own scope, as is the case with the
RootMethod() in Example 7-10.

Example 7-10. Indirect scope nesting

void RootMethod()
{
 using(TransactionScope scope = new TransactionScope())
 {
 /* Perform transactional work here */
 SomeMethod();
 scope.Complete();
 }
}
void SomeMethod()
{
 using(TransactionScope scope = new TransactionScope())
 {
 /* Perform transactional work here */
 scope.Complete();
 }
}

A transaction scope can also nest in a service method, as in Example 7-11. The service
method may or may not be transactional.

Example 7-11. Scope nesting inside a service method

class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 using(TransactionScope scope = new TransactionScope())
 {
 scope.Complete();
 }
 }
}

If the scope creates a new transaction for its use, it is called the root scope. Whether or
not a scope becomes a root scope depends on the scope configuration and the presence
of an ambient transaction. Once a root scope is established, there is an implicit rela-
tionship between it and all its nested scopes and any downstream services called.

The TransactionScope class provides several overloaded constructors that accept an
enum of the type TransactionScopeOption:

public enum TransactionScopeOption
{
 Required,
 RequiresNew,
 Suppress

334 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

}
public sealed class TransactionScope : IDisposable
{
 public TransactionScope(TransactionScopeOption scopeOption);
 public TransactionScope(TransactionScopeOption scopeOption,
 TransactionOptions transactionOptions);
 public TransactionScope(TransactionScopeOption scopeOption,
 TimeSpan scopeTimeout);
 //Additional constructors and members
}

The value of TransactionScopeOption lets you control whether the scope takes part in
a transaction and, if so, whether it will join the ambient transaction or will be the root
scope of a new transaction.

For example, here is how you specify the value of TransactionScopeOption in the scope’s
constructor:

using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Required))
{...}

The default value for the scope option is TransactionScopeOption.Required, meaning
this is the value used when you call one of the constructors that does not accept a
TransactionScopeOption parameter. So, these two definitions are equivalent:

using(TransactionScope scope = new TransactionScope())
{...}

using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Required))
{...}

The TransactionScope object determines which transaction to belong to when it is con-
structed. Once that’s been determined, the scope will always belong to that transaction.
TransactionScope bases its decision on two factors: whether an ambient transaction is
present, and the value of the TransactionScopeOption parameter.

A TransactionScope object has three options:

• Join the ambient transaction

• Be a new scope root (that is, start a new transaction and have that transaction be
the new ambient transaction inside its own scope)

• Not take part in a transaction at all

If the scope is configured with TransactionScopeOption.Required and an ambient trans-
action is present, the scope will join that transaction. If, on the other hand, there is no
ambient transaction, the scope will create a new transaction and become the root scope.

If the scope is configured with TransactionScopeOption.RequiresNew, it will always be
a root scope. It will start a new transaction, and its transaction will be the new ambient
transaction inside the scope.

Explicit Transaction Programming | 335

Download from Library of Wow! eBook <www.wowebook.com>

If the scope is configured with TransactionScopeOption.Suppress, it will never be part
of a transaction, regardless of whether an ambient transaction is present. A scope con-
figured with TransactionScopeOption.Suppress will always have null as its ambient
transaction.

Voting inside a nested scope

It is important to realize that although a nested scope can join the ambient transaction
of its parent scope, the two scope objects will have two distinct consistency bits. Calling
Complete() in the nested scope has no effect on the parent scope:

using(TransactionScope scope1 = new TransactionScope())
{
 using(TransactionScope scope2 = new TransactionScope())
 {
 scope2.Complete();
 }
 //scope1's consistency bit is still false
}

Only if all the scopes, from the root scope down to the last nested scope, vote to commit
the transaction will the transaction commit. In addition, only the root scope dictates
the life span of the transaction. When a TransactionScope object joins an ambient
transaction, disposing of that scope does not end the transaction. The transaction ends
only when the root scope is disposed of, or when the service method that started the
transaction returns.

TransactionScopeOption.Required

TransactionScopeOption.Required is not just the most commonly used value; it is also
the most decoupled value. If your scope has an ambient transaction, the scope will join
that ambient transaction to improve consistency. If there is no ambient transaction to
join, the scope will provide the code with a new ambient transaction. When
TransactionScopeOption.Required is used, the code inside the TransactionScope must
not behave differently when it is the root and when it is just joining the ambient trans-
action. It should operate identically in both cases. On the service side, the most com-
mon use for TransactionScopeOption.Required is by non-service downstream classes
called by the service, as shown in Example 7-12.

Example 7-12. Using TransactionScopeOption.Required in a downstream class

class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 MyClass obj = new MyClass();
 obj.SomeMethod();
 }
}

336 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

class MyClass
{
 public void SomeMethod()
 {
 using(TransactionScope scope = new TransactionScope())
 {
 //Do some work then
 scope.Complete();
 }
 }
}

While the service itself can use TransactionScopeOption.Required directly, such a prac-
tice adds no value:

class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 //One transaction only
 using(TransactionScope scope = new TransactionScope())
 {
 //Do some work then
 scope.Complete();
 }
 }
}

The reason is obvious: the service can simply ask WCF to scope the operation with a
transaction scope by setting TransactionScopeRequired to true (this is also the origin
of that property’s name). Note that even though the service may use declarative voting,
any downstream (or directly nested) scope must still explicitly call Complete() in order
for the transaction to commit. The same is true when the service method uses explicit
voting:

[OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
public void MyMethod()
{
 using(TransactionScope scope = new TransactionScope())
 {
 //Do some work then
 scope.Complete();
 }
 /* Do transactional work here, then: */
 OperationContext.Current.SetTransactionComplete();
}

In short, voting to abort in a scope with TransactionScopeRequired nested in a service
call will abort the service’s transaction regardless of exceptions or the use of declarative
voting (via TransactionAutoComplete) or explicit voting by the service (via Set
TransactionComplete()).

Explicit Transaction Programming | 337

Download from Library of Wow! eBook <www.wowebook.com>

TransactionScopeOption.RequiresNew

Configuring the scope with TransactionScopeOption.RequiresNew is useful when you
want to perform transactional work outside the scope of the ambient transaction (for
example, when you want to perform some logging or audit operations, or when you
want to publish events to subscribers, regardless of whether your ambient transaction
commits or aborts):

class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 //Two distinct transactions
 using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.RequiresNew))
 {
 //Do some work then
 scope.Complete();
 }
 }
}

Note that you must complete the scope in order for the new transaction to commit.
You might consider encasing a scope that uses TransactionScopeOption.RequiresNew in
a try and catch block to isolate it from the service’s ambient transaction.

You should be extremely careful when using TransactionScopeOption.RequiresNew, and
verify that the two transactions (the ambient transaction and the one created for your
scope) do not jeopardize consistency if one aborts and the other commits.

TransactionScopeOption.Suppress

TransactionScopeOption.Suppress is useful for both the client and the service when the
operations performed by the code section are nice to have but should not
cause the ambient transaction to abort in the event that they fail.
TransactionScopeOption.Suppress allows you to have a nontransactional code section
inside a transactional scope or service operation, as shown in Example 7-13.

Example 7-13. Using TransactionScopeOption.Suppress

[OperationBehavior(TransactionScopeRequired = true)]
public void MyMethod()
{
 try
 {
 //Start of nontransactional section
 using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Suppress))
 {
 //Do nontransactional work here
 } //Restores ambient transaction here
 }

338 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 catch
 {}
}

Note in Example 7-13 that there is no need to call Complete() on the suppressed scope.
Another example where TransactionScopeOption.Suppress is useful is when you want
to provide some custom behavior and you need to perform your own programmatic
transaction support or manually enlist resources.

That said, you should be careful when mixing transactional scopes or service methods
with nontransactional scopes. That can jeopardize isolation and consistency, because
changes made to the system state inside the suppressed scope will not roll back along
with the containing ambient transaction. In addition, the nontransactional scope may
have errors, but those errors should not affect the outcome of the ambient transaction.
This is why, in Example 7-13, the suppressed scope is encased in a try and catch state-
ment that also suppresses any exception coming out of it.

Do not call a service configured for the Client transaction mode (basi-
cally, with mandatory transaction flow) inside a suppressed scope,
because that call is guaranteed to fail.

TransactionScope timeout

If the code inside the transactional scope takes a long time to complete, it may be
indicative of a transactional deadlock. To address that possibility, the transaction will
automatically abort if it takes longer than a predetermined timeout to complete (60
seconds, by default). You can configure the default timeout in the application config
file. For example, to configure a default timeout of 30 seconds, add this to the config file:

<system.transactions>
 <defaultSettings timeout = "00:00:30"/>
</system.transactions>

Placing the new default in the application config file affects all scopes used by all clients
and services in that application. You can also configure a timeout for a specific trans-
action scope. A few of the overloaded constructors of TransactionScope accept a value
of type TimeSpan, used to control the timeout of the transaction. For example:

public TransactionScope(TransactionScopeOption scopeOption,
 TimeSpan scopeTimeout);

To specify a timeout different from the default of 60 seconds, simply pass in the desired
value:

TimeSpan timeout = TimeSpan.FromSeconds(30);
using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Required,timeout))
{...}

When a TransactionScope joins the ambient transaction, if it specifies a shorter timeout
than the one the ambient transaction is set to, it has the effect of enforcing the new,

Explicit Transaction Programming | 339

Download from Library of Wow! eBook <www.wowebook.com>

shorter timeout on the ambient transaction; the transaction must end within the nested
time specified, or it is automatically aborted. If the scope’s timeout is greater than that
of the ambient transaction, it has no effect.

TransactionScope isolation level

If the scope is a root scope, by default the transaction will execute with the isolation
level set to Serializable. Some of the overloaded constructors of TransactionScope
accept a structure of the type TransactionOptions, defined as:

public struct TransactionOptions
{
 public IsolationLevel IsolationLevel
 {get;set;}
 public TimeSpan Timeout
 {get;set;}

 //Other members
}

Although you can use the TransactionOptions Timeout property to specify a timeout,
the main use for TransactionOptions is for specifying the isolation level. You can assign
into the TransactionOptions IsolationLevel property a value of the enum type
IsolationLevel presented earlier:

TransactionOptions options = new TransactionOptions();
options.IsolationLevel = IsolationLevel.ReadCommitted;
options.Timeout = TransactionManager.DefaultTimeout;

using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Required,options))
{...}

When a scope joins an ambient transaction, it must be configured to use exactly the
same isolation level as the ambient transaction; otherwise, an ArgumentException is
thrown.

Non-Service Clients
Although services can take advantage of TransactionScope, by far its primary use is by
non-service clients. Using a transaction scope is practically the only way a non-service
client can group multiple service calls into single transaction, as shown in Figure 7-7.

Having the option to create a root transaction scope enables the client to flow its trans-
action to services and to manage and commit the transaction based on the aggregated
result of the services, as shown in Example 7-14.

340 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Figure 7-7. A non-service client using a single transaction to call multiple services

Example 7-14. Using TransactionScope to call services in a single transaction

////////////////////////// Service Side ////////////////////////////
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void MyMethod();
}
[ServiceContract]
interface IMyOtherContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Mandatory)]
 void MyOtherMethod();
}
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
}
class MyOtherService : IMyOtherContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyOtherMethod()
 {...}
}
////////////////////////// Client Side ////////////////////////////
using(TransactionScope scope = new TransactionScope())
{
 MyContractClient proxy1 = new MyContractClient();
 proxy1.MyMethod();
 proxy1.Close();

 MyOtherContractClient proxy2 = new MyOtherContractClient();
 proxy2.MyOtherMethod();
 proxy2.Close();

 scope.Complete();
}

Explicit Transaction Programming | 341

Download from Library of Wow! eBook <www.wowebook.com>

//Can combine in single using block:
using(MyContractClient proxy3 = new MyContractClient())
using(MyOtherContractClient proxy4 = new MyOtherContractClient())
using(TransactionScope scope = new TransactionScope())
{
 proxy3.MyMethod();
 proxy4.MyOtherMethod();
 scope.Complete();
}

Service State Management
The sole purpose of transactional programming is to address the recovery challenge by
always leaving the system in a consistent state. The state of the system consists of all
the resources that were involved in the transaction, plus the in-memory clients and
service instances. Besides benefits such as auto-enlistment and participation in the two-
phase commit protocol, the basic and obvious advantage of using a resource manager
is that any change made to its state during a transaction will automatically roll back if
the transaction aborts. This, however, is not true when it comes to the in-memory
instance members and static members of the participating services, which means that
if the transaction aborts the system will not be left in a consistent state. The problem
is compounded by the fact that any transaction a service participates in may span mul-
tiple services, machines, and sites. Even if that service instance encounters no errors
and votes to commit the transaction, other parties across the service boundary may
eventually abort the transaction. If the service were to simply store its state in memory,
how would it know about the outcome of the transaction so that it would somehow
manually roll back the changes it had made to its state?

The solution to this instance state management problem is to develop the service as a
state-aware service and proactively manage its state. As explained in Chapter 4, a state-
aware service is not the same as a stateless service. If the service were truly stateless,
there would not be any problem with instance state rollback. As long as a transaction
is in progress, the service instance is allowed to maintain state in memory. Between
transactions, the service should store its state in a resource manager. That state resource
manager may be unrelated to any other business-logic-specific resource accessed during
the transaction, or it may be one and the same. At the beginning of the transaction, the
service should retrieve its state from the resource and, by doing so, enlist the resource
in the transaction. At the end of the transaction, the service should save its state back
to the resource manager.

The elegant thing about this technique is that it provides for state autorecovery. Any
changes made to the instance state will commit or roll back as part of the transaction.
If the transaction commits, the next time the service gets its state it will have the new
state. If the transaction aborts, the next time it will have its pre-transaction state. Either
way, the service will have a consistent state ready to be accessed by a new transaction.
To force the service instance to purge all its in-memory state this way, by default, once

342 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

the transaction completes, WCF destroys the service instance, ensuring there are no
leftovers in memory that might jeopardize consistency.

The Transaction Boundary
There are two remaining problems when writing transactional state-aware services. The
first is how a service can know when transactions start and end, so that it can get and
save its state. The service may be part of a much larger transaction that spans multiple
services and machines. At any moment between service calls, the transaction might
end. Who will call the service, letting it know to save its state? The second problem has
to do with isolation. Different clients might call the service concurrently, on different
transactions. How can the service isolate changes made to its state by one transaction
from another? The service cannot allow cross-transactional calls, because doing so
would jeopardize isolation. If the other transaction were to access its state and operate
based on its values, that transaction would be contaminated with foul state if the orig-
inal transaction aborted and the changes rolled back.

The solution to both problems is for the service to equate method boundaries with
transaction boundaries. At the beginning of every method call, the service should read
its state, and at the end of each method call the service should save its state to the
resource manager. Doing so ensures that if a transaction ends between method calls,
the service’s state will either persist or roll back with it. Because the service equates
method boundaries with transaction boundaries, the service instance must also vote
on the transaction’s outcome at the end of every method call. From the service per-
spective, the transaction completes once the method returns. This is really why the
TransactionAutoComplete property is named that instead of something like
TransactionAutoVote: the service states that, as far as it is concerned, the transaction is
complete. If the service is also the root of the transaction, completing it will indeed
terminate the transaction.

In addition, reading and storing the state in the resource manager in each method call
addresses the isolation challenge, because the service simply lets the resource manager
isolate access to the state between concurrent transactions.

Instance Management and Transactions
As hinted previously, the transactional configuration of the service is intimately related
to the service instance lifecycle, and it drastically changes the programming model. All
transactional services must store their state in a resource manager or managers. Those
resource managers could be volatile or durable, shared between the instances or per
instance, and could support multiple services, all according to your design of both the
service and its resources.

Instance Management and Transactions | 343

Download from Library of Wow! eBook <www.wowebook.com>

Volatile Resource Managers
In the article “Volatile Resource Managers in .NET Bring Transactions to the Common
Type” (MSDN Magazine, May 2005), I presented my technique for implementing a
general-purpose volatile resource manager called Transactional<T>:

public class Transactional<T> : ...
{
 public Transactional(T value);
 public Transactional();
 public T Value
 {get;set;}

 /* Conversion operators to and from T */
}

By specifying any serializable type parameter (such as an int or a string) to
Transactional<T>, you turn that type into a full-blown volatile resource manager that
auto-enlists in the ambient transaction, participates in the two-phase commit protocol,
and isolates the current changes from all other transactions using my original
transaction-based lock.

For example, in the following code snippet, the scope is not completed. As a result the
transaction aborts, and the values of number and city revert to their pre-transaction
state:

Transactional<int> number = new Transactional<int>(3);
Transactional<string> city =
 new Transactional<string>("New York");

using(TransactionScope scope = new TransactionScope())
{
 city.Value = "London";
 number.Value = 4;
 number.Value++;
 Debug.Assert(number.Value == 5);
 Debug.Assert(number == 5);
}
Debug.Assert(number == 3);
Debug.Assert(city == "New York");

In addition to Transactional<T>, I have provided a transactional array called
TransactionalArray<T>, and transactional versions for all of the collections in System.
Collections.Generic, such as TransactionalDictionary<K,T> and Transactional
List<T>. The volatile resource managers (or VRMs, for short) are available with Serv-
iceModelEx. Their implementation has nothing to do with WCF, so I chose not to
include it in this book. That implementation, however, makes intensive use of some of
the more advanced features of C#, System.Transactions, and .NET system program-
ming, so you may find it of interest on its own merit.

344 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Per-Call Transactional Services
With a per-call service, once the call returns, the instance is destroyed. Therefore, the
resource manager used to store the state between calls must be outside the scope of the
instance. Because there could be many instances of the same service type accessing
the same resource manager, every operation must contain some parameters that allow
the service instance to find its state in the resource manager and bind against it. The
best approach is to have each operation contain some key as a parameter identifying
the state. I call that parameter the state identifier. The client must provide the state
identifier with every call to the per-call service. Typical state identifiers are account
numbers, order numbers, and so on. For example, the client creates a new transactional
order-processing object, and on every method call the client must provide the order
number as a parameter, in addition to other parameters.

Example 7-15 shows a template for implementing a transactional per-call service.

Example 7-15. Implementing a transactional service

[DataContract]
class Param
{...}

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod(Param stateIdentifier);
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract,IDisposable
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod(Param stateIdentifier)
 {
 GetState(stateIdentifier);
 DoWork();
 SaveState(stateIdentifier);
 }
 void GetState(Param stateIdentifier)
 {...}
 void DoWork()
 {...}
 void SaveState(Param stateIdentifier)
 {...}
 public void Dispose()
 {...}
}

The MyMethod() signature contains a state identifier parameter of the type Param (a
pseudotype invented for this example), used to get the state from a resource manager
with the GetState() helper method. The service instance then performs its work using

Instance Management and Transactions | 345

Download from Library of Wow! eBook <www.wowebook.com>

the DoWork() helper method and saves its state back to the resource manager using the
SaveState() method, specifying its identifier.

Note that not all of the service instance’s state can be saved by value to the resource
manager. If the state contains references to other objects, GetState() should create
those objects, and SaveState() (or Dispose()) should dispose of them.

Because the service instance goes through the trouble of retrieving its state and saving
it on every method call, transactional programming is natural for per-call services. The
behavioral requirements for a state-aware transactional object and a per-call object are
the same: both retrieve and save their state at the method boundaries. Compare Ex-
ample 7-15 with Example 4-3 (page 175). The only difference is that the state store used
by the service in Example 7-15 should be transactional.

As far as a per-call service call is concerned, transactional programming is almost in-
cidental. Every call on the service gets a new instance, and that call may or may not be
in the same transaction as the previous call (see Figure 7-8).

Figure 7-8. Per-call service and transactions

Regardless of transactions, in every call the service gets its state from a resource manager
and then saves it back, so the methods are always guaranteed to operate either on
consistent state from the previous transaction or on the temporary yet well-isolated
state of the current transaction in progress. A per-call service must vote and complete
its transaction in every method call. In fact, a per-call service must always use auto-
completion (i.e., have TransactionAutoComplete set to its default value, true).

From the client’s perspective, the same service proxy can participate in multiple trans-
actions or in the same transaction. For example, in the following code snippet, every
call will be in a different transaction:

MyContractClient proxy = new MyContractClient();

using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod(...);
 scope.Complete();
}
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod(...);

346 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 scope.Complete();
}

proxy.Close();

Or, the client can use the same proxy multiple times in the same transaction, and even
close the proxy independently of any transactions:

MyContractClient proxy = new MyContractClient();
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod(...);
 proxy.MyMethod(...);
 scope.Complete();
}
proxy.Close();

The call to Dispose() on a per-call service has no ambient transaction.

With a per-call service, any resource manager can be used to store the service state. For
example, you might use a database, or you might use volatile resource managers ac-
cessed as static member variables, as shown in Example 7-16.

Example 7-16. Per-call service using a VRM

[ServiceContract]
interface ICounterManager
{
 [OperationContract]
 [TransactionFlow(...)]
 void Increment(string stateIdentifier);
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : ICounterManager
{
 static TransactionalDictionary<string,int> m_StateStore =
 new TransactionalDictionary<string,int>();

 [OperationBehavior(TransactionScopeRequired = true)]
 public void Increment(string stateIdentifier)
 {
 if(m_StateStore.ContainsKey(stateIdentifier) == false)
 {
 m_StateStore[stateIdentifier] = 0;
 }
 m_StateStore[stateIdentifier]++;
 }
}

Instance Management and Transactions | 347

Download from Library of Wow! eBook <www.wowebook.com>

The transaction lifecycle

When the per-call service is the root of a transaction (that is, when it is configured for
the Client/Service transaction mode and there is no client transaction, or when it is
configured for the Service transaction mode), the transaction ends once the service
instance is deactivated. WCF completes and ends the transaction as soon as the method
returns, even before Dispose() is called. When the client is the root of the transaction
(or whenever the client’s transaction flows to the service and the service joins it), the
transaction ends when the client’s transaction ends.

Per-Session Transactional Services
While it is possible to develop transactional sessionful services with great ease using
my volatile resource managers, WCF was designed without them in mind, simply be-
cause these technologies evolved more or less concurrently. Consequently, the WCF
architects did not trust developers to properly manage the state of their sessionful serv-
ice in the face of transactions—something that is rather cumbersome and difficult, as
you will see, if all you have at your disposal is raw .NET and WCF. The WCF architects
made the extremely conservative decision to treat a sessionful transactional service as
a per-call service by default in order to enforce a proper state-aware programming
model. In fact, the default transaction configuration of WCF will turn any service,
regardless of its instancing mode, into a per-call service. This, of course, negates the
very need for a per-session service in the first place. That said, WCF does allow you to
maintain the session semantic with a transactional service, using several distinct pro-
gramming models. A per-session transactional service instance can be accessed by
multiple transactions, or the instance can establish an affinity to a particular transac-
tion, in which case, until it completes, only that transaction is allowed to access it.
However, as you will see, unless you use volatile resource managers this support har-
bors a disproportional cost in programming model complexity and constraints.

Releasing the service instance

The lifecycle of any transactional service is controlled by the ServiceBehavior attribute’s
Boolean property, ReleaseServiceInstanceOnTransactionComplete:

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : Attribute,...
{
 public bool ReleaseServiceInstanceOnTransactionComplete
 {get;set;}
 //More members
}

When ReleaseServiceInstanceOnTransactionComplete is set to true (the default value),
it disposes of the service instance once the instance completes the transaction. WCF
uses context deactivation (discussed in Chapter 4) to terminate the sessionful service

348 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

instance and its in-memory state, while maintaining the transport session and the in-
stance context.

Note that the release takes place once the instance completes the transaction, not nec-
essarily when the transaction really completes (which could be much later). When
ReleaseServiceInstanceOnTransactionComplete is true, the instance has two ways of
completing the transaction and being released: at the method boundary if the method
has TransactionAutoComplete set to true, or when any method that has Transac
tionAutoComplete set to false calls SetTransactionComplete().

ReleaseServiceInstanceOnTransactionComplete has two interesting interactions with
other service and operation behavior properties. First, it cannot be set (to either true
or false) unless at least one operation on the service has TransactionScopeRequired set
to true. This is validated at the service load time by the set accessor of the
ReleaseServiceInstanceOnTransactionComplete property.

For example, this is a valid configuration:

[ServiceBehavior(ReleaseServiceInstanceOnTransactionComplete = true)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}

 [OperationBehavior(...)]
 public void MyOtherMethod()
 {...}
}

What this constraint means is that even though the default of ReleaseServ
iceInstanceOnTransactionComplete is true, the following two definitions are not se-
mantically equivalent, because the second one will throw an exception at the service
load time:

class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

//Invalid definition:
[ServiceBehavior(ReleaseServiceInstanceOnTransactionComplete = true)]
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

The second constraint involved in using ReleaseService InstanceOnTransaction
Complete relates to concurrent multithreaded access to the service instance.

Instance Management and Transactions | 349

Download from Library of Wow! eBook <www.wowebook.com>

Concurrency management is the subject of the next chapter. For now, all you need to
know is that the ConcurrencyMode property of the ServiceBehavior attribute controls
concurrent access to the service instance:

public enum ConcurrencyMode
{
 Single,
 Reentrant,
 Multiple
}

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : ...
{
 public ConcurrencyMode ConcurrencyMode
 {get;set;}
 //More members
}

The default value of ConcurrencyMode is ConcurrencyMode.Single.

At the service load time, WCF will verify that, if TransactionScopeRequired is set to
true for at least one operation on the service when ReleaseServiceInstanceOn
TransactionComplete is true (by default or explicitly), the service concurrency mode is
ConcurrencyMode.Single.

For example, given this contract:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod();

 [OperationContract]
 [TransactionFlow(...)]
 void MyOtherMethod();
}

the following two definitions are equivalent and valid:

class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}

 public void MyOtherMethod()
 {...}
}

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Single,
 ReleaseServiceInstanceOnTransactionComplete = true)]
class MyService : IMyContract
{

350 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}

 public void MyOtherMethod()
 {...}
}

The following definition is also valid, since no method requires a transaction scope
even though ReleaseServiceInstanceOnTransactionComplete is true:

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyService : IMyContract
{
 public void MyMethod()
 {...}

 public void MyOtherMethod()
 {...}
}

In contrast, the following definition is invalid, because at least one method requires a
transaction scope, ReleaseServiceInstanceOnTransactionComplete is true, and yet the
concurrency mode is not ConcurrencyMode.Single:

//Invalid configuration:
[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}

 public void MyOtherMethod()
 {...}
}

The concurrency constraint applies to all instancing modes.

The ReleaseServiceInstanceOnTransactionComplete property can enable a transac-
tional sessionful interaction between the client and the service. With its default value
of true, once the service instance completes the transaction (either declaratively or
explicitly), the return of the method will deactivate the service instance as if it were a
per-call service.

For example, the service in Example 7-17 behaves just like a per-call service.

Instance Management and Transactions | 351

Download from Library of Wow! eBook <www.wowebook.com>

Example 7-17. Per-session yet per-call transactional service

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod();
}
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
}

Every time the client calls MyMethod(), the client will get a new service instance. The
new client call may come in on a new transaction as well, and the service instance has
no affinity to any transaction. The relationship between the service instances and the
transactions is just as in Figure 7-8. The service needs to proactively manage its state
just as it did in Example 7-15, as demonstrated in Example 7-18.

Example 7-18. Proactive state management by default with a per-session transactional service

[DataContract]
class Param
{...}

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod(Param stateIdentifier);
}
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod(Param stateIdentifier)
 {
 GetState(stateIdentifier);
 DoWork();
 SaveState(stateIdentifier);
 }
 void GetState(Param stateIdentifier)
 {...}
 void DoWork()
 {...}
 void SaveState(Param stateIdentifier)
 {...}
}

The transactional per-session service can also, of course, use VRMs, as was done in
Example 7-16.

352 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Disabling releasing the service instance

Obviously, a configuration such as that in Example 7-17 or Example 7-18 adds no value
to configuring the service as sessionful. The client must still pass a state identifier, and
the service is de facto a per-call service. To behave as a per-session service, the service
can set ReleaseServiceInstanceOnTransactionComplete to false, as in Example 7-19.

Example 7-19. Per-session transactional service

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod();
}
[ServiceBehavior(ReleaseServiceInstanceOnTransactionComplete = false)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
}

When ReleaseServiceInstanceOnTransactionComplete is false, the instance will not be
disposed of when transactions complete, as shown in Figure 7-9.

Figure 7-9. Sessionful transactional instance and transactions

The interaction in Figure 7-9 might, for example, be the result of the following client
code, where all calls went to the same service instance:

MyContractClient proxy = new MyContractClient();
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 scope.Complete();
}

using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 proxy.MyMethod();
 scope.Complete();

Instance Management and Transactions | 353

Download from Library of Wow! eBook <www.wowebook.com>

}
proxy.Close();

State-aware per-session services

When ReleaseServiceInstanceOnTransactionComplete is false, WCF will stay out of
the way and will let the service developer worry about managing the state of the service
instance. Obviously, you have to somehow monitor transactions and roll back any
changes made to the state of the instance if a transaction aborts. The per-session service
still must equate method boundaries with transaction boundaries, because every
method may be in a different transaction, and a transaction may end between method
calls in the same session. There are two possible programming models. The first is to
be state-aware, but use the session ID as a state identifier. With this model, at the
beginning of every method the service gets its state from a resource manager using the
session ID as a key, and at the end of every method the service instance saves the state
back to the resource manager, as shown in Example 7-20.

Example 7-20. State-aware, transactional per-session service

[ServiceBehavior(ReleaseServiceInstanceOnTransactionComplete = false)]
class MyService : IMyContract,IDisposable
{
 readonly string m_StateIdentifier;

 public MyService()
 {
 InitializeState();
 m_StateIdentifier = OperationContext.Current.SessionId;
 SaveState();
 }
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 GetState();
 DoWork();
 SaveState();
 }
 public void Dispose()
 {
 RemoveState();
 }

 //Helper methods

 void InitializeState()
 {...}
 void GetState()
 {
 //Use m_StateIdentifier to get state
 ...
 }
 void DoWork()
 {...}

354 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 void SaveState()
 {
 //Use m_StateIdentifier to save state
 ...
 }
 void RemoveState()
 {
 //Use m_StateIdentifier to remove the state from the RM
 ...
 }
}

In Example 7-20, the constructor first initializes the state of the object and then saves
the state to a resource manager, so that any method can retrieve it. Note that the per-
session object maintains the illusion of a stateful, sessionful interaction with its client.
The client does not need to pass an explicit state identifier, but the service must be
disciplined and retrieve and save the state in every operation call. When the session
ends, the service purges its state from the resource manager in the Dispose() method.

Stateful per-session services

The second, more modern programming model is to use volatile resource managers for
the service members, as shown in Example 7-21.

Example 7-21. Using volatile resource managers to achieve a stateful per-session transactional service

[ServiceBehavior(ReleaseServiceInstanceOnTransactionComplete = false)]
class MyService : IMyContract
{
 Transactional<string> m_Text = new Transactional<string>("Some initial value");

 TransactionalArray<int> m_Numbers = new TransactionalArray<int>(3);

 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 m_Text.Value = "This value will roll back if the transaction aborts";

 //These will roll back if the transaction aborts
 m_Numbers[0] = 11;
 m_Numbers[1] = 22;
 m_Numbers[2] = 33;
 }
}

Example 7-21 uses my Transactional<T> and TransactionalArray<T> volatile resource
managers. The per-session service can safely set ReleaseServiceInstanceOnTransaction
Complete to false and yet freely access its members. The use of the volatile resource
managers enables a stateful programming model, and the service instance simply ac-
cesses its state as if no transactions were involved. The volatile resource managers auto-
enlist in the transaction and isolate that transaction from all other transactions. Any
changes made to the state will commit or roll back with the transaction.

Instance Management and Transactions | 355

Download from Library of Wow! eBook <www.wowebook.com>

Transaction lifecycle

When the per-session service is the root of the transaction, the transaction ends once
the service completes the transaction, which is when the method returns. When the
client is the root of the transaction (or when a transaction flows to the service), the
transaction ends when the client’s transaction ends. If the per-session service provides
an IDisposable implementation, the Dispose() method will not have any transaction,
regardless of the root.

Concurrent transactions

Because a per-session service can engage the same service instance in multiple client
calls, it can also sustain multiple concurrent transactions. Given the service definition
of Example 7-19, Example 7-22 shows some client code that launches concurrent
transactions on the same instance. scope2 will use a new transaction separate from that
of scope1, and yet access the same service instance in the same session.

Example 7-22. Launching concurrent transactions

using(TransactionScope scope1 = new TransactionScope())
{
 MyContractClient proxy = new MyContractClient();
 proxy.MyMethod();

 using(TransactionScope scope2 =
 new TransactionScope(TransactionScopeOption.RequiresNew))
 {
 proxy.MyMethod();
 scope2.Complete();
 }
 proxy.MyMethod();

 proxy.Close();
 scope1.Complete();
}

The resulting transactions of Example 7-22 are depicted in Figure 7-10.

Figure 7-10. Concurrent transactions

356 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Code such as that in Example 7-22 will almost certainly result in a
transactional deadlock over the underlying resources the service ac-
cesses. The first transaction will obtain the resource lock, and the second
transaction will wait to own that lock while the first transaction waits
for the second to complete.

Completing on session end

WCF offers yet another programming model for transactional per-session services,
which is completely independent of ReleaseServiceInstanceOnTransactionComplete.
This model is available for the case when the entire session fits into a single transaction,
and the service equates session boundaries with transaction boundaries. The idea is
that the service should not complete the transaction inside the session, because that is
what causes WCF to release the service instance. To avoid completing the transaction,
a per-session service can set TransactionAutoComplete to false, as shown in
Example 7-23.

Example 7-23. Setting TransactionAutoComplete to false

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod1();

 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod2();

 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod3();
}
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod1()
 {...}

 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod2()
 {...}

 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod3()
 {...}
}

Instance Management and Transactions | 357

Download from Library of Wow! eBook <www.wowebook.com>

Note that only a per-session service with a contract set to SessionMode.Required can set
TransactionAutoComplete to false, and that is verified at the service load time. The
problem with Example 7-23 is that the transaction the service participates in will always
abort because the service does not vote to commit it by completing it. If the service
equates sessions with transactions, the service should vote once the session ends. For
that purpose, the ServiceBehavior attribute provides the Boolean property
TransactionAutoCompleteOnSessionClose, defined as:

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : Attribute,...
{
 public bool TransactionAutoCompleteOnSessionClose
 {get;set;}
 //More members
}

The default of TransactionAutoCompleteOnSessionClose is false. However, when set to
true, it will auto-complete all uncompleted methods in the session. If no exceptions
occurred during the session, when TransactionAutoCompleteOnSessionClose is true the
service will vote to commit. For example, here is how to retrofit Example 7-23:

[ServiceBehavior(TransactionAutoCompleteOnSessionClose = true)]
class MyService : IMyContract
{...}

Figure 7-11 shows the resulting instance and its session.

Figure 7-11. Setting TransactionAutoCompleteOnSessionClose to true

During the session, the instance can maintain and access its state in normal member
variables, and there is no need for state awareness or volatile resource managers.

When joining the client’s transaction and relying on auto-completion
on session close, the service must avoid lengthy processing in
Dispose() or, in practical terms, avoid implementing IDisposable alto-
gether. The reason is the race condition described here. Recall from
Chapter 4 that Dispose() is called asynchronously at the end of the ses-
sion. Auto-completion at session end takes place once the instance has
been disposed of. If the client has control before the instance is disposed,
the transaction will abort because the service has not yet completed it.

358 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Note that using TransactionAutoCompleteOnSessionClose is risky, because it is always
subjected to the transaction timeout. Sessions are by their very nature long-lived enti-
ties, while well-designed transactions are short-lived. This programming model is
available for the case when the vote decision requires information that will be obtained
by future calls throughout the session.

Because having TransactionAutoCompleteOnSessionClose set to true equates the ses-
sion’s end with the transaction’s end, it is required that when the client’s transaction
is used, the client terminates the session within that transaction:

using(TransactionScope scope = new TransactionScope())
{
 MyContractClient proxy = new MyContractClient();
 proxy.MyMethod();
 proxy.MyMethod();
 proxy.Close();

 scope.Complete();
}

Failing to do so will abort the transaction. As a side effect, the client cannot easily stack
the using statements of the transaction scope and the proxy, because that may cause
the proxy to be disposed of after the transaction:

//This always aborts:
using(MyContractClient proxy = new MyContractClient())
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 proxy.MyMethod();

 scope.Complete();
}

In addition, because the proxy is basically good for only one-time use, there is little
point in storing the proxy in member variables.

Transactional affinity

Setting TransactionAutoComplete to false has a unique effect that nothing else in WCF
provides: it creates an affinity between the service instance context and the transaction,
so that only that single transaction can ever access that service instance context. Unless
context deactivation is used, this affinity is therefore to the instance as well. The affinity
is established once the first transaction accesses the service instance, and once estab-
lished it is fixed for the life of the instance (until the session ends). Transactional affinity
is available only for per-session services, because only a per-session service can set
TransactionAutoComplete to false. Affinity is crucial because the service is not state-
aware—it uses normal members, and it must isolate access to them from any other
transaction, in case the transaction to which it has an affinity aborts. Affinity thus offers
a crude form of transaction-based locking. With transaction affinity, code such as that
in Example 7-22 is guaranteed to deadlock (and eventually abort due to timing out)

Instance Management and Transactions | 359

Download from Library of Wow! eBook <www.wowebook.com>

because the second transaction is blocked (independently of any resources the service
accesses) waiting for the first transaction to finish, while the first transaction is blocked
waiting for the second.

Hybrid state management

WCF also supports a hybrid of two of the sessionful programming models discussed
earlier, combining both a state-aware and a regular sessionful transactional per-session
service. The hybrid mode is designed to allow the service instance to maintain state in
memory until it can complete the transaction, and then recycle that state using
ReleaseServiceInstanceOnTransactionComplete as soon as possible, instead of delaying
completing the transaction until the end of the session. Consider the service in Exam-
ple 7-24, which implements the contract from Example 7-23.

Example 7-24. Hybrid per-session service

[ServiceBehavior(TransactionAutoCompleteOnSessionClose = true)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod1()
 {...}
 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod2()
 {...}
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod3()
 {...}
}

The service uses the default of ReleaseServiceInstanceOnTransactionComplete (true),
yet it has two methods (MyMethod1() and MyMethod2()) that do not complete the trans-
action with TransactionAutoComplete set to false, resulting in an affinity to a particular
transaction. The affinity isolates its members from any other transaction. The problem
now is that the transaction will always abort, because the service does not complete it.
To compensate for that, the service offers MyMethod3(), which does complete the trans-
action. Because the service uses the default of ReleaseServiceInstanceOnTransaction
Complete (true), after MyMethod3() is called, the transaction is completed and the in-
stance is disposed of, as shown in Figure 7-12. Note that MyMethod3() could have instead
used explicit voting via SetTransactionComplete(). The important thing is that it com-
pletes the transaction. If the client does not call MyMethod3(), purely as a contingency,
the service in Example 7-24 relies on TransactionAutoCompleteOnSessionClose being set
to true to complete and commit the transaction.

The hybrid mode is inherently a brittle proposition. The first problem is that the service
instance must complete the transaction before it times out, but since there is no telling
when the client will call the completing method, you risk timing out before that. In

360 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

addition, the service holds onto any locks on resource managers it may access for the
duration of the session, and the longer the locks are held, the higher the likelihood is
of other transactions timing out or deadlocking with this service’s transaction. Finally,
the service is at the mercy of the client, because the client must call the completing
method to end the session. You can and should clearly document the need to call that
operation at the end of the transaction:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod1();

 [OperationContract]
 [TransactionFlow(...)]
 void MyMethod2();

 [OperationContract]
 [TransactionFlow(...)]
 void CompleteTransaction();
}

Both equating sessions with transactions (while relying solely on TransactionAuto
CompleteOnSessionClose) and using the hybrid mode are potential solutions for situa-
tions when the transaction execution and subsequent voting decision require informa-
tion obtained throughout the session. Consider, for example, the following contract
used for order processing:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IOrderManager
{
 [OperationContract]
 [TransactionFlow(...)]
 void SetCustomerId(int customerId);

 [OperationContract]
 [TransactionFlow(...)]
 void AddItem(int itemId);

Figure 7-12. Hybrid state management

Instance Management and Transactions | 361

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationContract]
 [TransactionFlow(...)]
 bool ProcessOrders();
}

The implementing service can only process the order once it has the customer ID and
all of the ordered items. However, relying on transactional sessions in this way usually
indicates poor design, because of the inferior throughput and scalability implications.
Good transactions are inherently short while sessions are inherently long (up to 10
minutes by default), so they are inherently incompatible. The disproportional com-
plexity of prolonging a single transaction across a session outweighs the perceived
benefit of using a session. It is usually better to factor the contract so that it provides
every operation with all the information it needs to complete and vote:

[ServiceContract(SessionMode = ...)]
interface IOrderManager
{
 [OperationContract]
 [TransactionFlow(...)]
 bool ProcessOrders(int customerId,int[] itemIds);
}

Done this way, you can either implement the service as per-call or maintain a sessionful
programming model, avoid placing operation order constraints on the client, and use
any VRMs as member variables and access other transactional resources. You clearly
separate the contract from its implementation, both on the client and the service side.

Transactional Durable Services
Recall from Chapter 4 that a durable service retrieves its state from the configured store
and then saves its state back into that store on every operation. The state store may or
may not be a transactional resource manager. If the service is transactional, it should
of course use only a transactional durable storage and enlist it in each operation’s
transaction. That way, if a transaction aborts, the state store will be rolled back to its
pre-transaction state. However, WCF does not know whether a service is designed to
propagate its transactions to the state store, and by default it will not enlist the storage
in the transaction even if the storage is a transactional resource manager, such as SQL
Server 2005/2008. To instruct WCF to propagate the transaction and enlist the un-
derlying storage, set the SaveStateInOperationTransaction property of the DurableServ
ice attribute to true:

public sealed class DurableServiceAttribute : ...
{
 public bool SaveStateInOperationTransaction
 {get;set;}
}

SaveStateInOperationTransaction defaults to false, which means the state storage
will not participate in the transaction. It is therefore important to always set
SaveStateInOperationTransaction to true to ensure consistent state management in the

362 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

presence of transactions. Since only a transactional service could benefit from having
SaveStateInOperationTransaction set to true, if it is true then WCF will insist that all
operations on the service either have TransactionScopeRequired set to true or have
mandatory transaction flow. If the operation is configured with Transaction
ScopeRequired set to true, the ambient transaction of the operation will be the one used
to enlist the storage. If the operation is configured for mandatory transaction flow, the
client’s transaction will be used to enlist the storage (regardless of whether the operation
does or does not have an ambient transaction).

Instance ID management

As explained in Chapter 4, the DurableService behavior attribute enforces strict man-
agement of the instance ID passed over the context binding. The first operation to start
the workflow will have no instance ID, in which case, WCF will create a new instance
ID, use it to save the newly created instance state to the storage, and then send the
instance ID back to the client. From that point on, until the end of the workflow, the
client must pass the same instance ID to the service. If the client provides an instance
ID that is not present in the storage, WCF will throw an exception. This presents a
potential pitfall with transactional durable services: suppose the client starts a workflow
and propagates its transaction to the service. The first operation creates the instance
ID, executes successfully, and stores the state in the storage. However, what would
happen if the transaction were then to abort, due to some other party (such as the client
or another service involved in the transaction) voting to abort? The state storage would
roll back the changes made to it, including the newly created instance state and the
corresponding ID. The next call coming from the client will present the same ID created
by the first call, except now the state storage will not have any record of that ID, so
WCF will reject the call, throw an exception, and prevent any other call to the service
with that ID from ever executing.

To avoid this pitfall, you need to add to the service contract an explicit first operation
whose sole purpose is to guarantee that the first call successfully commits the instance
ID to the state storage. For example, in the case of a calculator service, this would be
your PowerOn() operation. You should explicitly block the client’s transaction (by using
the default value of TransactionFlowOption.NotAllowed), and avoid placing any code in
that method body, thus precluding anything that could go wrong from aborting the
transaction. You can enforce having the client call the initiating operation first using
demarcating operations (discussed in Chapter 4).

A similar pitfall exists at the end of the workflow. By setting the CompletesInstance
property of the DurableOperation attribute to true, you indicate to WCF that the work-
flow has ended and that WCF should purge the instance state from the storage. How-
ever, if the client’s transaction aborts after the last operation in the service has executed
successfully, the storage will roll back and keep the orphaned state indefinitely. To
avoid bloating the state storage with zombie instances (the product of aborted
transactions of the completing instance operations), you need to add to the service

Instance Management and Transactions | 363

Download from Library of Wow! eBook <www.wowebook.com>

contract an explicit operation whose sole purpose is to complete the instance and to
commit successfully, irrespective of whether the client’s transaction commits. For ex-
ample, in the case of a calculator service, this would be your PowerOff() operation.
Again, block any client transaction from propagating to the service, and avoid placing
any code in the completing method.

Example 7-25 shows a template for defining and implementing a transactional durable
service, adhering to these guidelines.

Example 7-25. Transactional durable service

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void SaveState();

 [OperationContract(IsInitiating = false)]
 void ClearState();

 [OperationContract(IsInitiating = false)]
 [TransactionFlow(...)]
 void MyMethod1();

 [OperationContract(IsInitiating = false)]
 [TransactionFlow(...)]
 void MyMethod2();
}

[Serializable]
[DurableService(SaveStateInOperationTransaction = true)]
class MyService: IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void SaveState()
 {}

 [DurableOperation(CompletesInstance = true)]
 [OperationBehavior(TransactionScopeRequired = true)]
 public void ClearState()
 {}

 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod1()
 {...}
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod2()
 {...}
}

364 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Transactional Behavior
As far as the DurableService attribute is concerned, the word durable in its name is a
misnomer, since it does not necessarily indicate a durable behavior. All it means is that
WCF will automatically deserialize the service state from a configured storage and then
serialize it back again on every operation. Similarly, the persistence provider behavior
(see Chapter 4) does not necessarily mean persistence, since any provider that derives
from the prescribed abstract provider class will comply with WCF’s expectation of the
behavior.‡

The fact that the WCF durable service infrastructure is, in reality, a serialization infra-
structure enabled me to leverage it into yet another technique for managing service
state in the face of transactions, while relying underneath on a volatile resource man-
ager, without having the service instance do anything about it. This further streamlines
the transactional programming model of WCF and yields the benefit of the superior
programming model of transactions for mere objects.

The first step was to define two transactional in-memory provider factories:

public abstract class MemoryProviderFactory : PersistenceProviderFactory
{...}

public class TransactionalMemoryProviderFactory : MemoryProviderFactory
{...}
public class TransactionalInstanceProviderFactory : MemoryProviderFactory
{...}

The TransactionalMemoryProviderFactory uses my TransactionalDictionary<ID,T> to
store the service instances.

Unrelated to this section and transactions, you can configure the service
to use the TransactionalMemoryProviderFactory with or without trans-
actions by simply listing it in the persistence providers section of the
service behaviors:

<behavior name = "TransactionalMemory">
 <persistenceProvider
 type = "ServiceModelEx.
 TransactionalMemoryProviderFactory,
 ServiceModelEx"
 />
</behavior>

This will enable you to store the instances in memory, instead of in a
file or SQL Server database. This is useful for quick testing and for stress
testing, since it avoids the inherent I/O latency of a durable persistent
storage.

‡ I presented my approach for transactional behavior in the January 2009 issue of MSDN Magazine.

Instance Management and Transactions | 365

Download from Library of Wow! eBook <www.wowebook.com>

The in-memory dictionary is shared among all clients and transport sessions, and as
long as the host is running, TransactionalMemoryProviderFactory allows clients to con-
nect and disconnect from the service. When using TransactionalMe
moryProviderFactory you should designate a completing operation that removes the
instance state from the store as discussed in Chapter 4, using the CompletesInstance
property of the DurableOperation attribute.

TransactionalInstanceProviderFactory, on the other hand, matches each transport
session with a dedicated instance of Transactional<T>. There is no need to call any
completing operation since the service state will be cleaned up with garbage collection
after the session is closed.

Next, I defined the TransactionalBehaviorAttribute, shown in Example 7-26.

Example 7-26. The TransactionalBehavior attribute

[AttributeUsage(AttributeTargets.Class)]
public class TransactionalBehaviorAttribute : Attribute,IServiceBehavior
{
 public bool TransactionRequiredAllOperations
 {get;set;}

 public bool AutoCompleteInstance
 {get;set;}

 public TransactionalBehaviorAttribute()
 {
 TransactionRequiredAllOperations = true;
 AutoCompleteInstance = true;
 }
 void IServiceBehavior.Validate(ServiceDescription description,
 ServiceHostBase host)
 {
 DurableServiceAttribute durable = new DurableServiceAttribute();
 durable.SaveStateInOperationTransaction = true;
 description.Behaviors.Add(durable);

 PersistenceProviderFactory factory;
 if(AutoCompleteInstance)
 {
 factory = new TransactionalInstanceProviderFactory();
 }
 else
 {
 factory = new TransactionalMemoryProviderFactory();
 }

 PersistenceProviderBehavior persistenceBehavior =
 new PersistenceProviderBehavior(factory);
 description.Behaviors.Add(persistenceBehavior);

 if(TransactionRequiredAllOperations)
 {
 foreach(ServiceEndpoint endpoint in description.Endpoints)

366 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 {
 foreach(OperationDescription operation in endpoint.Contract.Operations)
 {
 OperationBehaviorAttribute operationBehavior =
 operation.Behaviors.Find<OperationBehaviorAttribute>();
 operationBehavior.TransactionScopeRequired = true;
 }
 }
 }
 }
 void IServiceBehavior.AddBindingParameters(...)
 {}
 void IServiceBehavior.ApplyDispatchBehavior(...)
 {}
}

TransactionalBehavior is a service behavior attribute. It always performs these config-
urations for the service. First, it injects into the service description a DurableService
attribute with SaveStateInOperationTransaction set to true. Second, it adds the use of
either TransactionalMemoryProviderFactory or TransactionalInstanceProviderFac
tory for the persistent behavior according to the value of the AutoCompleteInstance
property. If AutoCompleteInstance is set to true (the default) then Transactional
Behavior will use TransactionalInstanceProviderFactory. Finally, Transac
tionalBehavior provides the TransactionRequiredAllOperations property. When the
property is set to true (the default) TransactionalBehavior will set Transaction
ScopeRequired to true on all the service operation behaviors, thus providing all opera-
tions with an ambient transaction. When it is explicitly set to false, the service devel-
oper can choose which operations will be transactional.

As a result, using the attribute like so:

[Serializable]
[TransactionalBehavior]
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

is equivalent to this service declaration and configuration:

[Serializable]
[DurableService(SaveStateInOperationTransaction = true)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
}

<services>
 <service name = "MyService" behaviorConfiguration = "TransactionalBehavior">
 ...

Instance Management and Transactions | 367

Download from Library of Wow! eBook <www.wowebook.com>

 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "TransactionalBehavior">
 <persistenceProvider
 type = "ServiceModelEx.TransactionalInstanceProviderFactory,
 ServiceModelEx"
 />
 </behavior>
 </serviceBehaviors>
</behaviors>

When using the TransactionalBehavior attribute with the default values, the client need
not manage or interact in any way with the instance ID as shown in Chapter 4. All the
client needs to do is use the proxy over one of the context bindings, and let the binding
manage the instance ID. For example, for this service definition:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void IncrementCounter();
}

[Serializable]
[TransactionalBehavior]
class MyService : IMyContract
{
 int m_Counter = 0;

 public void IncrementCounter()
 {
 m_Counter++;
 Trace.WriteLine("Counter = " + m_Counter);
 }
}

the following client code:

MyContractClient proxy = new MyContractClient();

using(TransactionScope scope = new TransactionScope())
{
 proxy.IncrementCounter();
 scope.Complete();
}

//This transaction will abort since the scope is not completed
using(TransactionScope scope = new TransactionScope())
{
 proxy.IncrementCounter();
}

using(TransactionScope scope = new TransactionScope())

368 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

{
 proxy.IncrementCounter();
 scope.Complete();
}

proxy.Close();

yields this output:

Counter = 1
Counter = 2
Counter = 2

Note that the service was interacting with a normal integer as its member variable.

In-proc transactions

The TransactionalBehavior attribute substantially simplifies transactional program-
ming and is a fundamental step toward the future, where memory itself will be trans-
actional and it will be possible for every object to be transactional (for more on my
vision for the future of the platform, please see Appendix A). TransactionalBehavior
maintains the programming model of conventional, plain .NET, yet it provides the full
benefits of transactions.

To allow the efficient use of TransactionalBehavior even in the most intimate execution
scopes, ServiceModelEx contains the NetNamedPipeContextBinding class. As the bind-
ing’s name implies, it is the IPC binding plus the context protocol (required by the
DurableService attribute). Appendix B walks through implementing the NetNamedPipe
ContextBinding class.

Supporting TransactionalBehavior over IPC was my main motivation
for developing the NetNamedPipeContextBinding.

To make the programming model of TransactionalBehavior even more accessible, the
InProcFactory class from Chapter 1 actually uses NetNamedPipeContextBinding instead
of the built-in NetNamedPipeBinding. InProcFactory also flows transactions over the
binding. Combined with my WcfWrapper class, this enables the programming model of
Example 7-27, without ever resorting to host management or client or service config
files.

Example 7-27. Combining TransactionalBehavior with the InProcFactory

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void IncrementCounter();

Instance Management and Transactions | 369

Download from Library of Wow! eBook <www.wowebook.com>

}

[Serializable]
[TransactionalBehavior]
class MyService : IMyContract
{
 int m_Counter = 0;

 public void IncrementCounter()
 {
 m_Counter++;
 Trace.WriteLine("Counter = " + m_Counter);
 }
}

class MyClass : WcfWrapper<MyService,IMyContract>,IMyContract
{
 public void IncrementCounter()
 {
 Proxy.IncrementCounter();
 }
}

//Client-code

MyClass proxy = new MyClass();

using(TransactionScope scope = new TransactionScope())
{
 proxy.IncrementCounter();
 scope.Complete();
}

//This transaction will abort since the scope is not completed
using(TransactionScope scope = new TransactionScope())
{
 proxy.IncrementCounter();
}

using(TransactionScope scope = new TransactionScope())
{
 proxy.IncrementCounter();
 scope.Complete();
}

proxy.Close();

//Traces:
Counter = 1
Counter = 2
Counter = 2

370 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

The programming model of Example 7-27 is as if the object was allo-
cated off a transactional heap. In fact, Microsoft has already unveiled
plans for transactional memory to be part of a future release of .NET.
Microsoft will enable developers to declare a code section as atomic, so
that all memory allocations and calls made in that code section are
transactional. And yet, the combination of TransactionalBehavior and
WcfWrapper provides that programming model today, regardless of
scopes of code, and unlike the forthcoming transactional memory, you
can freely combine transactional classes, member variables, and local
variables.

Transactional Singleton Service
By default, a transactional singleton behaves like a per-call service. The reason is that
by default ReleaseServiceInstanceOnTransactionComplete is set to true, so after the
singleton auto-completes a transaction, WCF disposes of the singleton, in the interest
of state management and consistency. This, in turn, implies that the singleton must be
state-aware and must proactively manage its state in every method call, in and out of
a resource manager. The big difference compared to a per-call service is that WCF will
enforce the semantic of the single instance, so at any point there will be at most a single
instance running. WCF uses concurrency management and instance deactivation
to enforce this rule. Recall that when ReleaseServiceInstanceOnTransactionComplete is
true, the concurrency mode must be ConcurrencyMode.Single to disallow concurrent
calls. WCF keeps the singleton context and merely deactivates the instance hosted in
the context, as discussed in Chapter 4. What this means is that even though the sin-
gleton needs to be state-aware, it does not need the client to provide an explicit state
identifier in every call. The singleton can use any type-level constant to identify its state
in the state resource manager, as shown in Example 7-28.

Example 7-28. State-aware singleton

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
class MySingleton : IMyContract
{
 readonly static string m_StateIdentifier = typeof(MySingleton).GUID.ToString();

 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 GetState();
 DoWork();
 SaveState();
 }

 //Helper methods
 void GetState()
 {
 //Use m_StateIdentifier to get state
 }

Instance Management and Transactions | 371

Download from Library of Wow! eBook <www.wowebook.com>

 void DoWork()
 {}
 public void SaveState()
 {
 //Use m_StateIdentifier to save state
 }
 public void RemoveState()
 {
 //Use m_StateIdentifier to remove the state from the resource manager
 }
}
//Hosting code
MySingleton singleton = new MySingleton();
singleton.SaveState(); //Create the initial state in the resource manager

ServiceHost host = new ServiceHost(singleton);
host.Open();

/* Some blocking calls */

host.Close();
singleton.RemoveState();

In this example, the singleton uses the unique GUID associated with every type as a
state identifier. At the beginning of every method call the singleton reads its state, and
at the end of each method call it saves the state back to the resource manager. However,
the first call on the first instance must also be able to bind to the state, so you must
prime the resource manager with the state before the first call ever arrives. To that end,
before launching the host, you need to create the singleton, save its state to the resource
manager, and then provide the singleton instance to ServiceHost (as explained in
Chapter 4). After the host shuts down, make sure to remove the singleton state from
the resource manager, as shown in Example 7-28. Note that you cannot create the initial
state in the singleton constructor, because the constructor will be called for each op-
eration on the singleton and will override the previous saved state.

While a state-aware singleton is certainly possible (as demonstrated in Example 7-28),
the overall complexity involved makes it a technique to avoid. It is better to use a stateful
transactional singleton, as presented next.

Stateful singleton service

By setting ReleaseServiceInstanceOnTransactionComplete to false, you regain the sin-
gleton semantic. The singleton will be created just once, when the host is launched,
and the same single instance will be shared across all clients and transactions. The
problem is, of course, how to manage the state of the singleton. The singleton has to
have state; otherwise, there is no point in using a singleton in the first place. The best
solution (as before, with the stateful per-session service) is to use volatile resource
managers as member variables, as shown in Example 7-29.

372 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Example 7-29. Achieving a stateful singleton transactional service

////////////////// Service Side //////////////////////////////////////
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 ReleaseServiceInstanceOnTransactionComplete = false)]
class MySingleton : IMyContract
{
 Transactional<int> m_Counter = new Transactional<int>();

 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 m_Counter.Value++;
 Trace.WriteLine("Counter: " + m_Counter.Value);
 }
}
////////////////// Client Side //////////////////////////////////////
using(TransactionScope scope1 = new TransactionScope())
{
 MyContractClient proxy = new MyContractClient();
 proxy.MyMethod();
 proxy.Close();
 scope1.Complete();
}
using(TransactionScope scope2 = new TransactionScope())
{
 MyContractClient proxy = new MyContractClient();
 proxy.MyMethod();
 proxy.Close();
}
using(TransactionScope scope3 = new TransactionScope())
{
 MyContractClient proxy = new MyContractClient();
 proxy.MyMethod();
 proxy.Close();
 scope3.Complete();
}
////////////////// Output //////////////////////////////////////
Counter: 1
Counter: 2
Counter: 2

In Example 7-29, a client creates three transactional scopes, each with its own new
proxy to the singleton. In each call, the singleton increments a counter it maintains as
a Transactional<int> volatile resource manager. scope1 completes the transaction and
commits the new value of the counter (1). In scope2, the client calls the singleton and
temporarily increments the counter to 2. However, scope2 does not complete its trans-
action. The volatile resource manager therefore rejects the increment and reverts to its
previous value of 1. The call in scope3 then increments the counter again from 1 to 2,
as shown in the trace output.

Note that when setting ReleaseServiceInstanceOnTransactionComplete, the singleton
must have at least one method with TransactionScopeRequired set to true.

Instance Management and Transactions | 373

Download from Library of Wow! eBook <www.wowebook.com>

In addition, the singleton must have TransactionAutoComplete set to true on every
method, which of course precludes any transactional affinity and allows concurrent
transactions. All calls and all transactions are routed to the same instance. For example,
the following client code will result in the transaction diagram shown in Figure 7-13:

using (MyContractClient proxy = new MyContractClient())
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 scope.Complete();
}

using(MyContractClient proxy = new MyContractClient())
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 proxy.MyMethod();
 scope.Complete();
}

Figure 7-13. Stateful transactional singleton

Instancing Modes and Transactions
To summarize the topic of instance management modes and transactions, Table 7-3
lists the possible configurations discussed so far and their resulting effects. Other com-
binations may technically be allowed, but I’ve omitted them because they are either
nonsensical or plainly disallowed by WCF.

With so many options, which mode should you choose? I find that the complexity of
an explicit state-aware programming model with sessionful and singleton services out-
weighs any potential benefits, and this is certainly the case with the hybrid mode as
well. Equating sessions with transactions is often impractical and indicates a bad de-
sign. For both sessionful and singleton services, I prefer the simplicity and elegance of
volatile resource managers as member variables. You can also use a durable service on
top of a transactional durable storage or the TransactionalBehavior attribute for the
ultimate programming fusion of regular .NET programming with transactions.

374 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Table 7-3. Possible instancing modes, configurations, and transactions

Configured
instancing mode Autocomplete

Release on
complete

Complete
on session
close

Resulting
instancing
mode State mgmt.

Trans.
affinity

Per-call True True/False True/False Per-call State-aware Call

Session True True True/False Per-call State-aware Call

Session True False True/False Session VRM
members

Call

Session False True/False True Session Stateful Instance
context

Session Hybrid True True/False Hybrid Hybrid Instance
context

Durable service
and transactional
behavior

True True/False True/False Per-call Stateful Call

Singleton True True True/False Per-call State-aware Call

Singleton True False True/False Singleton VRM
members

Call

Table 7-4 lists these recommended configurations. None of the recommended options
relies on transactional affinity or auto-completion on session close, but they all use
auto-completion.

Table 7-4. Recommended instancing modes, configurations, and transactions

Configured instancing mode Release on complete Resulting instancing mode State management

Per-call True/False Per-call State-aware

Session False Session VRM members

Durable service and transactional behavior True/False Per-call Stateful

Singleton False Singleton VRM members

Callbacks
Callback contracts, just like service contracts, can propagate the service transaction to
the callback client. To enable this you apply the TransactionFlow attribute, as with a
service contract. For example:

interface IMyContractCallback
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void OnCallback();
}
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]

Callbacks | 375

Download from Library of Wow! eBook <www.wowebook.com>

interface IMyContract
{...}

The callback method implementation can use the OperationBehavior attribute (just like
a service operation) and specify whether to require a transaction scope and auto-
completion:

class MyClient : IMyContractCallback
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void OnCallback()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction != null);
 }
}

Callback Transaction Modes
The callback client can have four modes of configuration: Service, Service/Callback,
Callback, and None. These are analogous to the service transaction modes, except the
service now plays the client role and the callback plays the service role. For example,
to configure the callback for the Service transaction mode (that is, to always use the
service’s transaction), follow these steps:

1. Use a transaction-aware duplex binding with transaction flow enabled.

2. Set transaction flow to mandatory on the callback operation.

3. Configure the callback operation to require a transaction scope.

Example 7-30 shows a callback client configured for the Service transaction mode.

Example 7-30. Configuring the callback for the Service transaction mode

interface IMyContractCallback
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Mandatory)]
 void OnCallback();
}

class MyClient : IMyContractCallback
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void OnCallback()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction.TransactionInformation.
 DistributedIdentifier != Guid.Empty);
 }
}

376 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

When the callback operation is configured for mandatory transaction flow, WCF will
enforce the use of a transaction-aware binding with transaction flow enabled.

When you configure the callback for the Service/Callback transaction propagation
mode, WCF does not enforce enabling of transaction flow in the binding. You can use
my BindingRequirement attribute to enforce this:

interface IMyContractCallback
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void OnCallback();
}
[BindingRequirement(TransactionFlowEnabled = true)]
class MyClient : IMyContractCallback
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void OnCallback()
 {...}
}

I extended my BindingRequirement attribute to verify the callback binding by imple-
menting the IEndpointBehavior interface:

public interface IEndpointBehavior
{
 void AddBindingParameters(ServiceEndpoint endpoint,
 BindingParameterCollection bindingParameters);
 void ApplyClientBehavior(ServiceEndpoint endpoint,
 ClientRuntime clientRuntime);
 void ApplyDispatchBehavior(ServiceEndpoint endpoint,
 EndpointDispatcher endpointDispatcher);
 void Validate(ServiceEndpoint serviceEndpoint);
}

As explained in Chapter 6, the IEndpointBehavior interface lets you configure the client-
side endpoint used for the callback by the service. In the case of the
BindingRequirement attribute, it uses the IEndpointBehavior.Validate() method, and
the implementation is almost identical to that of Example 7-3.

Isolation and timeouts

As with a service, the CallbackBehavior attribute enables a callback type to control its
transaction’s timeout and isolation level:

[AttributeUsage(AttributeTargets.Class)]
public sealed class CallbackBehaviorAttribute: Attribute,IEndpointBehavior
{
 public IsolationLevel TransactionIsolationLevel
 {get;set;}
 public string TransactionTimeout
 {get;set;}
 //More members
}

Callbacks | 377

Download from Library of Wow! eBook <www.wowebook.com>

These properties accept the same values as in the service case, and the same reasoning
can be used to choose a particular value.

Callback Voting
By default, WCF will use automatic voting for the callback operation, just as with a
service operation. Any exception in the callback will result in a vote to abort the trans-
action, and without an error WCF will vote to commit the transaction, as is the case
in Example 7-30. However, unlike with a service instance, the callback instance lifecycle
is managed by the client, and it has no instancing mode. Any callback instance can be
configured for explicit voting by setting TransactionAutoComplete to false. Voting can
then be done explicitly using SetTransactionComplete():

class MyClient : IMyContractCallback
{
 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void OnCallback()
 {
 /* Do some transactional work then */

 OperationContext.Current.SetTransactionComplete();
 }
}

As with a per-session service, explicit voting is for the case when the vote depends on
other things besides exceptions. Do not perform any work—especially transactional
work—after the call to SetTransactionComplete(). Calling SetTransactionComplete()
should be the last line of code in the callback operation, just before returning. If you
try to perform any transactional work (including accessing Transaction.Current) after
the call to SetTransactionComplete(), WCF will throw an InvalidOperationException
and abort the transaction.

Using Transactional Callbacks
While WCF provides the infrastructure for propagating the service’s transaction to the
callback, in reality callbacks and service transactions do not mix well. First, callbacks
are usually one-way operations, and as such cannot propagate transactions. Second, to
be able to invoke the callback to its calling client, the service cannot be configured with
ConcurrencyMode.Single; otherwise, WCF will abort the call to avoid a deadlock. Typ-
ically, services are configured for either the Client/Service or the Client transaction
propagation mode. Ideally, a service should be able to propagate its original calling
client’s transaction to all callbacks it invokes, even if the callback is to the calling client.
Yet, for the service to use the client’s transaction, TransactionScopeRequired must be
set to true. Since ReleaseServiceInstanceOnTransactionComplete is true by default, it
requires ConcurrencyMode.Single, thus precluding the callback to the calling client.

378 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

Out-of-band transactional callbacks

There are two types of transactional callbacks. The first is out-of-band callbacks made
by non-service parties on the host side using callback references stored by the service.
Such parties can easily propagate their transactions to the callback (usually in a
TransactionScope) because there is no risk of a deadlock, as shown in Example 7-31.

Example 7-31. Out-of-band callbacks

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{
 static List<IMyContractCallback> m_Callbacks = new List<IMyContractCallback>();

 public void MyMethod()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();

 if(m_Callbacks.Contains(callback) == false)
 {
 m_Callbacks.Add(callback);
 }
 }
 public static void CallClients()
 {
 Action<IMyContractCallback> invoke = (callback)=>
 {
 using(TransactionScope scope =
 new TransactionScope())
 {
 callback.OnCallback();
 scope.Complete();
 }
 };
 m_Callbacks.ForEach(invoke);
 }
}
//Out-of-band callbacks:
MyService.CallClients();

Service transactional callbacks

The second option is to carefully configure the transactional service so that it is able to
call back to its calling client. To that end, configure the service with Concurrency
Mode.Reentrant, set ReleaseServiceInstanceOnTransactionComplete to false, and make
sure at least one operation has TransactionScopeRequired set to true, as shown in
Example 7-32.

Callbacks | 379

Download from Library of Wow! eBook <www.wowebook.com>

Example 7-32. Configuring for transactional callbacks

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void MyMethod();
}
interface IMyContractCallback
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void OnCallback();
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall,
 ConcurrencyMode = ConcurrencyMode.Reentrant,
 ReleaseServiceInstanceOnTransactionComplete = false)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 Trace.WriteLine("Service ID: " +
 Transaction.Current.TransactionInformation.DistributedIdentifier);

 IMyContractCallback callback =
 OperationContext.Current.GetCallbackChannel<IMyContractCallback>();
 callback.OnCallback();
 }
}

The rationale behind this constraint is explained in the next chapter.

Given the definitions of Example 7-32, if transaction flow is enabled in the binding, the
following client code:

class MyCallback : IMyContractCallback
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void OnCallback()
 {
 Trace.WriteLine("OnCallback ID: " +
 Transaction.Current.TransactionInformation.DistributedIdentifier);
 }
}
MyCallback callback = new MyCallback();
InstanceContext context = new InstanceContext(callback);
MyContractClient proxy = new MyContractClient(context);

using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();

 Trace.WriteLine("Client ID: " +
 Transaction.Current.TransactionInformation.DistributedIdentifier);

380 | Chapter 7: Transactions

Download from Library of Wow! eBook <www.wowebook.com>

 scope.Complete();
}
proxy.Close();

yields output similar to this:

Service ID: 23627e82-507a-45d5-933c-05e5e5a1ae78
OnCallback ID: 23627e82-507a-45d5-933c-05e5e5a1ae78
Client ID: 23627e82-507a-45d5-933c-05e5e5a1ae78

This indicates that the client’s transaction was propagated to the service and into the
callback.

Callbacks | 381

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 8

Concurrency Management

Incoming client calls are dispatched to the service on threads from the Windows I/O
completion thread pool (the pool has 1,000 threads by default). Multiple clients can
make multiple concurrent calls, and the service itself can sustain those calls on multiple
threads. If the calls are dispatched to the same service instance, you must provide
thread-safe access to the service’s in-memory state or risk state corruption and errors.
The same is true for the client’s in-memory state during callbacks, since callbacks too
are dispatched on threads from the I/O completion thread pool. In addition to syn-
chronizing access to the instance state when applicable, all services also need to
synchronize access to resources shared between instances, such as static variables. An-
other dimension altogether for concurrency management is ensuring that, if required,
the service (or the resources it accesses) executes on particular threads.

WCF offers two modes for synchronization. Automatic synchronization instructs WCF
to synchronize access to the service instance. Automatic synchronization is simple to
use, but it is available only for service and callback classes. Manual synchronization, on
the other hand, puts the full burden of synchronization on the developer and requires
application-specific integration. The developer needs to employ .NET synchronization
locks, which is by far an expert discipline. The advantages of manual synchronization
are that it is available for service and non-service classes alike, and it allows developers
to optimize throughput and scalability. This chapter starts by describing the basic con-
currency modes available and then presents more advanced aspects of concurrency
management, such as dealing with resource safety and synchronization, thread affinity
and custom synchronization contexts, callbacks, and asynchronous calls. Throughout,
the chapter shares best practices, concurrency management design guidelines, and
custom techniques.

Instance Management and Concurrency
Service-instance thread safety is closely related to the service instancing mode. A per-
call service instance is thread-safe by definition, because each call gets its own dedicated
instance. That instance is accessible only by its assigned worker thread, and because

383

Download from Library of Wow! eBook <www.wowebook.com>

no other threads will be accessing it, it has no need for synchronization. However, a
per-call service is typically state-aware. The state store can be an in-memory resource
such as static dictionary, and it can be subject to multithreaded access because the
service can sustain concurrent calls, whether from the same client or from multiple
clients. Consequently, you must synchronize access to the state store.

A per-session service always requires concurrency management and synchronization,
because the client may use the same proxy and yet dispatch calls to the service on
multiple client-side threads. A singleton service is even more susceptible to concurrent
access, and must support synchronized access. The singleton has some in-memory state
that all clients implicitly share. On top of the possibility of the client dispatching calls
on multiple threads, as with a per-session service, a singleton may simply have multiple
clients in different execution contexts, each using its own thread to call the service. All
of these calls will enter the singleton on different threads from the I/O completion
thread pool—hence the need for synchronization.

Service Concurrency Modes
Concurrent access to the service instance is governed by the ConcurrencyMode property
of the ServiceBehavior attribute:

public enum ConcurrencyMode
{
 Single,
 Reentrant,
 Multiple
}

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : ...
{
 public ConcurrencyMode ConcurrencyMode
 {get;set;}
 //More members
}

The value of the ConcurrencyMode enum controls if and when concurrent calls are al-
lowed. The name ConcurrencyMode is actually incorrect; the proper name for this prop-
erty would have been ConcurrencyContextMode, since it synchronizes access not to the
instance, but rather to the context containing the instance (much the same way
InstanceContextMode controls the instantiation of the context, not the instance). The
significance of this distinction—i.e., that the synchronization is related to the context
and not to the instance—will become evident later.

ConcurrencyMode.Single
When the service is configured with ConcurrencyMode.Single, WCF will provide auto-
matic synchronization to the service context and disallow concurrent calls by

384 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

associating the context containing the service instance with a synchronization lock.
Every call coming into the service must first try to acquire the lock. If the lock is un-
owned, the caller will be allowed in. Once the operation returns, WCF will unlock the
lock, thus allowing in another caller.

The important thing is that only one caller at a time is ever allowed. If there are multiple
concurrent callers while the lock is locked, the callers are all placed in a queue and are
served out of the queue in order. If a call times out while blocked, WCF will remove
the caller from the queue and the client will get a TimeoutException. The Concurrency
Mode.Single is the WCF default setting, so these definitions are equivalent:

class MyService : IMyContract
{...}

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Single)]
class MyService : IMyContract
{...}

Because the default concurrency mode is synchronized access, the susceptible instanc-
ing modes of per-session and singleton are also synchronized by default. Note that even
calls to a per-call service instance are synchronized by default.

Synchronized access and transactions

As explained in Chapter 7, WCF will verify at service load time whether at least one
operation on the service has TransactionScopeRequired set to true and that
ReleaseServiceInstanceOnTransactionComplete is true. In this case, the service con-
currency mode must be ConcurrencyMode.Single. This is done deliberately to ensure
that the service instance can be recycled at the end of the transaction without any danger
of there being another thread accessing the disposed instance.

ConcurrencyMode.Multiple
When the service is configured with ConcurrencyMode.Multiple, WCF will stay out of
the way and will not synchronize access to the service instance in any way.
ConcurrencyMode.Multiple simply means that the service instance is not associated with
any synchronization lock, so concurrent calls are allowed on the service instance. Put
differently, when a service instance is configured with ConcurrencyMode.Multiple, WCF
will not queue up the client messages and dispatch them to the service instance as soon
as they arrive.

A large number of concurrent client calls will not result in a matching
number of concurrently executing calls on the service. The maximum
number of concurrent calls dispatched to the service is determined by
the configured maximum concurrent calls throttle value.

Service Concurrency Modes | 385

Download from Library of Wow! eBook <www.wowebook.com>

Obviously, this is of great concern to sessionful and singleton services, which must
manually synchronize access to their instance state. The common way of doing that is
to use .NET locks such as Monitor or a WaitHandle-derived class. Manual synchroniza-
tion, which is covered in great depth in Chapter 8 of my book Programming .NET
Components, Second Edition (O’Reilly), is not for the faint of heart, but it does enable
the service developer to optimize the throughput of client calls on the service instance:
you can lock the service instance just when and where synchronization is required, thus
allowing other client calls on the same service instance in between the synchronized
sections. Example 8-1 shows a manually synchronized sessionful service whose client
performs concurrent calls.

Example 8-1. Manual synchronization using fragmented locking

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 void MyMethod();
}

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyService : IMyContract
{
 int[] m_Numbers;
 List<string> m_Names;

 public void MyMethod()
 {
 lock(m_Numbers)
 {
 ...
 }

 /* Don't access members here */

 lock(m_Names)
 {
 ...
 }
 }
}

The service in Example 8-1 is configured for concurrent access. Since the critical sec-
tions of the operations that require synchronization are any member variable accesses,
the service uses a Monitor (encapsulated in the lock statement) to lock the member
variable before accessing it. I call this synchronization technique fragmented locking,
since it locks only when needed and only what is being accessed. Local variables require
no synchronization, because they are visible only to the thread that created them on its
own call stack.

There are two problems with fragmented locking: it is both error- and deadlock-prone.
Fragmented locking only provides for thread-safe access if every other operation on the

386 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

service is as disciplined about always locking the members before accessing them. But
even if all operations lock all members, you still risk deadlocks: if one operation on
thread A locks member M1 while trying to access member M2, while another operation
executing concurrently on thread B locks member M2 while trying to access member
M1, you will end up with a deadlock.

WCF resolves service call deadlocks by eventually timing out the call
and throwing a TimeoutException. Avoid using a long send timeout, as
it decreases WCF’s ability to resolve deadlocks in a timely manner.

It is better to reduce the fragmentation by locking the entire service instance instead:

public void MyMethod()
{
 lock(this)
 {
 ...
 }

 /* Don't access members here */

 lock(this)
 {
 ...
 }
}

This approach, however, is still fragmented and thus error-prone—if at some point in
the future someone adds a method call in the unsynchronized code section that does
access the members, it will not be a synchronized access. It is better still to lock the
entire body of the method:

public void MyMethod()
{
 lock(this)
 {
 ...
 }
}

The problem with this approach is that in the future someone maintaining this code
may err and place some code before or after the lock statement. Your best option
therefore is to instruct the compiler to automate injecting the call to lock the instance
using the MethodImpl attribute with the MethodImplOptions.Synchronized flag:

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyService : IMyContract
{
 int[] m_Numbers;
 List<string> m_Names;

Service Concurrency Modes | 387

Download from Library of Wow! eBook <www.wowebook.com>

 [MethodImpl(MethodImplOptions.Synchronized)]
 public void MyMethod()
 {
 ...
 }
}

You will need to repeat the assignment of the MethodImpl attribute on all the service
operation implementations.

While this code is thread-safe, you actually gain little from the use of Concurrency
Mode.Multiple: the net effect in terms of synchronization is similar to using Concurren
cyMode.Single, yet you have increased the overall code complexity and reliance on
developers’ discipline. In general, you should avoid ConcurrencyMode.Multiple. How-
ever, there are cases where ConcurrencyMode.Multiple is useful, as you will see later in
this chapter.

Unsynchronized access and transactions

When the service is configured for ConcurrencyMode.Multiple, if at least one operation
has TransactionScopeRequired set to true, then ReleaseServiceInstanceOnTransaction
Complete must be set to false. For example, this is a valid definition, even though
ReleaseServiceInstanceOnTransactionComplete defaults to true, because no method
has TransactionScopeRequired set to true:

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyService : IMyContract
{
 public void MyMethod()
 {...}
 public void MyOtherMethod()
 {...}
}

The following, on the other hand, is an invalid definition because at least one method
has TransactionScopeRequired set to true:

//Invalid configuration:
[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
 public void MyOtherMethod()
 {...}
}

A transactional unsynchronized service must explicitly set ReleaseServiceInstanceOn
TransactionComplete to false:

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple,
 ReleaseServiceInstanceOnTransactionComplete = false)]
class MyService : IMyContract

388 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
 public void MyOtherMethod()
 {...}
}

The rationale behind this constraint is that only a sessionful or a singleton service could
possibly benefit from unsynchronized access, so in the case of transactional access,
WCF wants to enforce the semantic of the configured instancing mode. In addition,
this will avoid having one caller access the instance, complete the transaction, and
release the instance, all while another caller is using the instance.

ConcurrencyMode.Reentrant
The ConcurrencyMode.Reentrant value is a refinement of ConcurrencyMode.Single. Sim-
ilar to ConcurrencyMode.Single, ConcurrencyMode.Reentrant associates the service con-
text with a synchronization lock, so concurrent calls on the same instance are never
allowed. However, if the reentrant service calls out to another service or a callback, and
that call chain (or causality) somehow winds its way back to the service instance, as
shown in Figure 8-1, that call is allowed to reenter the service instance.

Figure 8-1. Call reentrancy

The implementation of ConcurrencyMode.Reentrant is very simple—when the reentrant
service calls out over WCF, WCF silently releases the synchronization lock associated
with the instance context. ConcurrencyMode.Reentrant is designed to avoid the potential
deadlock of reentrancy, although it will release the lock in case of a callout. If the service
were to maintain the lock while calling out, if the causality tried to enter the same
context, a deadlock would occur.

Reentrancy support is instrumental in a number of cases:

• A singleton service calling out risks a deadlock if any of the downstream services
it calls tries to call back into the singleton.

Service Concurrency Modes | 389

Download from Library of Wow! eBook <www.wowebook.com>

• In the same app domain, if the client stores a proxy reference in some globally
available variable, then some of the downstream objects called by the service use
the proxy reference to call back to the original service.

• Callbacks on non-one-way operations must be allowed to reenter the calling
service.

• If the callout the service performs is of long duration, even without reentrancy, you
may want to optimize throughput by allowing other clients to use the same service
instance while the callout is in progress.

A service configured with ConcurrencyMode.Multiple is by definition also
reentrant, because no lock is held during the callout. However, unlike
a reentrant service, which is inherently thread-safe, a service configured
with ConcurrencyMode.Multiple must provide for its own synchroniza-
tion (for example, by locking the instance during every call, as explained
previously). It is up to the developer of such a service to decide if it
should release the lock before calling out to avoid a reentrancy deadlock.

Designing for reentrancy

It is very important to recognize the liability associated with reentrancy. When a reen-
trant service calls out, it must leave the service in a workable, consistent state, because
others could be allowed into the service instance while the service is calling out. A
consistent state means that the reentrant service must have no more interactions with
its own members or any other local object or static variable, and that when the callout
returns, the reentrant service should simply be able to return control to its client. For
example, suppose the reentrant service modifies the state of some linked list and leaves
it in an inconsistent state—say, missing a head node—because it needs to get the value
of the new head from another service. If the reentrant service then calls out to the other
service, it leaves other clients vulnerable, because if they call into the reentrant service
and access the linked list they will encounter an error.

Moreover, when the reentrant service returns from its callout, it must refresh all local
method state. For example, if the service has a local variable that contains a copy of the
state of a member variable, that local variable may now have the wrong value, because
during the callout another party could have entered the reentrant service and modified
the member variable.

Reentrancy and transactions

A reentrant service faces exactly the same design constraints regarding transactions as
a service configured with ConcurrencyMode.Multiple; namely, if at least one operation
has TransactionScopeRequired set to true, then ReleaseServiceInstanceOnTransaction
Complete must be set to false. This is done to maintain the instance context mode
semantics.

390 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Callbacks and reentrancy

Consider now the case of a service designed for single-threaded access with
ConcurrencyMode.Single and with duplex callbacks. When a call from the client enters
the context, it acquires the synchronization lock. If that service obtains the callback
reference and calls back to the calling client, that call out will block the thread used to
issue the call from the client while still maintaining the lock on the context. The callback
will reach the client, execute there, and return with a reply message from the client.
Unfortunately, when the reply message is sent to the same service instance context, it
will first try to acquire the lock—the same lock already owned by the original call from
the client, which is still blocked waiting for the callback to return—and a deadlock will
ensue. To avoid this deadlock, during the operation execution, WCF disallows call-
backs from the service to its calling client as long as the service is configured for single-
threaded access.

There are three ways of safely allowing the callback. The first is to configure the service
for reentrancy. When the service invokes the proxy to the callback object, WCF will
silently release the lock, thus allowing the reply message from the callback to acquire
the lock when it returns, as shown in Example 8-2.

Example 8-2. Configure for reentrancy to allow callbacks

interface IMyContractCallback
{
 [OperationContract]
 void OnCallback();
}
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]
class MyService : IMyContract
{
 public void MyMethod()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();
 callback.OnCallback();
 }
}

Control will only return to the service once the callback returns, and the service’s own
thread will need to reacquire the lock. Configuring for reentrancy is required even
of a per-call service, which otherwise has no need for anything but
ConcurrencyMode.Single. Note that the service may still invoke callbacks to other clients
or call other services; it is the callback to the calling client that is disallowed.

Service Concurrency Modes | 391

Download from Library of Wow! eBook <www.wowebook.com>

You can, of course, configure the service for concurrent access with Concurrency
Mode.Multiple to avoid having any lock.

The third option (as mentioned in Chapter 5), and the only case where a service con-
figured with ConcurrencyMode.Single can call back to its clients, is when the callback
contract operation is configured as one-way because there will not be any reply message
to contend for the lock.

Instances and Concurrent Access
Using the same proxy, a single client can issue multiple concurrent calls to a service.
The client can use multiple threads to invoke calls on the service, or it can issue one-
way calls in rapid succession on the same thread. In both of these cases, whether the
calls from the same client are processed concurrently is the product of the service’s
configured instancing mode, the service’s concurrency mode, and the configured de-
livery mode (that is, the transport session). The following discussion applies equally to
request-reply and one-way calls.

Per-Call Services
In the case of a per-call service, if there is no transport-level session, concurrent pro-
cessing of calls is allowed. Calls are dispatched as they arrive, each to a new instance,
and execute concurrently. This is the case regardless of the service concurrency mode.
I consider this to be the correct behavior.

If the per-call service has a transport-level session, whether concurrent processing of
calls is allowed is a product of the service concurrency mode. If the service is configured
with ConcurrencyMode.Single, concurrent processing of the pending calls is not al-
lowed, and the calls are dispatched one at a time. The reason is that with Concurrency
Mode.Single WCF tries to maintain the guarantee of the transport session that messages
are processed strictly in the order in which they were received in that session by having
exactly one outstanding instance per channel. You should avoid lengthy processing of
calls, because it may risk call timeouts.

While this is a direct result of the channel’s architecture, I consider this to be a flawed
design. If the service is configured with ConcurrencyMode.Multiple, concurrent pro-
cessing is allowed. Calls are dispatched as they arrive, each to a new instance, and
execute concurrently. An interesting observation here is that in the interest of through-
put, it is a good idea to configure a per-call service with ConcurrencyMode.Multiple—
the instance itself will still be thread-safe (so you will not incur the synchronization
liability), yet you will allow concurrent calls from the same client.

392 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Two clients using two different proxies will have two distinct channels
and will have no issue with concurrent calls. It is only concurrent calls
on the same transport session that are serialized one at a time to the per-
call service.

When the service is configured with ConcurrencyMode.Reentrant, if the service does not
call out, it behaves similarly to a service configured with ConcurrencyMode.Single. If the
service does call out, the next call is allowed in, and the returning call has to negotiate
the lock like all other pending calls.

Sessionful and Singleton Services
In the case of a sessionful or a singleton service, the configured concurrency mode alone
governs the concurrent execution of pending calls. If the service is configured with
ConcurrencyMode.Single, calls will be dispatched to the service instance one at a time,
and pending calls will be placed in a queue. You should avoid lengthy processing of
calls, because it may risk call timeouts.

If the service instance is configured with ConcurrencyMode.Multiple, concurrent pro-
cessing of calls from the same client is allowed. Calls will be executed by the service
instance as fast as they come off the channel (up to the throttle limit). Of course, as is
always the case with a stateful unsynchronized service instance, you must synchronize
access to the service instance or risk state corruption.

If the service instance is configured with ConcurrencyMode.Reentrant, it behaves just as
it would with ConcurrencyMode.Single. However, if the service calls out, the next call
is allowed to execute. You must follow the guidelines discussed previously regarding
programming in a reentrant environment.

For a service configured with ConcurrencyMode.Multiple to experience
concurrent calls, the client must use multiple worker threads to access
the same proxy instance. However, if the client threads rely on the auto-
open feature of the proxy (that is, just invoking a method and having
that call open the proxy if the proxy is not yet open) and call the proxy
concurrently, then the calls will actually be serialized until the proxy is
opened, and will be concurrent after that. If you want to dispatch con-
current calls regardless of the state of the proxy, the client needs to ex-
plicitly open the proxy (by calling the Open() method) before issuing any
calls on the worker threads.

Resources and Services
Synchronizing access to the service instance using ConcurrencyMode.Single or an ex-
plicit synchronization lock only manages concurrent access to the service instance state

Resources and Services | 393

Download from Library of Wow! eBook <www.wowebook.com>

itself. It does not provide safe access to the underlying resources the service may be
using. These resources must also be thread-safe. For example, consider the application
shown in Figure 8-2.

Figure 8-2. Applications must synchronize access to resources

Even though the service instances are thread-safe, the two instances try to concurrently
access the same resource (such as a static variable, a helper static class, or a file), and
therefore the resource itself must have synchronized access. This is true regardless of
the service instancing mode. Even a per-call service could run into the situation shown
in Figure 8-2.

Deadlocked Access
The naive solution to providing thread-safe access to resources is to provide each re-
source with its own lock, potentially encapsulating that lock in the resource itself, and
ask the resource to lock the lock when it’s accessed and unlock the lock when the service
is done with the resource. The problem with this approach is that it is deadlock-prone.
Consider the situation depicted in Figure 8-3.

Figure 8-3. Deadlock over resources access

In the figure, Instance A of the service accesses the thread-safe Resource A. Resource
A has its own synchronization lock, and Instance A acquires that lock. Similarly,
Instance B accesses Resource B and acquires its lock. A deadlock then occurs when
Instance A tries to access Resource B while Instance B tries to access Resource A, since
each instance will be waiting for the other to release its lock.

The concurrency and instancing modes of the service are almost irrelevant to avoiding
this deadlock. The only case that avoids it is if the service is configured both with

394 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

InstanceContextMode.Single and ConcurrencyMode.Single, because a synchronized sin-
gleton by definition can only have one client at a time and there will be no other instance
to deadlock with over access to resources. All other combinations are still susceptible
to this kind of deadlock. For example, a per-session synchronized service may have two
separate thread-safe instances associated with two different clients, yet the two instan-
ces can deadlock when accessing the resources.

Deadlock Avoidance
There are a few possible ways to avoid the deadlock. If all instances of the service
meticulously access all resources in the same order (e.g., always trying to acquire the
lock of Resource A first, and then the lock of Resource B), there will be no deadlock.
The problem with this approach is that it is difficult to enforce, and over time, during
code maintenance, someone may deviate from this strict guideline (even inadvertently,
by calling methods on helper classes) and trigger the deadlock.

Another solution is to have all resources use the same shared lock. In order to minimize
the chances of a deadlock, you’ll also want to minimize the number of locks in the
system and have the service itself use the same lock. To that end, you can configure the
service with ConcurrencyMode.Multiple (even with a per-call service) to avoid using
the WCF-provided lock. The first service instance to acquire the shared lock will lock
out all other instances and own all underlying resources. A simple technique for using
such a shared lock is locking on the service type, as shown in Example 8-3.

Example 8-3. Using the service type as a shared lock

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall,
 ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyService : IMyContract
{
 public void MyMethod()
 {
 lock(typeof(MyService))
 {
 ...
 MyResource.DoWork();
 ...
 }
 }
}
static class MyResource
{
 public static void DoWork()
 {
 lock(typeof(MyService))
 {
 ...
 }
 }
}

Resources and Services | 395

Download from Library of Wow! eBook <www.wowebook.com>

The resources themselves must also lock on the service type (or some other shared type
agreed upon in advance). There are two problems with the approach of using a shared
lock. First, it introduces coupling between the resources and the service, because the
resource developer has to know about the type of the service or the type used for syn-
chronization. While you could get around that by providing the type as a resource
construction parameter, it will likely not be applicable with third-party-provided re-
sources. The second problem is that while your service instance is executing, all other
instances (and their respective clients) will be blocked. Therefore, in the interest of
throughput and responsiveness, you should avoid lengthy operations when using a
shared lock.

If you think the situation in Example 8-3, where the two instances are of the same
service, is problematic, imagine what happens if the two instances are of different serv-
ices. The observation to make here is that services should never share resources. Re-
gardless of concurrency management, resources are local implementation details and
therefore should not be shared across services. Most importantly, sharing resources
across the service boundary is also deadlock-prone. Such shared resources have no easy
way to share locks across technologies and organizations, and the services need to
somehow coordinate the locking order. This necessitates a high degree of coupling
between the services, violating the best practices and tenets of service-orientation.

Resource Synchronization Context
Incoming service calls execute on worker threads from the I/O completion thread pool
and are unrelated to any service or resource threads. This means that by default the
service cannot rely on any kind of thread affinity (that is, always being accessed by the
same thread). Much the same way, the service cannot by default rely on executing on
any host-side custom threads created by the host or service developers. The problem
with this situation is that some resources may rely on thread affinity. For example, user
interface resources updated by the service must execute and be accessed only by the
user interface (UI) thread. Other examples are a resource (or a service) that makes use
of the thread local storage (TLS) to store out-of-band information shared globally by
all parties on the same thread (using the TLS mandates use of the same thread), or
accessing components developed using legacy Visual Basic or Visual FoxPro, which
also require thread affinity (due to their own use of the TLS). In addition, for scalability
and throughput purposes, some resources or frameworks may require access by their
own pool of threads.

Whenever an affinity to a particular thread or threads is expected, the service cannot
simply execute the call on the incoming WCF worker thread. Instead, the service must
marshal the call to the correct thread(s) required by the resource it accesses.

396 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

.NET Synchronization Contexts

.NET 2.0 introduced the concept of a synchronization context. The idea is that any party
can provide an execution context and have other parties marshal calls to that context.
The synchronization context can be a single thread or any number of designated
threads, although typically it will be just a single, yet particular thread. All the syn-
chronization context does is assure that the call executes on the correct thread or
threads.

Note that the word context is overloaded. Synchronization contexts have absolutely
nothing to do with the service instance context or the operation context described so
far in this book. They are simply the synchronizational context of the call.

While synchronization contexts are a simple enough design pattern to use conceptually,
implementing a synchronization context is a complex programming task that is not
normally intended for developers to attempt.

The SynchronizationContext class

The SynchronizationContext class from the System.Threading namespace represents a
synchronization context:

public delegate void SendOrPostCallback(object state);

public class SynchronizationContext
{
 public virtual void Post(SendOrPostCallback callback,object state);
 public virtual void Send(SendOrPostCallback callback,object state);
 public static void SetSynchronizationContext(SynchronizationContext context);
 public static SynchronizationContext Current
 {get;}
 //More members
}

Every thread in .NET may have a synchronization context associated with it. You can
obtain a thread’s synchronization context by accessing the static Current property of
SynchronizationContext. If the thread does not have a synchronization context,
Current will return null. You can also pass the reference to the synchronization context
between threads, so that one thread can marshal a call to another thread.

To represent the call to invoke in the synchronization context, you wrap a method with
a delegate of the type SendOrPostCallback. Note that the signature of the delegate uses
an object. If you want to pass multiple parameters, pack those in a structure and pass
the structure as an object.

Synchronization contexts use an amorphous object. Exercise caution
when using synchronization contexts, due to the lack of compile-time
type safety. Instead of an object, you can use anonymous methods and
outer variables (closures) that are type-safe.

Resource Synchronization Context | 397

Download from Library of Wow! eBook <www.wowebook.com>

Working with the synchronization context

There are two ways of marshaling a call to the synchronization context: synchronously
and asynchronously, by sending or posting a work item, respectively. The Send()
method will block the caller until the call has completed in the other synchronization
context, while Post() will merely dispatch it to the synchronization context and then
return control to its caller.

For example, to synchronously marshal a call to a particular synchronization context,
you first somehow obtain a reference to that synchronization context, and then use the
Send() method:

//Obtain synchronization context
SynchronizationContext context = ...

SendOrPostCallback doWork = (arg)=>
 {
 //The code here is guaranteed to
 //execute on the correct thread(s)
 };
context.Send(doWork,"Some argument");

Example 8-4 shows a less abstract example.

Example 8-4. Calling a resource on the correct synchronization context

class MyResource
{
 public int DoWork()
 {...}
 public SynchronizationContext MySynchronizationContext
 {get;}
}
class MyService : IMyContract
{
 MyResource GetResource()
 {...}

 public void MyMethod()
 {
 MyResource resource = GetResource();
 SynchronizationContext context = resource.MySynchronizationContext;
 int result = 0;
 SendOrPostCallback doWork = _=>
 {
 result = resource.DoWork();
 };
 context.Send(doWork,null);
 }
}

In Example 8-4, the service MyService needs to interact with the resource MyResource
and have it perform some work by executing the DoWork() method and returning a
result. However, MyResource requires that all calls to it execute on its particular

398 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

synchronization context. MyResource makes that execution context available via the
MySynchronizationContext property. The service operation MyMethod() executes on a
WCF worker thread. MyMethod() first obtains the resource and its synchronization con-
text, then defines a Lambda expression that wraps the call to DoWork() and assigns that
expression to the doWork delegate of the type SendOrPostCallback. Finally, MyMethod()
calls Send() and passes null for the argument, since the DoWork() method on the re-
source requires no parameters. Note the technique used in Example 8-4 to retrieve a
returned value from the invocation. Since Send() returns void, the Lambda expression
assigns the returned value of DoWork() into an outer variable.

The problem with Example 8-4 is the excessive degree of coupling between the service
and the resource. The service needs to know that the resource is sensitive to its syn-
chronization context, obtain the context, and manage the execution. You must also
duplicate such code in any service using the resource. It is much better to encapsulate
the need in the resource itself, as shown in Example 8-5.

Example 8-5. Encapsulating the synchronization context

class MyResource
{
 public int DoWork()
 {
 int result = 0;
 SendOrPostCallback doWork = _=>
 {
 result = DoWorkInternal();
 };
 MySynchronizationContext.Send(doWork,null);
 return result;
 }
 SynchronizationContext MySynchronizationContext
 {get;}
 int DoWorkInternal()
 {...}
}
class MyService : IMyContract
{
 MyResource GetResource()
 {...}
 public void MyMethod()
 {
 MyResource resource = GetResource();
 int result = resource.DoWork();
 }
}

Compare Example 8-5 to Example 8-4. All the service in Example 8-5 has to do is access
the resource: it is up to the service internally to marshal the call to its synchronization
context.

Resource Synchronization Context | 399

Download from Library of Wow! eBook <www.wowebook.com>

The UI Synchronization Context
The best way to illustrate the usefulness and power of synchronization contexts, along
with concrete examples of the abstract patterns discussed so far, is when utilizing syn-
chronization contexts along with Windows user interface frameworks such as Win-
dows Forms or the Windows Presentation Foundation (WPF). Note that while this
discussion focuses on the UI case, the patterns, design guidelines, and consequences
of those design decisions and even the best practices apply to most other cases of a
synchronization context.

For simplicity’s sake, the rest of the discussion in this chapter will refer only to Windows
Forms, although it applies equally to WPF. A Windows UI application relies on the
underlying Windows messages and a message-processing loop (the message pump) to
process them. The message loop must have thread affinity, because messages to a win-
dow are delivered only to the thread that created it. In general, you must always marshal
to the UI thread any attempt to access a Windows control or form, or risk errors and
failures. This becomes an issue if your services need to update some user interface as a
result of client calls or some other event. Fortunately, Windows Forms supports the
synchronization context pattern. Every thread that pumps Windows messages has a
synchronization context. That synchronization context is the WindowsFormsSynchroni
zationContext class:

public sealed class WindowsFormsSynchronizationContext : SynchronizationContext,...
{...}

Whenever you create any Windows Forms control or form, that control or form ulti-
mately derives from the class Control. The constructor of Control checks whether the
current thread that creates it already has a synchronization context, and if it does not,
Control installs WindowsFormsSynchronizationContext as the current thread’s synchro-
nization context.

WindowsFormsSynchronizationContext converts the call to Send() or Post() to a custom
Windows message and posts that Windows message to the UI thread’s message queue.
Every Windows Forms UI class that derives from Control has a dedicated method that
handles this custom message by invoking the supplied SendOrPostCallback delegate. At
some point, the UI thread processes the custom Windows message and the delegate is
invoked.

Because the window or control can also be called already in the correct synchronization
context, to avoid a deadlock when calling Send(), the implementation of the Windows
Forms synchronization context verifies that marshaling the call is indeed required. If
marshaling is not required, it uses direct invocation on the calling thread.

UI access and updates

When a service needs to update a user interface, it must have some proprietary mech-
anisms to find the window to update in the first place. And once the service has the

400 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

correct window, it must somehow get hold of that window’s synchronization context
and marshal the call to it. Such a possible interaction is shown in Example 8-6.

Example 8-6. Using the form synchronization context

partial class MyForm : Form
{
 Label m_CounterLabel;
 public readonly SynchronizationContext MySynchronizationContext;

 public MyForm()
 {
 InitializeComponent();
 MySynchronizationContext = SynchronizationContext.Current;
 }
 void InitializeComponent()
 {
 ...
 m_CounterLabel = new Label();
 ...
 }

 public int Counter
 {
 get
 {
 return Convert.ToInt32(m_CounterLabel.Text);
 }
 set
 {
 m_CounterLabel.Text = value.ToString();
 }
 }
}
[ServiceContract]
interface IFormManager
{
 [OperationContract]
 void IncrementLabel();
}
class MyService : IFormManager
{
 public void IncrementLabel()
 {
 MyForm form = Application.OpenForms[0] as MyForm;
 Debug.Assert(form != null);

 SendOrPostCallback callback = _=>
 {
 form.Counter++;
 };
 form.MySynchronizationContext.Send(callback,null);
 }
}
static class Program

Resource Synchronization Context | 401

Download from Library of Wow! eBook <www.wowebook.com>

{
 static void Main()
 {
 ServiceHost host = new ServiceHost(typeof(MyService));
 host.Open();

 Application.Run(new MyForm());

 host.Close();
 }
}

Example 8-6 shows the form MyForm, which provides the MySynchronizationContext
property that allows its clients to obtain its synchronization context. MyForm initializes
MySynchronizationContext in its constructor by obtaining the synchronization context
of the current thread. The thread has a synchronization context because the constructor
of MyForm is called after the constructor of its topmost base class, Control, was called,
and Control has already attached the Windows Forms synchronization context to the
thread in its constructor.

MyForm also offers a Counter property that updates the value of a counting Windows
Forms label. Only the thread that owns the form can access that label. MyService im-
plements the IncrementLabel() operation. In that operation, the service obtains a ref-
erence to the form via the static OpenForms collection of the Application class:

public class FormCollection : ReadOnlyCollectionBase
{
 public virtual Form this[int index]
 {get;}
 public virtual Form this[string name]
 {get;}
}

public sealed class Application
{
 public static FormCollection OpenForms
 {get;}
 //Rest of the members
}

Once IncrementLabel() has the form to update, it accesses the synchronization context
via the MySynchronizationContext property and calls the Send() method. Send() is pro-
vided with an anonymous method that accesses the Counter property. Example 8-6 is
a concrete example of the programming model shown in Example 8-4, and it suffers
from the same deficiency: namely, tight coupling between all service operations and
the form. If the service needs to update multiple controls, that also results in a cum-
bersome programming model. Any change to the user interface layout, the controls on
the forms, and the required behavior is likely to cause major changes to the service code.

402 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

The Task Parallel Library and Synchronization Context
.NET 4.0 introduced the parallel computing library, with programming models and
helper types designed to streamline writing, executing, and synchronizing concurrent
or parallel programs. A full discussion of the parallel task library is well beyond the
scope of this book and has nothing to do with WCF. The parallel task library does
offer a wrapper around synchronization context in the form of a dedicated task
scheduler, available with the static method FromCurrentSynchronizationContext() of
TaskScheduler:

public abstract class TaskScheduler
{
 public static TaskScheduler FromCurrentSynchronizationContext();
 //More members
}

FromCurrentSynchronizationContext() obtains the synchronization context of the cur-
rent thread and returns a task scheduler that marshals all its tasks to that synchroni-
zation context. Using the task parallel library, the pertinent elements of Example 8-6
can be written as:

partial class MyForm : Form
{
 public int m_Counter
 {get;set;}

 public readonly TaskScheduler Scheduler;

 public MyForm()
 {
 InitializeComponent();
 Scheduler = TaskScheduler.FromCurrentSynchronizationContext();
 }
 ...
}
class MyService : IFormManager
{
 public void IncrementLabel()
 {
 MyForm form = Application.OpenForms[0] as MyForm;
 Debug.Assert(form != null);

 TaskScheduler scheduler = form.Scheduler;
 TaskFactory factory = Task.Factory;

 factory.StartNew(()=>form.Counter++,
 CancellationToken.None,TaskCreationOptions.None,scheduler);
 }
}

Since the two programming models are equivalent in capabilities and complexity, I see
no clear advantage of one over the other in simple cases. The advantage of the parallel
task library is that it offers a clean way to combine accessing a resource that is sensitive
to the affinity of its accessing thread (or threads) as part of a larger set of parallel tasks.

Resource Synchronization Context | 403

Download from Library of Wow! eBook <www.wowebook.com>

Safe controls

A better approach is to encapsulate the interaction with the Windows Forms synchro-
nization context in safe controls or safe methods on the form, to decouple them from
the service and to simplify the overall programming model. Example 8-7 lists the code
for SafeLabel, a Label-derived class that provides thread-safe access to its Text property.
Because SafeLabel derives from Label, you still have full design-time visual experience
and integration with Visual Studio, yet you can surgically affect just the property that
requires the safe access.

Example 8-7. Encapsulating the synchronization context

public class SafeLabel : Label
{
 SynchronizationContext m_SynchronizationContext =
 SynchronizationContext.Current;
 override public string Text
 {
 set
 {
 m_SynchronizationContext.Send(_=> base.Text = value,null);
 }
 get
 {
 string text = String.Empty;
 m_SynchronizationContext.Send(_=> text = base.Text,null);
 return text;
 }
 }
}

Upon construction, SafeLabel caches its synchronization context. SafeLabel overrides
its base class’s Text property and uses the Lambda expression method in the get and
set accessors to send the call to the correct UI thread. Note in the get accessor the use
of an outer variable to return a value from Send(), as discussed previously. Using
SafeLabel, the code in Example 8-6 is reduced to the code shown in Example 8-8.

Example 8-8. Using a safe control

class MyForm : Form
{
 Label m_CounterLabel;

 public MyForm()
 {
 InitializeComponent();
 }
 void InitializeComponent()
 {
 ...
 m_CounterLabel = new SafeLabel();
 ...
 }

404 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 public int Counter
 {
 get
 {
 return Convert.ToInt32(m_CounterLabel.Text);
 }
 set
 {
 m_CounterLabel.Text = value.ToString();
 }
 }
}
class MyService : IFormManager
{
 public void IncrementLabel()
 {
 MyForm form = Application.OpenForms[0] as MyForm;
 Debug.Assert(form != null);

 form.Counter++;
 }
}

Note in Example 8-8 that the service simply accesses the form directly:

form.Counter++;

and that the form is written as a normal form. Example 8-8 is a concrete example of
the programming model shown in Example 8-5.

ServiceModelEx contains not only SafeLabel, but also other controls you are likely to
update at runtime such as SafeButton, SafeListBox, SafeProgressBar, SafeStatusBar,
SafeTrackBar, and SafeTextBox.

Exercise caution when using the safe controls (or in the general case,
safe resources that encapsulate their own synchronization context).
While having safe resources does simplify accessing each individual re-
source, if you have to access multiple resources, you will pay the penalty
of marshaling to the synchronization context with every one of them.
With multiple resources, it is better to lump all the accesses into a single
method and marshal just the call to that method to the target synchro-
nization context.

Service Synchronization Context
The programming techniques shown so far put the onus of accessing the resource on
the correct thread squarely on the service or resource developer. It would be preferable
if the service had a way of associating itself with a particular synchronization context,
and could have WCF detect that context and automatically marshal the call from the
worker thread to the associated service synchronization context. In fact, WCF lets you
do just that. You can instruct WCF to maintain an affinity between all service instances

Service Synchronization Context | 405

Download from Library of Wow! eBook <www.wowebook.com>

from a particular host and a specific synchronization context. The ServiceBehavior
attribute offers the UseSynchronizationContext Boolean property, defined as:

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute : ...
{
 public bool UseSynchronizationContext
 {get;set;}
 //More members
}

The affinity between the service type, its host, and a synchronization context is locked
in when the host is opened. If the thread opening the host has a synchronization context
and UseSynchronizationContext is true, WCF will establish an affinity between that
synchronization context and all instances of the service hosted by that host. WCF will
automatically marshal all incoming calls to the service’s synchronization context. All
the thread-specific information stored in the TLS, such as the client’s transaction or
the security information (discussed in Chapter 10), will be marshaled correctly to the
synchronization context.

If UseSynchronizationContext is false, regardless of any synchronization context the
opening thread might have, the service will have no affinity to any synchronization
context. Likewise, even if UseSynchronizationContext is true, if the opening thread has
no synchronization context the service will not have one either.

The default value of UseSynchronizationContext is true, so these definitions are
equivalent:

[ServiceContract]
interface IMyContract
{...}

class MyService : IMyContract
{...}
[ServiceBehavior(UseSynchronizationContext = true)]
class MyService : IMyContract
{...}

Hosting on the UI Thread
Again, I will use the UI thread affinity as a model for demonstrating the way WCF is
integrated with synchronization context, but as you will see later on, the discussion
here is just as relevant with more powerful examples, especially those involving custom
synchronization contexts.

You can use the UseSynchronizationContext property to enable the service to update
user interface controls and windows directly, without resorting to techniques such as
those illustrated in Example 8-6 and Example 8-7. WCF greatly simplifies UI updates
by providing an affinity between all service instances from a particular host and a spe-
cific UI thread. To achieve that end, host the service on the UI thread that also creates

406 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

the windows or controls with which the service needs to interact. Since the Windows
Forms synchronization context is established during the instantiation of the base win-
dow, you need to open the host before that. For example, this sequence from
Example 8-6:

ServiceHost host = new ServiceHost(typeof(MyService));
host.Open();

Application.Run(new MyForm());

will not have the host associate itself with the form synchronization context, since the
host is opened before the form is created.

However, this minute change in the order of the lines of instantiation will achieve the
desired effect:

Form form = new MyForm();

ServiceHost host = new ServiceHost(typeof(MyService));
host.Open();

Application.Run(form);

Although this change has no apparent effect in classic .NET, it is actually monumental
for WCF, since now the thread that opened the host does have a synchronization con-
text, and the host will use it for all calls to the service. The problem with this approach
is that it is fragile—most developers maintaining your code will not be aware that simply
rearranging the same independent lines of code will have this effect. It is also wrong to
design the form and the service that needs to update it so that they are both at the mercy
of the Main() method and the hosting code to such a degree.

The simple solution is to have the window (or the thread-sensitive resource) that the
service needs to interact with be the one that opens the host, as shown in Example 8-9.

Example 8-9. The form hosting the service

class MyService : IMyContract
{...}

partial class HostForm : Form
{
 ServiceHost m_Host;
 Label m_CounterLabel;

 public HostForm()
 {
 InitializeComponent();

 m_Host = new ServiceHost(typeof(MyService));

 m_Host.Open();
 }
 void OnFormClosed(object sender,EventArgs e)
 {

Service Synchronization Context | 407

Download from Library of Wow! eBook <www.wowebook.com>

 m_Host.Close();
 }

 public int Counter
 {
 get
 {
 return Convert.ToInt32(m_CounterLabel.Text);
 }
 set
 {
 m_CounterLabel.Text = value.ToString();
 }
 }
}
static class Program
{
 static void Main()
 {
 Application.Run(new HostForm());
 }
}

The service in Example 8-9 defaults to using whichever synchronization context its host
encounters. The form HostForm stores the service host in a member variable so that the
form can close the service when the form is closed. The constructor of HostForm already
has a synchronization context, so when it opens the host, an affinity to that synchro-
nization context is established.

Accessing the form

Even though the form hosts the service in Example 8-9, the service instances must have
some proprietary application-specific mechanism to reach into the form. If a service
instance needs to update multiple forms, you can use the Application.OpenForms col-
lections (as in Example 8-6) to find the correct form. Once the service has the form, it
can freely access it directly, as opposed to the code in Example 8-6, which required
marshaling:

class MyService : IFormManager
{
 public void IncrementLabel()
 {
 HostForm form = Application.OpenForms[0] as HostForm;
 Debug.Assert(form != null);
 form.Counter++;
 }
}

You could also store references to the forms to use in static variables, but the problem
with such global variables is that if multiple UI threads are used to pump messages to
different instances of the same form type, you cannot use a single static variable for

408 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

each form type—you need a static variable for each thread used, which complicates
things significantly.

Instead, the form (or forms) can store a reference to itself in the TLS, and have the
service instance access that store and obtain the reference. However, using the TLS is
a cumbersome and non-type-safe programming model. An improvement on this ap-
proach is to use thread-relative static variables. By default, static variables are visible
to all threads in an app domain. With thread-relative static variables, each thread
in the app domain gets its own copy of the static variable. You use the
ThreadStaticAttribute to mark a static variable as thread-relative. Thread-relative
static variables are always thread-safe because they can be accessed only by a single
thread and because each thread gets its own copy of the static variable. Thread-relative
static variables are stored in the TLS, yet they provide a type-safe, simplified program-
ming model. Example 8-10 demonstrates this technique.

Example 8-10. Storing form reference in a thread-relative static variable

partial class HostForm : Form
{
 Label m_CounterLabel;
 ServiceHost m_Host;

 [ThreadStatic]
 static HostForm m_CurrentForm;

 public static HostForm CurrentForm
 {
 get
 {
 return m_CurrentForm;
 }
 private set
 {
 m_CurrentForm = value;
 }
 }
 public int Counter
 {
 get
 {
 return Convert.ToInt32(m_CounterLabel.Text);
 }
 set
 {
 m_CounterLabel.Text = value.ToString();
 }
 }
 public HostForm()
 {
 InitializeComponent();

 CurrentForm = this;

Service Synchronization Context | 409

Download from Library of Wow! eBook <www.wowebook.com>

 m_Host = new ServiceHost(typeof(MyService));
 m_Host.Open();
 }
 void OnFormClosed(object sender,EventArgs e)
 {
 m_Host.Close();
 }
}
[ServiceContract]
interface IFormManager
{
 [OperationContract]
 void IncrementLabel();
}
class MyService : IFormManager
{
 public void IncrementLabel()
 {
 HostForm form = HostForm.CurrentForm;
 form.Counter++;
 }
}
static class Program
{
 static void Main()
 {
 Application.Run(new HostForm());
 }
}

The form HostForm stores a reference to itself in a thread-relative static variable called
m_CurrentForm. The service accesses the static property CurrentForm and obtains a ref-
erence to the instance of HostForm on that UI thread.

Multiple UI threads

Your service host process can actually have multiple UI threads, each pumping mes-
sages to its own set of windows. Such a setup is usually required with UI-intensive
applications that want to avoid having multiple windows sharing a single UI thread
and hosting the services, because while the UI thread is processing a service call (or a
complicated UI update), not all of the windows will be responsive. Since the service
synchronization context is established per host, if you have multiple UI threads you
will need to open a service host instance for the same service type on each UI thread.
Each service host will therefore have a different synchronization context for its service
instances. As mentioned in Chapter 1, in order to have multiple hosts for the same
service type, you must provide each host with a different base address. The easiest way
of doing that is to provide the form constructor with the base address to use as a con-
struction parameter. I also recommend in such a case to use base address-relative ad-
dresses for the service endpoints. The clients will still invoke calls on the various service
endpoints, yet each endpoint will now correspond to a different host, according to the

410 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

base address schema and the binding used. Example 8-11 demonstrates this
configuration.

Example 8-11. Hosting on multiple UI threads

partial class HostForm : Form
{
 public HostForm(string baseAddress)
 {
 InitializeComponent();

 CurrentForm = this;

 m_Host = new ServiceHost(typeof(MyService),new Uri(baseAddress));
 m_Host.Open();
 }
 //Rest same as Example 8-10
}
static class Program
{
 static void Main()
 {
 ParameterizedThreadStart threadMethod = (baseAddress)=>
 {
 string address = baseAddress as string;
 Application.Run(new HostForm(address));
 };
 Thread thread1 = new Thread(threadMethod);
 thread1.Start("http://localhost:8001/");

 Thread thread2 = new Thread(threadMethod);
 thread2.Start("http://localhost:8002/");
 }
}
/* MyService same as Example 8-10 */

////////////////////////////// Host Config File //////////////////////////////
<services>
 <service name = "MyService">
 <endpoint
 address = "MyService"
 binding = "basicHttpBinding"
 contract = "IFormManager"
 />
 </service>
</services>
////////////////////////////// Client Config File ////////////////////////////
<client>
 <endpoint name = "Form A"
 address = "http://localhost:8001/MyService/"
 binding = "basicHttpBinding"
 contract = "IFormManager"
 />
 <endpoint name = "Form B"
 Address = "http://localhost:8002/MyService/"

Service Synchronization Context | 411

Download from Library of Wow! eBook <www.wowebook.com>

 binding = "basicHttpBinding"
 contract = "IFormManager"
 />
</client>

In Example 8-11, the Main() method launches two UI threads, each with its own in-
stance of HostForm. Each form instance accepts as a construction parameter a base
address that it in turn provides for its own host instance. Once the host is opened, it
establishes an affinity to that UI thread’s synchronization context. Calls from the client
to the corresponding base address are now routed to the respective UI thread.

A Form as a Service
The main motivation for hosting a WCF service on a UI thread is when the service
needs to update the UI or the form. The problem is, how does the service reach out and
obtain a reference to the form? While the techniques and ideas shown in the examples
so far certainly work, the separation between the service and the form is artificial. It
would be simpler if the form were the service and hosted itself. For this to work, the
form (or any window) must be a singleton service. The reason is that singleton is the
only instancing mode that enables you to provide WCF with a live instance to host. In
addition, it wouldn’t be desirable to use a per-call form that exists only during a client
call (which is usually very brief), or a sessionful form that only a single client can es-
tablish a session with and update. When a form is also a service, having that form as a
singleton is the best instancing mode all around. Example 8-12 lists just such a service.

Example 8-12. Form as a singleton service

[ServiceContract]
interface IFormManager
{
 [OperationContract]
 void IncrementLabel();
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
partial class MyForm : Form,IFormManager
{
 Label m_CounterLabel;
 ServiceHost m_Host;

 public MyForm()
 {
 InitializeComponent();
 m_Host = new ServiceHost(this);
 m_Host.Open();
 }
 void OnFormClosed(object sender,EventArgs args)
 {
 m_Host.Close();
 }
 public void IncrementLabel()
 {

412 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 Counter++;
 }
 public int Counter
 {
 get
 {
 return Convert.ToInt32(m_CounterLabel.Text);
 }
 set
 {
 m_CounterLabel.Text = value.ToString();
 }
 }
}

MyForm implements the IFormManager contract and is configured as a WCF singleton
service. MyForm has a ServiceHost as a member variable, as before. When MyForm con-
structs the host, it uses the host constructor that accepts an object reference, as shown
in Chapter 4. MyForm passes itself as the object. MyForm opens the host when the form is
created and closes the host when the form is closed. Updating the form’s controls as a
result of client calls is done by accessing them directly, because the form, of course,
runs in its own synchronization context.

The FormHost<F> class

You can streamline and automate the code in Example 8-12 using my FormHost<F> class,
defined as:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public abstract class FormHost<F> : Form where F : Form
{
 public FormHost(params string[] baseAddresses);

 protected ServiceHost<F> Host
 {get;}
}

Using FormHost<F>, Example 8-12 is reduced to:

partial class MyForm : FormHost<MyForm>,IFormManager
{
 Label m_CounterLabel;

 public MyForm()
 {
 InitializeComponent();
 }
 public void IncrementLabel()
 {
 Counter++;
 }
 public int Counter
 {
 get

Service Synchronization Context | 413

Download from Library of Wow! eBook <www.wowebook.com>

 {
 return Convert.ToInt32(m_CounterLabel.Text);
 }
 set
 {
 m_CounterLabel.Text = value.ToString();
 }
 }
}

The Windows Forms designer is incapable of rendering a form that has
an abstract base class, let alone one that uses generics. You will have to
change the base class to Form for visual editing, then revert to
FormHost<F> for debugging. To compensate, copy the Debug configu-
ration into a new solution configuration called Design, then add the
DESIGN symbol to the Design configuration. Finally, define the form to
render properly in design mode and to execute properly in debug and
release modes:

#if DESIGN
public partial class MyForm : Form,IFormManager
#else
public partial class MyForm : FormHost<MyForm>,IFormManager
#endif
{...}

Example 8-13 shows the implementation of FormHost<F>.

Example 8-13. Implementing FormHost<F>

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public abstract class FormHost<F> : Form where F : Form
{
 protected ServiceHost<F> Host
 {get;private set;}

 public FormHost(params string[] baseAddresses)
 {
 Host = new ServiceHost<F>(this as F,baseAddresses);

 Load += delegate
 {
 if(Host.State == CommunicationState.Created)
 {
 Host.Open();
 }
 };
 FormClosed += delegate
 {
 if(Host.State == CommunicationState.Opened)
 {
 Host.Close();
 }
 };

414 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 }
}

FormHost<F> is an abstract generic class configured as a singleton service. It takes a single
type parameter, F, which is constrained to be a Windows Forms Form class.
FormHost<F> uses my ServiceHost<T> as a member variable, specifying F for the type
parameter for the host. FormHost<F> offers the host access to the derived forms, mostly
for advanced configuration, so the Host property is marked as protected. The con-
structor of FormHost<F> creates the host, but does not open it. The reason is that the
subform may want to perform some host initialization, such as configuring a throttle,
and this initialization can only be done before opening the host. The subclass should
place that initialization in its own constructor:

public MyForm()
{
 InitializeComponent();
 Host.SetThrottle(10,20,1);
}

To allow for this, the constructor uses an anonymous method to subscribe to the form’s
Load event, where it first verifies that the subform has not yet opened the host and then
opens it. In a similar manner, the constructor subscribes to the form’s FormClosed event,
where it closes the host.

The UI Thread and Concurrency Management
Whenever you use hosting on the UI thread (or in any other case of a single-thread
affinity synchronization context), deadlocks are possible. For example, the following
setup is guaranteed to result in a deadlock: a Windows Forms application is hosting a
service with UseSynchronizationContext set to true, and UI thread affinity is estab-
lished; the Windows Forms application then calls the service in-proc over one of its
endpoints. The call to the service blocks the UI thread, while WCF posts a message to
the UI thread to invoke the service. That message is never processed due to the blocking
UI thread—hence the deadlock.

Another possible case for a deadlock occurs when a Windows Forms application is
hosting a service with UseSynchronizationContext set to true and UI thread affinity
established. The service receives a call from a remote client, which is marshaled to the
UI thread and eventually executed on that thread. If the service is allowed to call out
to another service, that may result in a deadlock if the callout causality tries somehow
to update the UI or call back to the service’s endpoint, since all service instances asso-
ciated with any endpoint (regardless of the service instancing mode) share the same UI
thread. Similarly, you risk a deadlock if the service is configured for reentrancy and it
calls back to its client: a deadlock will occur if the callback causality tries to update the
UI or enter the service, since that reentrance must be marshaled to the blocked UI
thread.

Service Synchronization Context | 415

Download from Library of Wow! eBook <www.wowebook.com>

UI responsiveness

Every client call to a service hosted on the UI thread is converted to a Windows message
and is eventually executed on the UI thread—the same thread that is responsible for
updating the UI and for continuing to respond to user input, as well as updating the
user about the state of the application. While the UI thread is processing the service
call, it does not process UI messages. Consequently, you should avoid lengthy pro-
cessing in the service operation, because that can severely degrade the UI’s responsive-
ness. You can alleviate this somewhat by pumping Windows messages in the service
operation, either by explicitly calling the static method Application.DoEvents() to
process all the queued-up Windows messages or by using a method such as Message
Box.Show() that pumps some but not all of the queued messages. The downside of trying
to refresh the UI this way is that it may dispatch queued client calls to the service
instance and may cause unwanted reentrancy or a deadlock.

To make things even worse, what if clients dispatch a number of calls to the service all
at once? Depending on the service concurrency mode (discussed next) even if those
service calls are of short duration, the calls will all be queued back-to-back in the Win-
dows message queue, and processing them in order might take time—and all the while,
the UI will not be updated.

Whenever you’re hosting on a UI thread, carefully examine the calls’ duration and
frequency to see whether the resulting degradation in UI responsiveness is acceptable.
What is acceptable may be application-specific, but as a rule of thumb, most users will
not mind a UI latency of less than half a second, will notice a delay of more than three
quarters of a second, and will be annoyed if the delay is more than a second. If that is
the case, consider hosting parts of the UI (and the associated services) on multiple UI
threads, as explained previously. By having multiple UI threads you maximize respon-
siveness, because while one thread is busy servicing a client call, the rest can still update
their windows and controls. If using multiple UI threads is impossible in your appli-
cation and processing service calls introduces unacceptable UI responsiveness, examine
what the service operations do and what is causing the latency. Typically, the latency
would be caused not by the UI updates but rather by performing lengthy operations,
such as calling other services, or computational-intensive operations, such as image
processing. Because the service is hosted on the UI thread, WCF performs all of that
work on the UI thread, not just the critical part that interacts with the UI directly. If
that is indeed your situation, disallow the affinity to the UI thread altogether by setting
UseSynchronizationContext to false:

[ServiceBehavior(UseSynchronizationContext = false)]
class MyService : IMyContract
{
 public void MyMethod()
 {
 Debug.Assert(Application.MessageLoop == false);
 //Rest of the implementation
 }
}

416 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

(You can even assert that the thread executing the service call does not have a message
loop.) Perform the lengthy operations on the incoming worker thread, and use safe
controls (such as SafeLabel) to marshal the calls to the UI thread only when required,
as opposed to all the time. The downside of this approach is that it is an expert pro-
gramming model: the service cannot be the window or form itself (by relying on the
simplicity of FormHost<F>), so you need a way of binding to the form, and the service
developer has to work together with the UI developers to ensure they use the safe
controls or provide access to the form’s synchronization context.

The UI thread and concurrency modes

A service with a UI thread affinity is inherently thread-safe because only that UI thread
can ever call its instances. Since only a single thread (and the same thread, at that) can
ever access an instance, that instance is by definition thread-safe. Since the service is
single-threaded anyway, configuring the service with ConcurrencyMode.Single adds no
safety. When you configure with ConcurrencyMode.Single, concurrent client calls are
first queued up by the instance lock and then dispatched to the service’s message loop
one at a time, in order. These client calls are therefore given the opportunity of being
interleaved with other UI Windows messages. ConcurrencyMode.Single thus yields the
best responsiveness, because the UI thread will alternate between processing client
calls and user interactions. When you configure the service with
ConcurrencyMode.Multiple, client calls are dispatched to the service message loop as
soon as they arrive off the channel and are invoked in order. The problem is that this
mode allows the possibility of a batch of client calls arriving either back-to-back or in
close proximity to one another in the Windows message queue, and while the UI thread
processes that batch, the UI will be unresponsive. Consequently, ConcurrencyMode.Mul
tiple is the worst option for UI responsiveness. When configured with Concurrency
Mode.Reentrant, the service is not reentrant at all, and deadlocks are still possible, as
explained at the beginning of this section. Clearly, the best practice with UI thread
affinity is to configure the service with ConcurrencyMode.Single. Avoid Concurrency
Mode.Multiple due to its detrimental effect on responsiveness and Concurrency
Mode.Reentrant due to its unfulfilled ability.

Custom Service Synchronization Contexts
While a synchronization context is a general-purpose pattern out of the box, .NET only
implements a handful of useful ones, with the two useful ones being the Windows
Forms synchronization context and the WPF synchronization context (there is also the
default implementation that uses the .NET thread pool). As it turns out, the ability to
automatically marshal calls to a custom synchronization context is one of the most
powerful extensibility mechanisms in WCF.

Custom Service Synchronization Contexts | 417

Download from Library of Wow! eBook <www.wowebook.com>

The Thread Pool Synchronizer
There are two aspects to developing a custom service synchronization context: the first
is implementing a custom synchronization context, and the second is installing it or
even applying it declaratively on the service. ServiceModelEx contains my ThreadPool
Synchronizer class, defined as:

public class ThreadPoolSynchronizer : SynchronizationContext,IDisposable
{
 public ThreadPoolSynchronizer(uint poolSize);
 public ThreadPoolSynchronizer(uint poolSize,string poolName);

 public void Dispose();
 public void Close();
 public void Abort();

 protected Semaphore CallQueued
 {get;}
}

Implementing a custom synchronization context has nothing to do with WCF and is
therefore not discussed in this book, although the implementation code is available
with ServiceModelEx.

ThreadPoolSynchronizer marshals all calls to a custom thread pool, where the calls are
first queued up, then multiplexed on the available threads. The size of the pool is pro-
vided as a construction parameter. If the pool is maxed out, any calls that come in will
remain pending in the queue until a thread is available.

You can also provide a pool name (which will be the prefix of the name of each of the
threads in the pool). Disposing of or closing the ThreadPoolSynchronizer kills all threads
in the pool gracefully; that is, the ThreadPoolSynchronizer waits for the engaged threads
to complete their tasks. The Abort() method is an ungraceful shutdown, as it terminates
all threads abruptly.

The classic use for a custom thread pool is with a server application (such as a web
server or an email server) that needs to maximize its throughput by controlling the
underlying worker threads and their assignment. However, such usage is rare, since
most application developers do not write servers anymore. The real use of ThreadPool
Synchronizer is as a stepping-stone to implement other synchronization contexts,
which are useful in their own right.

To associate your service with the custom thread pool, you can manually attach Thread
PoolSynchronizer to the thread opening the host using the static SetSynchronization
Context() method of SynchronizationContext, as shown in Example 8-14.

418 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Example 8-14. Using ThreadPoolSynchronizer

SynchronizationContext syncContext = new ThreadPoolSynchronizer(3);

SynchronizationContext.SetSynchronizationContext(syncContext);

using(syncContext as IDisposable)
{
 ServiceHost host = new ServiceHost(typeof(MyService));
 host.Open();
 /* Some blocking operations */

 host.Close();
}

In Example 8-14, the thread pool will have three threads. The service MyService will
have an affinity to those three threads, and all calls to the service will be channeled to
them, regardless of the service concurrency mode or instancing mode, and across all
endpoints and contracts supported by the service. After closing the host, the example
disposes of ThreadPoolSynchronizer to shut down the threads in the pool.

Note that a service executing in a custom thread pool is not thread-safe (unless the pool
size is 1), so the preceding discussion of concurrency management still applies. The
only difference is that now you control the threads.

Declaratively attaching a custom synchronization context

The problem with Example 8-14 is that the service is at the mercy of the hosting code.
If by design the service is required to execute in the pool, it would be better to apply
the thread pool declaratively, as part of the service definition.

To that end, I wrote the ThreadPoolBehaviorAttribute:

[AttributeUsage(AttributeTargets.Class)]
public class ThreadPoolBehaviorAttribute : Attribute,
 IContractBehavior,IServiceBehavior
{
 public ThreadPoolBehaviorAttribute(uint poolSize,Type serviceType);
 public ThreadPoolBehaviorAttribute(uint poolSize,Type serviceType,
 string poolName);
}

You apply this attribute directly on the service, while providing the service type as a
constructor parameter:

[ThreadPoolBehavior(3,typeof(MyService))]
class MyService : IMyContract
{...}

The attribute provides an instance of ThreadPoolSynchronizer to the dispatchers of the
service’s endpoints. The key in implementing the ThreadPoolBehavior attribute is
knowing how and when to hook up the dispatchers with the synchronization context.

Custom Service Synchronization Contexts | 419

Download from Library of Wow! eBook <www.wowebook.com>

The ThreadPoolBehavior attribute supports the special WCF extensibility interface
IContractBehavior, introduced in Chapter 5:

public interface IContractBehavior
{
 void ApplyDispatchBehavior(ContractDescription description,
 ServiceEndpoint endpoint,
 DispatchRuntime dispatchRuntime);
 //More members
}

When a service is decorated with an attribute that supports IContractBehavior, after
opening the host (but before forwarding calls to the service), for each service endpoint
WCF calls the ApplyDispatchBehavior() method and provides it with the DispatchRun
time parameter, allowing you to affect an individual endpoint dispatcher’s runtime and
set its synchronization context. Each endpoint has its own dispatcher, and each dis-
patcher has its own synchronization context, so the attribute is instantiated and Apply
DispatchBehavior() is called for each endpoint.

Example 8-15 lists most of the implementation of ThreadPoolBehaviorAttribute.

Example 8-15. Implementing ThreadPoolBehaviorAttribute

[AttributeUsage(AttributeTargets.Class)]
public class ThreadPoolBehaviorAttribute : Attribute,IContractBehavior,
 IServiceBehavior
{
 protected string PoolName
 {get;set;}
 protected uint PoolSize
 {get;set;}
 protected Type ServiceType
 {get;set;}

 public ThreadPoolBehaviorAttribute(uint poolSize,Type serviceType) :
 this(poolSize,serviceType,null)
 {}
 public ThreadPoolBehaviorAttribute(uint poolSize,Type serviceType,
 string poolName)
 {
 PoolName = poolName;
 ServiceType = serviceType;
 PoolSize = poolSize;
 }
 protected virtual ThreadPoolSynchronizer ProvideSynchronizer()
 {
 if(ThreadPoolHelper.HasSynchronizer(ServiceType) == false)
 {
 return new ThreadPoolSynchronizer(PoolSize,PoolName);
 }
 else
 {
 return ThreadPoolHelper.GetSynchronizer(ServiceType);
 }

420 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 }

 void IContractBehavior.ApplyDispatchBehavior(ContractDescription description,
 ServiceEndpoint endpoint,
 DispatchRuntime dispatchRuntime)
 {
 PoolName = PoolName ?? "Pool executing endpoints of " + ServiceType;

 lock(typeof(ThreadPoolHelper))
 {
 ThreadPoolHelper.ApplyDispatchBehavior(ProvideSynchronizer(),
 PoolSize,ServiceType,PoolName,dispatchRuntime);
 }
 }
 void IServiceBehavior.Validate(ServiceDescription description,
 ServiceHostBase serviceHostBase)
 {
 serviceHostBase.Closed += delegate
 {
 ThreadPoolHelper.CloseThreads(ServiceType);
 };
 }
 //Rest of the implementation
}
public static class ThreadPoolHelper
{
 static Dictionary<Type,ThreadPoolSynchronizer> m_Synchronizers =
 new Dictionary<Type,ThreadPoolSynchronizer>();

 [MethodImpl(MethodImplOptions.Synchronized)]
 internal static bool HasSynchronizer(Type type)
 {
 return m_Synchronizers.ContainsKey(type);
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 internal static ThreadPoolSynchronizer GetSynchronizer(Type type)
 {
 return m_Synchronizers[type];
 }
 [MethodImpl(MethodImplOptions.Synchronized)]
 internal static void ApplyDispatchBehavior(ThreadPoolSynchronizer synchronizer,
 uint poolSize,Type type,
 string poolName,
 DispatchRuntime dispatchRuntime)
 {
 if(HasSynchronizer(type) == false)
 {
 m_Synchronizers[type] = synchronizer;
 }
 dispatchRuntime.SynchronizationContext = m_Synchronizers[type];
 }
 [MethodImpl(MethodImplOptions.Synchronized)]
 public static void CloseThreads(Type type)
 {

Custom Service Synchronization Contexts | 421

Download from Library of Wow! eBook <www.wowebook.com>

 if(HasSynchronizer(type))
 {
 m_Synchronizers[type].Dispose();
 m_Synchronizers.Remove(type);
 }
 }
}

The constructors of the ThreadPoolBehavior attribute save the provided service type
and pool name. The name is simply passed to the constructor of Thread
PoolSynchronizer.

It is a best practice to separate the implementation of a WCF custom behavior attribute
from the actual behavior: let the attribute merely decide on the sequence of events, and
have a helper class provide the actual behavior. Doing so enables the behavior to be
used separately (for example, by a custom host). This is why the ThreadPoolBehavior
attribute does not do much. It delegates most of its work to a static helper class called
ThreadPoolHelper. ThreadPoolHelper provides the HasSynchronizer() method, which
indicates whether the specified service type already has a synchronization context, and
the GetSynchronizer() method, which returns the synchronization context associated
with the type. The ThreadPoolBehavior attribute uses these two methods in the virtual
ProvideSynchronizer() method to ensure that it creates the pool exactly once per service
type. This check is required because ApplyDispatchBehavior() may be called multiple
times (once per endpoint). The ThreadPoolBehavior attribute is also a custom service
behavior, because it implements IServiceBehavior. The Validate() method of
IServiceBehavior provides the service host instance the ThreadPoolBehavior attribute
uses to subscribe to the host’s Closed event, where it asks ThreadPoolHelper to terminate
all the threads in the pool by calling ThreadPoolHelper.CloseThreads().

ThreadPoolHelper associates all dispatchers of all endpoints of that service type with
the same instance of ThreadPoolSynchronizer. This ensures that all calls are routed to
the same pool. ThreadPoolHelper has to be able to map a service type to a particular
ThreadPoolSynchronizer, so it declares a static dictionary called m_Synchronizers that
uses service types as keys and ThreadPoolSynchronizer instances as values.

In ApplyDispatchBehavior(), ThreadPoolHelper checks to see whether m_Synchroniz
ers already contains the provided service type. If the type is not found, ThreadPool
Helper adds the provided ThreadPoolSynchronizer to m_Synchronizers, associating it
with the service type.

The DispatchRuntime class provides the SynchronizationContext property ThreadPool
Helper uses to assign a synchronization context for the dispatcher:

public sealed class DispatchRuntime
{
 public SynchronizationContext SynchronizationContext
 {get;set;}
 //More members
}

422 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Before making the assignment, ThreadPoolHelper verifies that the dispatcher has no
other synchronization context, since that would indicate some unresolved conflict.
After that, it simply assigns the ThreadPoolSynchronizer instance to the dispatcher:

dispatchRuntime.SynchronizationContext = m_Synchronizers[type];

This single line is all that is required to have WCF use the custom synchronization
context from now on. In the CloseThreads() method, ThreadPoolHelper looks up the
ThreadPoolSynchronizer instance in the dictionary and disposes of it (thus gracefully
terminating all the worker threads in the pool). ThreadPoolHelper also verifies that the
provided pool size value does not exceed the maximum concurrent calls value of the
dispatcher’s throttle (this is not shown in Example 8-15).

Thread Affinity
A pool size of 1 will in effect create an affinity between a particular thread and all service
calls, regardless of the service’s concurrency and instancing modes. This is particularly
useful if the service is required not merely to update some UI but to also create a UI
(for example, creating a pop-up window and then periodically showing, hiding, and
updating it). Having created the window, the service must ensure that the creating
thread is used to access and update it. Thread affinity is also required for a service that
accesses or creates resources that use the TLS. To formalize such requirements, I created
the specialized AffinitySynchronizer class, implemented as:

public class AffinitySynchronizer : ThreadPoolSynchronizer
{
 public AffinitySynchronizer() : this("AffinitySynchronizer Worker Thread")
 {}
 public AffinitySynchronizer(string threadName): base(1,threadName)
 {}
}

While you can install AffinitySynchronizer, as shown in Example 8-14, if by design
the service is required to always execute on the same thread it is better not to be at the
mercy of the host and the thread that happens to open it. Instead, use my
ThreadAffinityBehaviorAttribute:

[ThreadAffinityBehavior(typeof(MyService))]
class MyService : IMyContract
{...}

ThreadAffinityBehaviorAttribute is a specialization of ThreadPoolBehaviorAttribute
that hardcodes the pool size as 1, as shown in Example 8-16.

Example 8-16. Implementing ThreadAffinityBehaviorAttribute

[AttributeUsage(AttributeTargets.Class)]
public class ThreadAffinityBehaviorAttribute : ThreadPoolBehaviorAttribute
{
 public ThreadAffinityBehaviorAttribute(Type serviceType) :
 this(serviceType,"Affinity Worker Thread")

Custom Service Synchronization Contexts | 423

Download from Library of Wow! eBook <www.wowebook.com>

 {}

 public ThreadAffinityBehaviorAttribute(Type serviceType,string threadName) :
 base(1,serviceType,threadName)
 {}
}

When relying on thread affinity all service instances are always thread-safe, since only
a single thread (and the same thread, at that) can access them.

When the service is configured with ConcurrencyMode.Single, it gains no additional
thread safety because the service instance is single-threaded anyway. You do get double
queuing of concurrent calls, though: all concurrent calls to the service are first queued
in the lock’s queue and then dispatched to the single thread in the pool one at a time.
With ConcurrencyMode.Multiple, calls are dispatched to the single thread as fast as they
arrive and are then queued up to be invoked later, in order and never concurrently.
That may reduce the code readability. Finally, with ConcurrencyMode.Reentrant, the
service is, of course, not reentrant, because the incoming reentering call will be queued
up and a deadlock will occur while the single thread is blocked on the callout. It is
therefore best to use the default of ConcurrencyMode.Single when relying on thread
affinity.

The host-installed synchronization context

If the affinity to a particular synchronization context is a host decision, you can stream-
line the code in Example 8-14 by encapsulating the installation of the synchronization
context with extension methods. For example, the use of thread affinity is such a
socialized case; you could define the following extension methods:

public static class HostThreadAffinity
{
 public static void SetThreadAffinity(this ServiceHost host,string threadName);
 public static void SetThreadAffinity(this ServiceHost host);
}

SetThreadAffinity() works equally well on ServiceHost and my ServiceHost<T>:

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.SetThreadAffinity();

host.Open();

Example 8-17 lists the implementation of the SetThreadAffinity() methods.

Example 8-17. Adding thread affinity to the host

public static class HostThreadAffinity
{
 public static void SetThreadAffinity(this ServiceHost host,string threadName)
 {
 if(host.State == CommunicationState.Opened)

424 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 {
 throw new InvalidOperationException("Host is already opened");
 }

 AffinitySynchronizer affinitySynchronizer =
 new AffinitySynchronizer(threadName);

 SynchronizationContext.SetSynchronizationContext(affinitySynchronizer);

 host.Closing += delegate
 {
 using(affinitySynchronizer);
 };
 }
 public static void SetThreadAffinity(this ServiceHost host)
 {
 SetThreadAffinity(host,"Executing all endpoints of " +
 host.Description.ServiceType);
 }
}

HostThreadAffinity offers two versions of SetThreadAffinity(): the parameterized ver-
sion takes the thread name to provide for AffinitySynchronizer’s worker thread, while
the parameterless version calls the other SetThreadAffinity() method, specifying a
thread name inferred from the hosted service type (such as “Executing all endpoints of
MyService”). SetThreadAffinity() first checks that the host has not yet been opened,
because you can only attach a synchronization context before the host is opened. If the
host has not been opened, SetThreadAffinity() constructs a new AffinitySynchron
izer, providing it with the thread name to use, and attaches it to the current thread.
Finally, SetThreadAffinity() subscribes to the host’s Closing event in order to call
Dispose() on the AffinitySynchronizer, to shut down its worker thread. Since the
AffinitySynchronizer member can be null if no one calls SetThreadAffinity(),
OnClosing() uses the using statement, which internally checks for null assignment be-
fore calling Dispose().

Priority Processing
By default, all calls to your WCF service will be processed in the order in which they
arrive. This is true both if you use the I/O completion thread pool or a custom thread
pool. Normally, this is exactly what you want. But what if some calls have higher pri-
ority and you want to process them as soon as they arrive, rather than in order? Even
worse, when such calls arrive, what if the load on your service is such that the underlying
service resources are exhausted? What if the throttle is maxed out? In these cases, your
higher-priority calls will be queued just like all the other calls, waiting for the service
or its resources to become available.*

* I first presented my technique for priority processing of WCF calls in my article “Synchronization Contexts
in WCF” (MSDN Magazine, November 2007).

Custom Service Synchronization Contexts | 425

Download from Library of Wow! eBook <www.wowebook.com>

Synchronization contexts offer an elegant solution to this problem: you can assign a
priority to each call and have the synchronization context sort the calls as they arrive
before dispatching them to the thread pool for execution. This is exactly what my
PrioritySynchronizer class does:

public enum CallPriority
{
 Low,
 Normal,
 High
}
public class PrioritySynchronizer : ThreadPoolSynchronizer
{
 public PrioritySynchronizer(uint poolSize);
 public PrioritySynchronizer(uint poolSize,string poolName);

 public static CallPriority Priority
 {get;set;}
}

PrioritySynchronizer derives from ThreadPoolSynchronizer and adds the sorting just
mentioned. Since the Send() and Post() methods of SynchronizationContext do not
take a priority parameter, the client of PrioritySynchronizer has two ways of passing
the priority of the call: via the Priority property, which stores the priority (a value of
the enum type CallPriority) in the TLS of the calling thread, or via the message headers.
If unspecified, Priority defaults to CallPriority.Normal.

In addition to the PrioritySynchronizer class, I also provide the matching Priority
CallsBehaviorAttribute, shown in Example 8-18.

Example 8-18. Implementing PriorityCallsBehaviorAttribute

[AttributeUsage(AttributeTargets.Class)]
public class PriorityCallsBehaviorAttribute : ThreadPoolBehaviorAttribute
{
 public PriorityCallsBehaviorAttribute(uint poolSize,Type serviceType) :
 this(poolSize,serviceType,null)
 {}
 public PriorityCallsBehaviorAttribute(uint poolSize,Type serviceType,
 string poolName) : base(poolSize,serviceType,poolName)
 {}
 protected override ThreadPoolSynchronizer ProvideSynchronizer()
 {
 if(ThreadPoolHelper.HasSynchronizer(ServiceType) == false)
 {
 return new PrioritySynchronizer(PoolSize,PoolName);
 }
 else
 {
 return ThreadPoolHelper.GetSynchronizer(ServiceType);
 }
 }
}

426 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Using the PriorityCallsBehavior attribute is straightforward:

[PriorityCallsBehavior(3,typeof(MyService))]
class MyService : IMyContract
{...}

PriorityCallsBehaviorAttribute overrides ProvideSynchronizer() and provides an in-
stance of PrioritySynchronizer instead of ThreadPoolSynchronizer. Because Priority
Synchronizer derives from ThreadPoolSynchronizer, this is transparent as far as Thread
PoolHelper is concerned.

The real challenge in implementing and supporting priority processing is providing the
call priority from the client to the service, and ultimately to PrioritySynchronizer.
Using the Priority property of PrioritySynchronizer is useful only for non-WCF
clients that interact directly with the synchronization context; it is of no use for a WCF
client, whose thread is never used to access the service. While you could provide the
priority as an explicit parameter in every method, I wanted a generic mechanism that
can be applied on any contract and service. To achieve that goal you have to pass the
priority of the call out-of-band, via the message headers, using the techniques described
in Appendix B. Appendix B explains in detail the use of the incoming and outgoing
headers, including augmenting WCF with general-purpose management of extraneous
information sent from the client to the service. In effect, I provide a generic yet type-
safe and application-specific custom context via my GenericContext<T> class, available
in ServiceModelEx:

[DataContract]
public class GenericContext<T>
{
 [DataMember]
 public readonly T Value;

 public GenericContext();
 public GenericContext(T value);
 public static GenericContext<T> Current
 {get;set;}
}

Literally any data contract (or serializable) type can be used for the type parameter in
the custom context, including of course the CallPriority enum.

On the service side, any party can read the value out of the custom headers:

CallPriority priority = GenericContext<CallPriority>.Current.Value;

This is exactly what PrioritySynchronizer does when looking for the call priority. It
expects the client to provide the priority either in the TLS (via the Priority property)
or in the form of a custom context that stores the priority in the message headers.

The client can use my HeaderClientBase<T,H> proxy class (also discussed in Appen-
dix B) to pass the priority to the service in the message headers, or, even better, define
a general-purpose priority-enabled proxy class, PriorityClientBase<T>, shown in
Example 8-19.

Custom Service Synchronization Contexts | 427

Download from Library of Wow! eBook <www.wowebook.com>

Example 8-19. Defining PriorityClientBase<T>

public abstract partial class PriorityClientBase<T> :
 HeaderClientBase<T,CallPriority> where T : class
{
 public PriorityClientBase() : this(PrioritySynchronizer.Priority)
 {}

 public PriorityClientBase(string endpointName) :
 this(PrioritySynchronizer.Priority,endpointName)
 {}

 public PriorityClientBase(Binding binding,EndpointAddress remoteAddress) :
 this(PrioritySynchronizer.Priority,binding,remoteAddress)
 {}

 public PriorityClientBase(CallPriority priority) : base(priority)
 {}

 public PriorityClientBase(CallPriority priority,string endpointName) :
 base(priority,endpointConfigurationName)
 {}

 public PriorityClientBase(CallPriority priority,Binding binding,
 EndpointAddress remoteAddress) : base(priority,binding,remoteAddress)
 {}
 /* More constructors */
}

PriorityClientBase<T> hardcodes the use of CallPriority for the type parameter H.
PriorityClientBase<T> defaults to reading the priority from the TLS (yielding Call
Priority.Normal when no priority is found), so it can be used like any other proxy class.
With very minor changes to your existing proxy classes, you can now add priority-
processing support:

class MyContractClient : PriorityClientBase<IMyContract>,IMyContract
{
 //Reads priority from TLS
 public MyContractClient()
 {}

 public MyContractClient(CallPriority priority) : base(priority)
 {}
 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

MyContractClient proxy = new MyContractClient(CallPriority.High);
proxy.MyMethod();

428 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Callbacks and Client Safety
There are quite a few cases when a client might receive concurrent callbacks. For in-
stance, if the client has provided a callback reference to multiple services, those services
could call back to the client concurrently. Even if it has only provided a single callback
reference, the service might launch multiple threads and use all of them to call on that
single reference. Duplex callbacks enter the client on worker threads, and if they are
processed concurrently without synchronization they might corrupt the client’s state.
The client must therefore synchronize access to its own in-memory state, as well as to
any resources the callback thread might access. Similar to a service, a callback client
can use either manual or declarative synchronization. The CallbackBehavior attribute
introduced in Chapter 6 offers the ConcurrencyMode and the UseSynchronization
Context properties:

[AttributeUsage(AttributeTargets.Class)]
public sealed class CallbackBehaviorAttribute : Attribute,...
{
 public ConcurrencyMode ConcurrencyMode
 {get;set;}
 public bool UseSynchronizationContext
 {get;set;}
}

Both of these properties default to the same values as with the ServiceBehavior attribute
and behave in a similar manner. For example, the default of the ConcurrencyMode prop-
erty is ConcurrencyMode.Single, so these two definitions are equivalent:

class MyClient : IMyContractCallback
{...}

[CallbackBehavior(ConcurrencyMode = ConcurrencyMode.Single)]
class MyClient : IMyContractCallback
{...}

Callbacks with ConcurrencyMode.Single
When the callback class is configured with ConcurrencyMode.Single (the default), only
one callback at a time is allowed to enter the callback object. The big difference, com-
pared with a service, is that callback objects often have an existence independent of
WCF. While the service instance is owned by WCF and only ever accessed by worker
threads dispatched by WCF, a callback object may also interact with local client-side
threads. It fact, it always interacts with at least one additional thread: the thread that
called the service and provided the callback object. These client threads are unaware
of the synchronization lock associated with the callback object when it is configured
with ConcurrencyMode.Single. All that ConcurrencyMode.Single does for a callback ob-
ject is serialize the access by WCF threads. You must therefore manually synchronize
access to the callback state and any other resource accessed by the callback method, as
shown in Example 8-20.

Callbacks and Client Safety | 429

Download from Library of Wow! eBook <www.wowebook.com>

Example 8-20. Manually synchronizing the callback with ConcurrencyMode.Single

interface IMyContractCallback
{
 [OperationContract]
 void OnCallback();
}
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

class MyClient : IMyContractCallback,IDisposable
{
 MyContractClient m_Proxy;

 public void CallService()
 {
 m_Proxy = new MyContractClient(new InstanceContext(this));
 m_Proxy.MyMethod();
 }
 //This method invoked by one callback at a time, plus client threads
 public void OnCallback()
 {
 //Access state and resources, synchronize manually
 lock(this)
 {...}
 }
 public void Dispose()
 {
 m_Proxy.Close();
 }
}

Callbacks with ConcurrencyMode.Multiple
When you configure the callback class with ConcurrencyMode.Multiple, WCF will allow
concurrent calls on the callback instance. This means you need to synchronize access
in the callback operations, as shown in Example 8-21, because they could be invoked
concurrently both by WCF worker threads and by client-side threads.

Example 8-21. Manually synchronizing the callback with ConcurrencyMode.Multiple

[CallbackBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
class MyClient : IMyContractCallback,IDisposable
{
 MyContractClient m_Proxy;

 public void CallService()
 {
 m_Proxy = new MyContractClient(new InstanceContext(this));
 m_Proxy.MyMethod();

430 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 }
 //This method can be invoked concurrently by callbacks,
 //plus client threads
 public void OnCallback()
 {
 //Access state and resources, synchronize manually
 lock(this)
 {...}
 }
 public void Dispose()
 {
 m_Proxy.Close();
 }
}

Callbacks with ConcurrencyMode.Reentrant
The callback object can perform outgoing calls over WCF, and those calls may even-
tually try to reenter the callback object. To avoid the deadlock that would occur when
using ConcurrencyMode.Single, you can configure the callback class with Concurrency
Mode.Reentrant as needed:

[CallbackBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]
class MyClient : IMyContractCallback
{...}

Configuring the callback for reentrancy also enables other services to call it when the
callback object itself is engaged in WCF callouts.

Callbacks and Synchronization Contexts
Like a service invocation, a callback may need to access resources that rely on some
kind of thread(s) affinity. In addition, the callback instance itself may require thread
affinity for its own use of the TLS, or for interacting with a UI thread. While the callback
can use techniques such as those in Example 8-4 and Example 8-5 to marshal the in-
teraction to the resource synchronization context, you can also have WCF associate
the callback with a particular synchronization context by setting the Use
SynchronizationContext property to true. However, unlike the service, the client does
not use any host to expose the endpoint. If the UseSynchronizationContext property is
true, the synchronization context to use is locked in when the proxy is opened (or,
more commonly, when the client makes the first call to the service using the proxy, if
Open() is not explicitly called). If the client is using the channel factory, the synchro-
nization context to use is locked in when the client calls CreateChannel(). If the calling
client thread has a synchronization context, this will be the synchronization context
used by WCF for all callbacks to the client’s endpoint associated with that proxy. Note
that only the first call made on the proxy (or the call to Open() or CreateChannel()) is
given the opportunity to determine the synchronization context. Subsequent calls have
no say in the matter. If the calling client thread has no synchronization context, even

Callbacks and Synchronization Contexts | 431

Download from Library of Wow! eBook <www.wowebook.com>

if UseSynchronizationContext is true, no synchronization context will be used for the
callbacks.

Callbacks and the UI Synchronization Context
If the callback object is running in a Windows Forms synchronization context, or if it
needs to update some UI, you must marshal the callbacks or the updates to the UI
thread. You can use techniques such as those in Example 8-6 or Example 8-8. However,
the more common use for UI updates over callbacks is to have the form itself implement
the callback contract and update the UI, as in Example 8-22.

Example 8-22. Relying on the UI synchronization context for callbacks

partial class MyForm : Form,IMyContractCallback
{
 MyContractClient m_Proxy;

 public MyForm()
 {
 InitializeComponent();
 m_Proxy = new MyContractClient(new InstanceContext(this));
 }
 //Called as a result of a UI event
 public void OnCallService(object sender,EventArgs args)
 {
 m_Proxy.MyMethod(); //Affinity established here
 }
 //This method always runs on the UI thread
 public void OnCallback()
 {
 //No need for synchronization and marshaling
 Text = "Some Callback";
 }
 public void OnClose(object sender,EventArgs args)
 {
 m_Proxy.Close();
 }
}

In Example 8-22 the proxy is first used in the CallService() method, which is called
by the UI thread as a result of some UI event. Calling the proxy on the UI synchroni-
zation context establishes the affinity to it, so the callback can directly access and update
the UI without marshaling any calls. In addition, since only one thread (and the same
thread, at that) will ever execute in the synchronization context, the callback is guar-
anteed to be synchronized.

You can also explicitly establish the affinity to the UI synchronization context by open-
ing the proxy in the form’s constructor without invoking an operation. This is especially
useful if you want to dispatch calls to the service on worker threads (or perhaps even

432 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

asynchronously as discussed at the end of this chapter) and yet have the callbacks enter
on the UI synchronization context, as shown in Example 8-23.

Example 8-23. Explicitly opening a proxy to establish a synchronization context

partial class MyForm : Form,IMyContractCallback
{
 MyContractClient m_Proxy;

 public MyForm()
 {
 InitializeComponent();

 m_Proxy = new MyContractClient(new InstanceContext(this));

 //Establish affinity to UI synchronization context here:
 m_Proxy.Open();
 }
 //Called as a result of a UI event
 public void CallService(object sender,EventArgs args)
 {
 Thread thread = new Thread(()=>m_Proxy.MyMethod());
 thread.Start();
 }
 //This method always runs on the UI thread
 public void OnCallback()
 {
 //No need for synchronization and marshaling
 Text = "Some Callback";
 }
 public void OnClose(object sender,EventArgs args)
 {
 m_Proxy.Close();
 }
}

UI thread callbacks and responsiveness

When callbacks are being processed on the UI thread, the UI itself is not responsive.
Even if you perform relatively short callbacks, you must bear in mind that if the callback
class is configured with ConcurrencyMode.Multiple there may be multiple callbacks
back-to-back in the UI message queue, and processing them all at once will degrade
responsiveness. You should avoid lengthy callback processing on the UI thread, and
opt for configuring the callback class with ConcurrencyMode.Single so that the callback
lock will queue up the callbacks. They can then be dispatched to the callback object
one at a time, giving them the chance of being interleaved among the UI messages.

UI thread callbacks and concurrency management

Configuring the callback for affinity to the UI thread may trigger a deadlock. Suppose
a Windows Forms client establishes an affinity between a callback object (or even itself)
and the UI synchronization context, and then calls a service, passing the callback

Callbacks and Synchronization Contexts | 433

Download from Library of Wow! eBook <www.wowebook.com>

reference. The service is configured for reentrancy, and it calls back to the client. A
deadlock now occurs because the callback to the client needs to execute on the UI
thread, and that thread is blocked waiting for the service call to return. For example,
Example 8-22 has the potential for this deadlock. Configuring the callback as a one-
way operation will not resolve the problem here, because the one-way call still needs
to be marshaled first to the UI thread. The only way to resolve the deadlock in this case
is to turn off using the UI synchronization context by the callback, and to manually
and asynchronously marshal the update to the form using its synchronization context.
Example 8-24 demonstrates using this technique.

Example 8-24. Avoiding a callback deadlock on the UI thread

////////////////////////// Client Side /////////////////////
[CallbackBehavior(UseSynchronizationContext = false)]
partial class MyForm : Form,IMyContractCallback
{
 SynchronizationContext m_Context;
 MyContractClient m_Proxy;
 public MyForm()
 {
 InitializeComponent();
 m_Context = SynchronizationContext.Current;
 m_Proxy = new MyContractClient(new InstanceContext(this));
 }

 public void CallService(object sender,EventArgs args)
 {
 m_Proxy.MyMethod();
 }
 //Callback runs on worker threads
 public void OnCallback()
 {
 SendOrPostCallback setText = _=>
 {
 Text = "Manually marshaling to UI thread";
 };
 m_Context.Post(setText,null);
 }
 public void OnClose(object sender,EventArgs args)
 {
 m_Proxy.Close();
 }
}
////////////////////////// Service Side /////////////////////
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
interface IMyContractCallback

434 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

{
 [OperationContract]
 void OnCallback();
}
[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]
class MyService : IMyContract
{
 public void MyMethod()
 {
 IMyContractCallback callback = OperationContext.Current.
 GetCallbackChannel<IMyContractCallback>();
 callback.OnCallback();
 }
}

As shown in Example 8-24, you must use the Post() method of the synchronization
context. Under no circumstances should you use the Send() method—even though the
callback is executing on the worker thread, the UI thread is still blocked on the out-
bound call. Calling Send() would trigger the deadlock you are trying to avoid because
Send() will block until the UI thread can process the request. The callback in Exam-
ple 8-24 cannot use any of the safe controls (such as SafeLabel) either, because those
too use the Send() method.

Callback Custom Synchronization Contexts
As with a service, you can install a custom synchronization context for the use of the
callback. All that is required is that the thread that opens the proxy (or calls it for the
first time) has the custom synchronization context attached to it. Example 8-25 shows
how to attach my ThreadPoolSynchronizer to the callback object by setting it before
using the proxy.

Example 8-25. Setting custom synchronization context for the callback

interface IMyContractCallback
{
 [OperationContract]
 void OnCallback();
}
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

class MyClient : IMyContractCallback
{
 //This method is always invoked by the same thread
 public void OnCallback()
 {....}
}

Callbacks and Synchronization Contexts | 435

Download from Library of Wow! eBook <www.wowebook.com>

MyClient client = new MyClient();
InstanceContext callbackContext = new InstanceContext(client);
MyContractClient proxy = new MyContractClient(callbackContext);

SynchronizationContext synchronizationContext = new ThreadPoolSynchronizer(3);
SynchronizationContext.SetSynchronizationContext(synchronizationContext);

using(synchronizationContext as IDisposable)
{
 proxy.MyMethod();
 /*Some blocking operations until after the callback*/
 proxy.Close();
}

While you could manually install a custom synchronization context (as in Exam-
ple 8-25) by explicitly setting it before opening the proxy, it is better to do so declara-
tively, using an attribute. To affect the callback endpoint dispatcher, the attribute needs
to implement the IEndpointBehavior interface presented in Chapter 6:

public interface IEndpointBehavior
{
 void ApplyClientBehavior(ServiceEndpoint endpoint,ClientRuntime clientRuntime);
 //More members
}

In the ApplyClientBehavior method, the ClientRuntime parameter contains a reference
to the endpoint dispatcher with the CallbackDispatchRuntime property:

public sealed class ClientRuntime
{
 public DispatchRuntime CallbackDispatchRuntime
 {get;}
 //More members
}

The rest is identical to the service-side attribute, as demonstrated by my Callback
ThreadPoolBehaviorAttribute, whose implementation is shown in Example 8-26.

Example 8-26. Implementing CallbackThreadPoolBehaviorAttribute

[AttributeUsage(AttributeTargets.Class)]
public class CallbackThreadPoolBehaviorAttribute : ThreadPoolBehaviorAttribute,
 IEndpointBehavior
{
 public CallbackThreadPoolBehaviorAttribute(uint poolSize,Type clientType) :
 this(poolSize,clientType,null)
 {}
 public CallbackThreadPoolBehaviorAttribute(uint poolSize,Type clientType,
 string poolName) : base(poolSize,clientType,poolName)
 {
 AppDomain.CurrentDomain.ProcessExit += delegate
 {
 ThreadPoolHelper.CloseThreads(ServiceType);
 };
 }

436 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 void IEndpointBehavior.ApplyClientBehavior(ServiceEndpoint serviceEndpoint,
 ClientRuntime clientRuntime)
 {
 IContractBehavior contractBehavior = this;
 contractBehavior.ApplyDispatchBehavior(null,serviceEndpoint,
 clientRuntime.CallbackDispatchRuntime);
 }
 //Rest of the implementation
}

In fact, I wanted to reuse as much of the service attribute as possible in the callback
attribute. To that end, CallbackThreadPoolBehaviorAttribute derives from ThreadPool
BehaviorAttribute. Its constructors pass the client type as the service type to the base
constructors. The CallbackThreadPoolBehavior attribute’s implementation of Apply
ClientBehavior() queries its base class for IContractBehavior (this is how a subclass
uses an explicit private interface implementation of its base class) and delegates the
implementation to ApplyDispatchBehavior().

The big difference between a client callback attribute and a service attribute is that the
callback scenario has no host object to subscribe to its Closed event. To compensate,
the CallbackThreadPoolBehavior attribute monitors the process exit event to close all
the threads in the pool.

If the client wants to expedite closing those threads, it can use ThreadPoolBehavior.
CloseThreads(), as shown in Example 8-27.

Example 8-27. Using the CallbackThreadPoolBehavior attribute

interface IMyContractCallback
{
 [OperationContract]
 void OnCallback();
}

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

[CallbackThreadPoolBehavior(3,typeof(MyClient))]
class MyClient : IMyContractCallback,IDisposable
{
 MyContractClient m_Proxy;

 public MyClient()
 {
 m_Proxy = new MyContractClient(new InstanceContext(this));
 }

 public void CallService()
 {

Callbacks and Synchronization Contexts | 437

Download from Library of Wow! eBook <www.wowebook.com>

 m_Proxy.MyMethod();
 }

 //Called by threads from the custom pool
 public void OnCallback()
 {...}

 public void Dispose()
 {
 m_Proxy.Close();
 ThreadPoolHelper.CloseThreads(typeof(MyClient));
 }
}

Callback thread affinity

Just like on the service side, if you want all the callbacks to execute on the same thread
(perhaps to create some UI on the callback side), you can configure the callback class
to have a pool size of 1. Or, better yet, you can define a dedicated callback attribute
such as my CallbackThreadAffinityBehaviorAttribute:

[AttributeUsage(AttributeTargets.Class)]
public class CallbackThreadAffinityBehaviorAttribute :
 CallbackThreadPoolBehaviorAttribute
{
 public CallbackThreadAffinityBehaviorAttribute(Type clientType) :
 this(clientType,"Callback Worker Thread")
 {}
 public CallbackThreadAffinityBehaviorAttribute(Type clientType,
 string threadName) : base(1,clientType,threadName)
 {}
}

The CallbackThreadAffinityBehavior attribute makes all callbacks across all callback
contracts the client supports execute on the same thread, as shown in Example 8-28.

Example 8-28. Applying the CallbackThreadAffinityBehavior attribute

[CallbackThreadAffinityBehavior(typeof(MyClient))]
class MyClient : IMyContractCallback,IDisposable
{
 MyContractClient m_Proxy;

 public void CallService()
 {
 m_Proxy = new MyContractClient(new InstanceContext(this));
 m_Proxy.MyMethod();
 }
 //This method invoked by same callback thread, plus client threads
 public void OnCallback()
 {
 //Access state and resources, synchronize manually
 }
 public void Dispose()
 {

438 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 m_Proxy.Close();
 }
}

Note that although WCF always invokes the callback on the same thread, you still may
need to synchronize access to it if other client-side threads access the method as well.

Asynchronous Calls
When a client calls a service, usually the client is blocked while the service executes the
call, and control returns to the client only when the operation completes its execution
and returns. However, there are quite a few cases in which you will want to call oper-
ations asynchronously; that is, you’ll want control to return immediately to the client
while the service executes the operation in the background and then somehow let the
client know that the method has completed execution and provide the client with the
results of the invocation. Such an execution mode is called asynchronous operation
invocation, and the action is known as an asynchronous call. Asynchronous calls allow
you to improve client responsiveness and availability.

Requirements for an Asynchronous Mechanism
To make the most of the various options available with WCF asynchronous calls, you
should be aware of the generic requirements set for any service-oriented asynchronous
call support. These requirements include the following:

• The same service code should be used for both synchronous and asynchronous
invocation. This allows service developers to focus on business logic and cater to
both synchronous and asynchronous clients.

• A corollary of the first requirement is that the client should be the one to decide
whether to call a service synchronously or asynchronously. That, in turn, implies
that the client will have different code for each case (whether to invoke the call
synchronously or asynchronously).

• The client should be able to issue multiple asynchronous calls and have multiple
asynchronous calls in progress, and it should be able to distinguish between mul-
tiple methods’ completions.

• Since a service operation’s output parameters and return values are not available
when control returns to the client, the client should have a way to harvest the results
when the operation completes.

• Similarly, communication errors or errors on the service side should be commu-
nicated back to the client side. Any exception thrown during operation execution
should be played back to the client later.

• The implementation of the mechanism should be independent of the binding and
transfer technology used. Any binding should support asynchronous calls.

Asynchronous Calls | 439

Download from Library of Wow! eBook <www.wowebook.com>

• The mechanism should not use technology-specific constructs such as .NET ex-
ceptions or delegates.

• The asynchronous calls mechanism should be straightforward and simple to use
(this is less of a requirement and more of a design guideline). For example, the
mechanism should, as much as possible, hide its implementation details, such as
the worker threads used to dispatch the call.

The client has a variety of options for handling operation completion. After it issues an
asynchronous call, it can choose to:

• Perform some work while the call is in progress and then block until completion.

• Perform some work while the call is in progress and then poll for completion.

• Receive notification when the method has completed. The notification will be in
the form of a callback on a client-provided method. The callback should contain
information identifying which operation has just completed and its return values.

• Perform some work while the call is in progress, wait for a predetermined amount
of time, and then stop waiting, even if the operation execution has not yet
completed.

• Wait simultaneously for completion of multiple operations. The client can also
choose to wait for all or any of the pending calls to complete.

WCF offers all of these options to clients. The WCF support is strictly a client-side
facility, and in fact the service is unaware it is being invoked asynchronously. This
means that intrinsically any service supports asynchronous calls, and that you can call
the same service both synchronously and asynchronously. In addition, because all of
the asynchronous invocation support happens on the client side regardless of the serv-
ice, you can use any binding for the asynchronous invocation.

The WCF asynchronous calls support presented in this section is similar
but not identical to the delegate-based asynchronous calls support .NET
offers for regular CLR types.

Proxy-Based Asynchronous Calls
Because the client decides if the call should be synchronous or asynchronous, you need
to create a different proxy for the asynchronous case. In Visual Studio 2010, when
adding a service reference, you can click the Advanced button in the Add Service Ref-
erence dialog to bring up the settings dialog that lets you tweak the proxy generation.
Check the “Generate asynchronous operations” checkbox to generate a proxy that
contains asynchronous methods in addition to the synchronous ones. For each oper-
ation in the original contract, the asynchronous proxy and contract will contain two
additional methods of this form:

440 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

[OperationContract(AsyncPattern = true)]
IAsyncResult Begin<Operation>(<in arguments>,
 AsyncCallback callback,object asyncState);
<returned type> End<Operation>(<out arguments>,IAsyncResult result);

The OperationContract attribute offers the AsyncPattern Boolean property, defined as:

[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationContractAttribute : Attribute
{
 public bool AsyncPattern
 {get;set;}
 //More members
}

The AsyncPattern property defaults to false. AsyncPattern has meaning only on the
client side; it is merely a validation flag indicating to the proxy to verify that the method
on which this flag is set to true has a Begin<Operation>()-compatible signature and that
the defining contract has a matching method with an End<Operation>()-compatible
signature. These requirements are verified at the proxy load time. AsyncPattern binds
the underlying synchronous method with the Begin/End pair and correlates the syn-
chronous execution with the asynchronous one. Briefly, when the client invokes a
method of the form Begin<Operation>() with AsyncPattern set to true, this tells WCF
not to try to directly invoke a method with that name on the service. Instead, WCF
should use a thread from the thread pool to synchronously call the underlying method.
The synchronous call will block the thread from the thread pool, not the calling client.
The client will be blocked for only the slightest moment it takes to dispatch the call
request to the thread pool. The reply method of the synchronous invocation is corre-
lated with the End<Operation>() method.

Example 8-29 shows a calculator contract and its implementing service, and the gen-
erated asynchronous proxy.

Example 8-29. Asynchronous contract and proxy

////////////////////////// Service Side //////////////////////
[ServiceContract]
interface ICalculator
{
 [OperationContract]
 int Add(int number1,int number2);
 //More operations
}
class Calculator : ICalculator
{
 public int Add(int number1,int number2)
 {
 return number1 + number2;
 }
 //Rest of the implementation
}

Asynchronous Calls | 441

Download from Library of Wow! eBook <www.wowebook.com>

////////////////////////// Client Side //////////////////////
[ServiceContract]
public interface ICalculator
{
 [OperationContract]
 int Add(int number1,int number2);

 [OperationContract(AsyncPattern = true)]
 IAsyncResult BeginAdd(int number1,int number2,
 AsyncCallback callback,object asyncState);
 int EndAdd(IAsyncResult result);
 //Rest of the methods
}
partial class CalculatorClient : ClientBase<ICalculator>,ICalculator
{
 public int Add(int number1,int number2)
 {
 return Channel.Add(number1,number2);
 }
 public IAsyncResult BeginAdd(int number1,int number2,
 AsyncCallback callback,object asyncState)
 {
 return Channel.BeginAdd(number1,number2,callback,asyncState);
 }
 public int EndAdd(IAsyncResult result)
 {
 return Channel.EndAdd(result);
 }
 //Rest of the methods and constructors
}

Asynchronous Invocation
Begin<Operation>() accepts the input parameters of the original synchronous opera-
tion, which may include data contracts passed by value or by reference (using the ref
modifier). The original method’s return values and any explicit output parameters
(designated using the out and ref modifiers) are part of the End<Operation>() method.
For example, for this operation definition:

[OperationContract]
string MyMethod(int number1,out int number2,ref int number3);

the corresponding Begin<Operation>() and End<Operation>() methods look like this:

[OperationContract(AsyncPattern = true)]
IAsyncResult BeginMyMethod(int number1,ref int number3,
 AsyncCallback callback,object asyncState);
string EndMyMethod(out int number2,ref int number3,IAsyncResult result);

442 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Begin<Operation>() accepts two additional input parameters that are not present in the
original operation signature: callback and asyncState. The callback parameter is a
delegate targeting a client-side method-completion notification event. asyncState is an
object that conveys whatever state information the party handling the method
completion requires. These two parameters are optional: the caller can choose to pass
in null instead of either one of them. For example, you could use code like the following
to asynchronously invoke the Add() method of the Calculator service from Exam-
ple 8-29 using the asynchronous proxy, if you have no interest in the results or the
errors:

CalculatorClient proxy = new CalculatorClient();
proxy.BeginAdd(2,3,null,null); //Dispatched asynchronously
proxy.Close();

As long as the client has the definition of the asynchronous contract, you can also invoke
the operation asynchronously using a channel factory:

ChannelFactory<ICalculator> factory = new ChannelFactory<ICalculator>();
ICalculator proxy = factory.CreateChannel();
proxy.BeginAdd(2,3,null,null);
ICommunicationObject channel = proxy as ICommunicationObject;
channel.Close();

The problem with such an invocation is that the client has no way of getting its results.

The IAsyncResult interface

Every Begin<Operation>() method returns an object implementing the IAsyncResult
interface, defined in the System.Runtime.Remoting.Messaging namespace as:

public interface IAsyncResult
{
 object AsyncState
 {get;}
 WaitHandle AsyncWaitHandle
 {get;}
 bool CompletedSynchronously
 {get;}
 bool IsCompleted
 {get;}
}

The returned IAsyncResult implementation uniquely identifies the method that was
invoked using Begin<Operation>(). You can pass the IAsyncResult-implementation
object to End<Operation>() to identify the specific asynchronous method execution
from which you wish to retrieve the results. End<Operation>() will block its caller until
the operation it’s waiting for (identified by the IAsyncResult-implementation object
passed in) completes and it can return the results or errors. If the method is already
complete by the time End<Operation>() is called, End<Operation>() will not block the
caller and will just return the results. Example 8-30 shows the entire sequence.

Asynchronous Calls | 443

Download from Library of Wow! eBook <www.wowebook.com>

Example 8-30. Simple asynchronous execution sequence

CalculatorClient proxy = new CalculatorClient();
IAsyncResult result1 = proxy.BeginAdd(2,3,null,null);
IAsyncResult result2 = proxy.BeginAdd(4,5,null,null);

/* Do some work */

int sum;

sum = proxy.EndAdd(result1); //This may block
Debug.Assert(sum == 5);
sum = proxy.EndAdd(result2); //This may block
Debug.Assert(sum == 9);

proxy.Close();

As simple as Example 8-30 is, it does demonstrate a few key points. The first point is
that the same proxy instance can invoke multiple asynchronous calls. The caller can
distinguish among the different pending calls using each unique IAsyncResult-
implementation object returned from Begin<Operation>(). In fact, when the caller
makes asynchronous calls, as in Example 8-30, it must save the IAsyncResult-
implementation objects. In addition, the caller should make no assumptions about the
order in which the pending calls will complete. It is quite possible that the second call
will complete before the first one.

Although it isn’t evident in Example 8-30, there are two important programming points
regarding asynchronous calls:

• End<Operation>() can be called only once for each asynchronous operation. Trying
to call it more than once results in an InvalidOperationException.

• You can pass the IAsyncResult-implementation object to End<Operation>() only
on the same proxy object used to dispatch the call. Passing the IAsyncResult-
implementation object to a different proxy instance results in an
AsyncCallbackException. This is because only the original proxy keeps track of the
asynchronous operations it has invoked.

Asynchronous calls and transport sessions

If the proxy is not using a transport session, the client can close the proxy immediately
after the call to Begin<Operation>() and still be able to call End<Operation>() later:

CalculatorClient proxy = new CalculatorClient();
IAsyncResult result = proxy.BeginAdd(2,3,null,null);
proxy.Close();

/* Do some work */

//Sometime later:
int sum = proxy.EndAdd(result);
Debug.Assert(sum == 5);

444 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Polling or Waiting for Completion
When a client calls End<Operation>(), the client is blocked until the asynchronous
method returns. This may be fine if the client has a finite amount of work to do while
the call is in progress, and if after completing that work the client cannot continue its
execution without the returned value or the output parameters of the operation. How-
ever, what if the client only wants to check that the operation has completed? What if
the client wants to wait for completion for a fixed timeout and then, if the operation
has not completed, do some additional finite processing and wait again? WCF supports
these alternative programming models to calling End<Operation>().

The IAsyncResult interface object returned from Begin<Operation>() has the
AsyncWaitHandle property, of type WaitHandle:

public abstract class WaitHandle : ...
{
 public static bool WaitAll(WaitHandle[] waitHandles);
 public static int WaitAny(WaitHandle[] waitHandles);
 public virtual void Close();
 public virtual bool WaitOne();
 //More memebrs
}

The WaitOne() method of WaitHandle returns only when the handle is signaled. Exam-
ple 8-31 demonstrates using WaitOne().

Example 8-31. Using IAsyncResult.AsyncWaitHandle to block until completion

CalculatorClient proxy = new CalculatorClient();
IAsyncResult result = proxy.BeginAdd(2,3,null,null);

/* Do some work */

result.AsyncWaitHandle.WaitOne(); //This may block
int sum = proxy.EndAdd(result); //This will not block
Debug.Assert(sum == 5);

proxy.Close();

Logically, Example 8-31 is identical to Example 8-30, which called only End
<Operation>(). If the operation is still executing when WaitOne() is called, WaitOne()
will block. But if by the time WaitOne() is called the method execution is complete,
WaitOne() will not block, and the client will proceed to call End<Operation>() for the
returned value. The important difference between Example 8-31 and Example 8-30 is
that the call to End<Operation>() in Example 8-31 is guaranteed not to block its caller.

Example 8-32 demonstrates a more practical way of using WaitOne(), by specifying a
timeout (10 milliseconds in this example). When you specify a timeout, WaitOne() re-
turns when the method execution is completed or when the timeout has elapsed,
whichever condition is met first.

Asynchronous Calls | 445

Download from Library of Wow! eBook <www.wowebook.com>

Example 8-32. Using WaitOne() to specify wait timeout

CalculatorClient proxy = new CalculatorClient();
IAsyncResult result = proxy.BeginAdd(2,3,null,null);
while(result.IsCompleted == false)
{
 result.AsyncWaitHandle.WaitOne(10,false); //This may block
 /* Do some optional work */
}
int sum = proxy.EndAdd(result); //This will not block

Example 8-32 uses another handy property of IAsyncResult, called IsCompleted.
IsCompleted lets you check the status of the call without waiting or blocking. You can
even use IsCompleted in a strict polling mode:

CalculatorClient proxy = new CalculatorClient();
IAsyncResult result = proxy.BeginAdd(2,3,null,null);

//Sometime later:
if(result.IsCompleted)
{
 int sum = proxy.EndAdd(result); //This will not block
 Debug.Assert(sum == 5);
}
else
{
 //Do some optional work
}
proxy.Close();

The AsyncWaitHandle property really shines when you use it to manage multiple con-
current asynchronous methods in progress. You can use WaitHandle’s static
WaitAll() method to wait for completion of multiple asynchronous methods, as shown
in Example 8-33.

Example 8-33. Waiting for completion of multiple methods

CalculatorClient proxy = new CalculatorClient();
IAsyncResult result1 = proxy.BeginAdd(2,3,null,null);
IAsyncResult result2 = proxy.BeginAdd(4,5,null,null);

WaitHandle[] handleArray = {result1.AsyncWaitHandle,result2.AsyncWaitHandle};

WaitHandle.WaitAll(handleArray);

int sum;
//These calls to EndAdd() will not block

sum = proxy.EndAdd(result1);
Debug.Assert(sum == 5);

sum = proxy.EndAdd(result2);
Debug.Assert(sum == 9);

proxy.Close();

446 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

To use WaitAll(), you need to construct an array of handles. Note that you still need
to call End<Operation>() to access the returned values. Instead of waiting for all of the
methods to return, you can choose to wait for any of them to return, using the
WaitAny() static method of the WaitHandle class. Like WaitOne(), both WaitAll() and
WaitAny() have overloaded versions that let you specify a timeout to wait instead of
waiting indefinitely.

Completion Callbacks
Instead of blocking, waiting, and polling for asynchronous call completion, WCF offers
another programming model altogether—completion callbacks. With this model, the
client provides WCF with a method and requests that WCF call that method back when
the asynchronous method completes. The client can have the same callback method
handle completion of multiple asynchronous calls. When each asynchronous method’s
execution is complete, instead of quietly returning to the pool, the worker thread calls
the completion callback. To designate a completion callback method, the client needs
to provide Begin<Operation>() with a delegate of the type AsyncCallback, defined as:

public delegate void AsyncCallback(IAsyncResult result);

That delegate is provided as the penultimate parameter to Begin<Operation>().

Example 8-34 demonstrates asynchronous call management using a completion
callback.

Example 8-34. Managing asynchronous call with a completion callback

class MyClient : IDisposable
{
 CalculatorClient m_Proxy = new CalculatorClient();

 public void CallAsync()
 {
 m_Proxy.BeginAdd(2,3,OnCompletion,null);
 }
 void OnCompletion(IAsyncResult result)
 {
 int sum = m_Proxy.EndAdd(result);
 Debug.Assert(sum == 5);
 }
 public void Dispose()
 {
 m_Proxy.Close();
 }
}

Asynchronous Calls | 447

Download from Library of Wow! eBook <www.wowebook.com>

Unlike in the programming models described so far, when you use a completion call-
back method, there’s no need to save the IAsyncResult-implementation object returned
from Begin<Operation>(). This is because when WCF calls the completion callback,
WCF provides the IAsyncResult-implementation object as a parameter. Because WCF
provides a unique IAsyncResult-implementation object for each asynchronous method,
you can channel multiple asynchronous method completions to the same callback
method:

m_Proxy.BeginAdd(2,3,OnCompletion,null);
m_Proxy.BeginAdd(4,5,OnCompletion,null);

Instead of using a class method as a completion callback, you can just as easily use a
local anonymous method or a Lambda expression:

CalculatorClient proxy = new CalculatorClient();
int sum;
AsyncCallback completion = (result)=>
 {
 sum = proxy.EndAdd(result);
 Debug.Assert(sum == 5);
 proxy.Close();
 };
proxy.BeginAdd(2,3,completion,null);

Note that the anonymous method assigns to an outer variable (sum) to provide the result
of the Add() operation.

Callback completion methods are by far the preferred model in any event-driven ap-
plication. An event-driven application has methods that trigger events (or requests) and
methods that handle those events and fire their own events as a result. Writing an
application as event-driven makes it easier to manage multiple threads, events, and
callbacks and allows for scalability, responsiveness, and performance.

The last thing you want in an event-driven application is to block, since then your
application does not process events. Callback completion methods allow you to treat
the completion of the asynchronous operation as yet another event in your system. The
other options (waiting, blocking, and polling) are available for applications that are
strict, predictable, and deterministic in their execution flow. I recommend that you use
completion callback methods whenever possible.

Completion callbacks and thread safety

Because the callback method is executed on a thread from the thread pool, you must
provide for thread safety in the callback method and in the object that provides it. This
means that you must use synchronization objects and locks to access the member var-
iables of the client, even outer variables to anonymous completion methods. You need
to provide for synchronization between client-side threads and the worker thread from
the pool, and potentially synchronizing between multiple worker threads all calling
concurrently into the completion callback method to handle their respective

448 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

asynchronous call completion. Therefore, you need to make sure the completion call-
back method is reentrant and thread-safe.

Passing state information

The last parameter to Begin<Operation>() is asyncState. The asyncState object, known
as a state object, is provided as an optional container for whatever need you deem fit.
The party handling the method completion can access such a container object via the
AsyncState property of IAsyncResult. Although you can certainly use state objects with
any of the other asynchronous call programming models (blocking, waiting, or polling),
they are most useful in conjunction with completion callbacks. The reason is simple:
when you are using a completion callback, the container object offers the only way to
pass in additional parameters to the callback method, whose signature is
predetermined.

Example 8-35 demonstrates how you might use a state object to pass an integer value
as an additional parameter to the completion callback method. Note that the callback
must downcast the AsyncState property to the actual type.

Example 8-35. Passing an additional parameter using a state object

class MyClient : IDisposable
{
 CalculatorClient m_Proxy = new CalculatorClient();

 public void CallAsync()
 {
 int asyncState = 4; //int, for example
 m_Proxy.BeginAdd(2,3,OnCompletion,asyncState);
 }
 void OnCompletion(IAsyncResult result)
 {
 int asyncState = (int)result.AsyncState;
 Debug.Assert(asyncState == 4);

 int sum = m_Proxy.EndAdd(result);
 }
 public void Dispose()
 {
 m_Proxy.Close();
 }
}

A common use for the state object is to pass the proxy used for Begin<Operation>()
instead of saving it as a member variable:

class MyClient
{
 public void CallAsync()
 {
 CalculatorClient proxy = new CalculatorClient();
 proxy.BeginAdd(2,3,OnCompletion,proxy);

Asynchronous Calls | 449

Download from Library of Wow! eBook <www.wowebook.com>

 }
 void OnCompletion(IAsyncResult result)
 {
 CalculatorClient proxy = result.AsyncState as CalculatorClient;
 Debug.Assert(proxy != null);

 int sum = proxy.EndAdd(result);
 Debug.Assert(sum == 5);

 proxy.Close();
 }
}

Completion callback synchronization context

The completion callback, by default, is called on a thread from the thread pool. This
presents a serious problem if the callback is to access some resources that have an
affinity to a particular thread or threads and are required to run in a particular syn-
chronization context. The classic example is a Windows Forms application that dis-
patches a lengthy service call asynchronously (to avoid blocking the UI), and then
wishes to update the UI with the result of the invocation. Using the raw
Begin<Operation>() is disallowed, since only the UI thread is allowed to update the UI.
You must marshal the call from the completion callback to the correct synchronization
context, using any of the techniques described previously (such as safe controls). Ex-
ample 8-36 demonstrates such a completion callback that interacts directly with its
containing form, ensuring that the UI update will be in the UI synchronization context.

Example 8-36. Relying on completion callback synchronization context

partial class CalculatorForm : Form
{
 CalculatorClient m_Proxy;
 SynchronizationContext m_SynchronizationContext;

 public CalculatorForm()
 {
 InitializeComponent();
 m_Proxy = new CalculatorClient();
 m_SynchronizationContext = SynchronizationContext.Current;
 }
 public void CallAsync(object sender,EventArgs args)
 {
 m_Proxy.BeginAdd(2,3,OnCompletion,null);
 }
 void OnCompletion(IAsyncResult result)
 {
 SendOrPostCallback callback = _=>
 {
 Text = "Sum = " + m_Proxy.EndAdd(result);
 };

450 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 m_SynchronizationContext.Send(callback,null);
 }
 public void OnClose(object sender,EventArgs args)
 {
 m_Proxy.Close();
 }
}

To better handle this situation, the ClientBase<T> base class is equipped with a pro-
tected InvokeAsync() method that picks up the synchronization context of the client
and uses it to invoke the completion callback, as shown in Example 8-37.

Example 8-37. Async callback management in ClientBase<T>

public abstract class ClientBase<T> : ...
{
 protected delegate IAsyncResult BeginOperationDelegate(object[] inValues,
 AsyncCallback asyncCallback,object state);

 protected delegate object[] EndOperationDelegate(IAsyncResult result);

 //Picks up sync context and used for completion callback
 protected void InvokeAsync(BeginOperationDelegate beginOpDelegate,
 object[] inValues,
 EndOperationDelegate endOpDelegate,
 SendOrPostCallback opCompletedCallback,
 object userState);
 //More members
}

ClientBase<T> also provides an event arguments helper class and two dedicated dele-
gates used to invoke and end the asynchronous call. The generated proxy class that
derives from ClientBase<T> makes use of the base functionality. The proxy will have a
public event called <Operation>Completed that uses a strongly typed event argument
class specific to the results of the asynchronous method, and two methods called
<Operation>Async that are used to dispatch the call asynchronously:

partial class AddCompletedEventArgs : AsyncCompletedEventArgs
{
 public int Result
 {get;}
}

class CalculatorClient : ClientBase<ICalculator>,ICalculator
{
 public event EventHandler<AddCompletedEventArgs> AddCompleted;

 public void AddAsync(int number1,int number2,object userState);
 public void AddAsync(int number1,int number2);

 //Rest of the proxy
}

Asynchronous Calls | 451

Download from Library of Wow! eBook <www.wowebook.com>

The client can subscribe an event handler to the <Operation>Completed event to have
that handler called upon completion. The big difference with using <Operation>Async
as opposed to Begin<Operation> is that the <Operation>Async methods will pick up the
synchronization context of the client and will fire the <Operation>Completed event on
that synchronization context, as shown in Example 8-38.

Example 8-38. Synchronization-context-friendly asynchronous call invocation

partial class CalculatorForm : Form
{
 CalculatorClient m_Proxy;

 public CalculatorForm()
 {
 InitializeComponent();

 m_Proxy = new CalculatorClient();
 m_Proxy.AddCompleted += OnAddCompleted;
 }
 void CallAsync(object sender,EventArgs args)
 {
 m_Proxy.AddAsync(2,3); //Sync context picked up here
 }
 //Called on the UI thread
 void OnAddCompleted(object sender,AddCompletedEventArgs args)
 {
 Text = "Sum = " + args.Result;
 }
}

One-Way Asynchronous Operations
In some cases, such as firing an event with a large payload, you may want to invoke a
one-way operation asynchronously. The problem is that one-way calls are not well
aligned with asynchronous calls: one of the main features of asynchronous calls is their
ability to retrieve and correlate a reply message; no such message is available with a
one-way call. If you do invoke a one-way operation asynchronously, End<Opera
tion>() will return as soon as the worker thread has finished dispatching the call. Aside
from communication errors, End<Operation>() will not encounter any exceptions. If a
completion callback is provided for an asynchronous invocation of a one-way opera-
tion, the callback is called immediately after the worker thread used in
Begin<Operation>() dispatches the call. The only justification for invoking a one-way
operation asynchronously is to avoid the potential blocking of the one-way call, in
which case you should pass a null for the state object and the completion callback, as
shown in Example 8-39.

452 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

Example 8-39. Invoking a one-way operation asynchronously
[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod(string text);

 [OperationContract(IsOneWay = true,AsyncPattern = true)]
 IAsyncResult BeginMyMethod(string text,
 AsyncCallback callback,object asyncState);
 void EndMyMethod(IAsyncResult result);
}
MyContractClient proxy = MyContractClient();
proxy.BeginMyMethod("Async one way",null,null);

//Sometime later:
proxy.Close();

The problem with Example 8-39 is the potential race condition of closing the proxy. It
is possible to push the asynchronous call with Begin<Operation>() and then close the
proxy before the worker thread used has had a chance to invoke the call. If you want
to close the proxy immediately after asynchronously invoking the one-way call, you
need to provide a completion expression for closing the proxy:

MyContractClient proxy = MyContractClient();

proxy.BeginMyMethod("Async one way",_=> proxy.Close(),null);

However, this is still flawed, because it complicates issuing a number of asynchronous,
one-way calls, since there is no single place to wait for all the dispatching to complete.
To handle that, use my AsyncOneWayClientBase<T> helper class, defined as:

public class AsyncOneWayClientBase<T> : ClientBase<T> where T : class
{
 protected AsyncCallback GetCompletion();
}

Using the contract of Example 8-39, you need to derive your proxy from AsyncOneWay
ClientBase<T> and implement the methods as follows:

class MyContractClient : AsyncOneWayClientBase<IMyContract>,IMyContract
{
 public void MyMethod(string text)
 {
 Channel.BeginMyMethod(text,null,null);
 }

 IAsyncResult IMyContract.BeginMyMethod(string text,AsyncCallback
 callback,object asyncState)
 {
 return Channel.BeginMyMethod(text,GetCompletion(),null);
 }

 void IMyContract.EndMyMethod(IAsyncResult result)

Asynchronous Calls | 453

Download from Library of Wow! eBook <www.wowebook.com>

 {
 throw new InvalidOperationException(
 "Do not call End<Operation>() on a one-way operation");
 }
}

When the client now calls the original one-way operation:

MyContractClient proxy = MyContractClient();
proxy.MyMethod("Async one way");

//Sometime later:
proxy.Close();

the call is always dispatched asynchronously. The implementation of Begin
<Operation>() and End<Operation>() uses explicit interface implementation, since there
is no point in exposing them. Begin<Operation>() always calls the base class
GetCompletion() method to obtain a completion method. End<Operation>() should
never be called when invoking asynchronously a one-way method, so I recommend
that you throw an exception. Example 8-40 shows the implementation of AsyncOneWay
ClientBase<T>.

Example 8-40. Implementing AsyncOneWayClientBase<T>

public class AsyncOneWayClientBase<T> : ClientBase<T> where T : class
{
 List<WaitHandle> m_PendingOperations = new List<WaitHandle>();

 static AsyncOneWayClientBase()
 {
 Type type = typeof(T);
 Debug.Assert(type.IsInterface);

 MethodInfo[] methods = type.GetMethods();

 foreach(MethodInfo method in methods)
 {
 object[] attributes = method.GetCustomAttributes(
 typeof(OperationContractAttribute),true);

 if(attributes.Length == 0)
 {
 Debug.Assert(method.Name.StartsWith("End"));
 Debug.Assert(method.ReturnType == typeof(void));

 ParameterInfo[] parameters = method.GetParameters();
 Debug.Assert(parameters[parameters.Length-1].ParameterType ==
 typeof(IAsyncResult));

 continue;
 }
 OperationContractAttribute operationContract =
 attributes[0] as OperationContractAttribute;

454 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 if(operationContract.IsOneWay == false)
 {
 throw new InvalidOperationException("All operations must be one-way");
 }
 }
 }
 protected AsyncCallback GetCompletion()
 {
 ManualResetEvent handle = new ManualResetEvent(false);
 lock(m_Handles)
 {
 m_PendingOperations.Add(handle);
 }
 return _=>
 {
 handle.Set();
 lock(m_Handles)
 {
 m_PendingOperations.Remove(handle);
 }
 };
 }
 public new void Close()
 {
 lock(m_Handles)
 {
 WaitHandle[] operations = m_PendingOperations.ToArray();
 if(operations.Length > 0)
 {
 WaitHandle.WaitAll(operations);
 }
 }
 base.Close();
 }
 public void Dispose()
 {
 Close();
 }
}

The static constructor of AsyncOneWayClientBase<T> verifies that all operations on the
contract are either one-way or are of the format of End<Operation>(). You will need to
omit that check if you want to mix in the contract non-one-way asynchronous calls.
AsyncOneWayClientBase<T> maintains a list of waitable handles. Each handle represents
a pending asynchronous one-way invocation that has yet to be dispatched by the thread
from the thread pool. When closing or disposing of AsyncOneWayClientBase<T>, it waits
for all the handles to be signaled before proceeding with the closing. The
GetCompletion() method allocates a new handle, adds it to the list, and provides an
anonymous method that signals the handle and removes it from the list. That delegate
is provided to Begin<Operation>(), so as soon as the worker thread from the thread
pool dispatches the call, it signals the event.

Asynchronous Calls | 455

Download from Library of Wow! eBook <www.wowebook.com>

Asynchronous Error Handling
Output parameters and return values are not the only elements unavailable at the time
an asynchronous call is dispatched: exceptions are missing as well. After calling
Begin<Operation>(), control returns to the client, but it may be some time before the
asynchronous method encounters an error and throws an exception, and some time
after that before the client actually calls End<Operation>(). WCF must therefore provide
some way for the client to know that an exception was thrown and allow the client to
handle it. When the asynchronous method throws an exception, the proxy catches it,
and when the client calls End<Operation>() the proxy rethrows that exception object,
letting the client handle the exception. If a completion callback is provided, WCF calls
that method immediately after the exception is received. The exact exception thrown
is compliant with the fault contract and the exception type, as explained in Chapter 6.

If fault contracts are defined on the service operation contract, the
FaultContract attribute should be applied only on the synchronous
operations.

Asynchronous calls and timeouts

Since the asynchronous invocation mechanism is nothing but a convenient program-
ming model on top of the actual synchronous operation, the underlying synchronous
call can still time out. This will result in a TimeoutException when the client calls
End<Operation>(). It is therefore wrong to equate asynchronous calls with lengthy op-
erations. By default, asynchronous calls are still relatively short (under a minute), but
unlike synchronous calls, they are non-blocking. For lengthy asynchronous calls you
will need to provide an adequately long send timeout.

Cleaning up after End<Operation>()

When the client calls Begin<Operation>(), the returned IAsyncResult will have a refer-
ence to a single WaitHandle object, accessible via the AsyncWaitHandle property. Calling
End<Operation>() on that object will not close the handle. Instead, that handle will be
closed when the implementing object is garbage-collected. As with any other case of
using an unmanaged resource, you have to be mindful about your application-
deterministic finalization needs. It is possible (in theory, at least) for the application to
dispatch asynchronous calls faster than .NET can collect the handles, resulting in a
resource leak. To compensate, you can explicitly close that handle after calling
End<Operation>(). For example, using the same definitions as those in Example 8-34:

void OnCompletion(IAsyncResult result)
{
 using(result.AsyncWaitHandle)
 {
 int sum = m_Proxy.EndAdd(result);
 Debug.Assert(sum == 5);

456 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

 }
}

Asynchronous Calls and Transactions
Transactions do not mix well with asynchronous calls, for a few reasons. First, well-
designed transactions are of short duration, yet the main motivation for using asyn-
chronous calls is because of the latency of the operations. Second, the client’s ambient
transaction will not by default flow to the service, because the asynchronous operation
is invoked on a worker thread, not the client’s thread. While it is possible to develop a
proprietary mechanism that uses cloned transactions, this is esoteric at best and should
be avoided. Finally, when a transaction completes, it should have no leftover activities
to do in the background that could commit or abort independently of the transaction;
however, this will be the result of spawning an asynchronous operation call from within
a transaction. In short, do not mix transactions with asynchronous calls.

Synchronous Versus Asynchronous Calls
Although it is technically possible to call the same service synchronously and asyn-
chronously, the likelihood that a service will be accessed both ways is low.

The reason is that using a service asynchronously necessitates drastic changes to the
workflow of the client, and consequently the client cannot simply use the same exe-
cution sequence logic as with synchronous access. Consider, for example, an online
store application. Suppose the client (a server-side object executing a customer request)
accesses a Store service, where it places the customer’s order details. The Store service
uses three well-factored helper services to process the order: Order, Shipment, and Bill
ing. In a synchronous scenario, the Store service first calls the Order service to place
the order. Only if the Order service succeeds in processing the order (i.e., if the item is
available in the inventory) does the Store service then call the Shipment service, and
only if the Shipment service succeeds does the Store service access the Billing service
to bill the customer. This sequence is shown in Figure 8-4.

Figure 8-4. Synchronous processing of an order

Asynchronous Calls | 457

Download from Library of Wow! eBook <www.wowebook.com>

The downside to the workflow shown in Figure 8-4 is that the store must process orders
synchronously and serially. On the surface, it might seem that if the Store service in-
voked its helper objects asynchronously, it would increase throughput, because it could
process incoming orders as fast as the client submitted them. The problem in doing so
is that it is possible for the calls to the Order, Shipment, and Billing services to fail
independently, and if they do, all hell will break loose. For example, the Order service
might discover that there were no items in the inventory matching the customer request,
while the Shipment service tried to ship the nonexistent item and the Billing service
had already billed the customer for it.

Using asynchronous calls on a set of interacting services requires that you change your
code and your workflow. As illustrated in Figure 8-5, to call the helper services asyn-
chronously, you need to string them together. The Store service should call only the
Order service, which in turn should call the Shipment service only if the order processing
was successful, to avoid the potential inconsistencies just mentioned. Similarly, only
in the case of successful shipment should the Shipment service asynchronously call the
Billing service.

Figure 8-5. Revised workflow for asynchronous processing of an order

In general, if you have more than one service in your asynchronous workflow, you
should have each service invoke the next one in the logical execution sequence. Need-
less to say, such a programming model introduces tight coupling between services (they
have to know about one another) and changes to their interfaces (you have to pass in
additional parameters, which are required for the desired invocation of services
downstream).

458 | Chapter 8: Concurrency Management

Download from Library of Wow! eBook <www.wowebook.com>

The conclusion is that using asynchronous instead of synchronous invocation intro-
duces major changes to the service interfaces and the client workflow. Asynchronous
invocation on a service that was built for synchronous execution works only in isolated
cases. When dealing with a set of interacting services, it is better to simply spin off a
worker thread to call them and use the worker thread to provide asynchronous execu-
tion. This will preserve the service interfaces and the original client execution sequence.

Asynchronous Calls | 459

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 9

Queued Services

WCF enables disconnected work: the client posts messages to a queue, and the service
processes them. Such interaction enables different possibilities from those presented
so far and, in turn, a different programming model. This chapter starts by showing you
how to set up and configure simple queued services, and then focuses on aspects such
as transactions, instance management, and failures, and their impact on both the busi-
ness model of the service and its implementation. The chapter ends with my solution
for a response service and a discussion of using the HTTP bridge for queued calls over
the Internet.

Disconnected Services and Clients
The previous chapters were all predicated on a connected interaction between the client
and the service, where both sides must be up and running to be able to interact with
each other. However, there are quite a few cases (as well as the overall business model
justification) for wanting to have disconnected interaction in a service-oriented
application:

Availability
The client may need to work against the service even when the client is discon-
nected; for example, when using a mobile device. The solution is to queue up
requests against a local queue and send them to the service when the client is
connected. Similarly, if the service is offline (perhaps because of network problems
or machine crashes), you want clients to be able to continue working against the
service. When the service is connected again, it can retrieve the pending calls from
a queue. Even when both the client and the service are alive and running, network
connectivity may be unavailable, and yet both the client and the service may want
to continue with their work. Using queues at both ends will facilitate that.

Disjoint work
Whenever it is possible to decompose a business workflow into several operations
that are separated in time—that is, where each operation must take place, but not

461

Download from Library of Wow! eBook <www.wowebook.com>

necessarily immediately or in a particular order—it is usually a good idea to use
queuing, because it will improve availability and throughput. You can queue up
the operations and have them execute independently of one another.

Compensating work
When your business transaction may take hours or days to complete, you typically
split it into at least two transactions. The first queues up the work to be completed
immediately by initiating an external sequence, and the second verifies the success
of the first and compensates for its failure if necessary.

Load leveling
Most systems do not have a constant level of load, as shown in Figure 9-1. If you
design the system for the peak load, you will be wasting system resources through
most of the load cycle, and if you design the system to handle the average load,
you will not be able to handle the peak. But with queued calls, the service can
simply queue up the excess load and process it at leisure. This enables you to design
a system for a nominal average of the desired throughput, as opposed to the max-
imum load.

Figure 9-1. Fluctuating load

Queued Calls
WCF provides support for queued calls using the NetMsmqBinding. With this binding,
instead of transporting the messages over TCP, HTTP, or IPC, WCF transports the
messages over MSMQ. WCF packages each SOAP message into an MSMQ message
and posts it to a designated queue. Note that there is no direct mapping of WCF mes-
sages to MSMQ messages, just like there is no direct mapping of WCF messages to
TCP packets. A single MSMQ message can contain multiple WCF messages, or just a
single one, according to the contract session mode (as discussed at length later). In
effect, instead of sending the WCF message to a live service, the client posts the message
to an MSMQ queue. All that the client sees and interacts with is the queue, not a service
endpoint. As a result, the calls are inherently asynchronous (because they will execute

462 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

later, when the service processes the messages) and disconnected (because the service
or client may interact with local queues).

Queued Calls Architecture
As with every WCF service, in the case of a queued service the client interacts with a
proxy, as shown in Figure 9-2.

Figure 9-2. Queued calls architecture

However, since the proxy is configured to use the MSMQ binding, it does not send the
WCF message to any particular service. Instead, it converts the call (or calls) to an
MSMQ message (or messages) and posts it to the queue specified in the endpoint’s
address. On the service side, when a service host with a queued endpoint is launched,
the host installs a queue listener, which is similar conceptually to the listener associated
with a port when using TCP or HTTP. The queue’s listener detects that there is a
message in the queue, de-queues the message, and then creates the host side’s chain of
interceptors, ending with a dispatcher. The dispatcher calls the service instance as
usual. If multiple messages are posted to the queue, the listener can create new instances
as fast as the messages come off the queue, resulting in asynchronous, disconnected,
and concurrent calls.

If the host is offline, messages destined for the service will simply remain pending in
the queue. The next time the host is connected, the messages will be played to the
service. Obviously, if both the client and the host are alive and running and are con-
nected, the host will process the calls immediately.

Queued Contracts
A potentially disconnected call made against a queue cannot possibly return any values,
because no service logic is invoked at the time the message is dispatched to the queue.
Not only that, but the call may be dispatched to the service and processed after the
client application has shut down, when there is no client available to process the

Queued Calls | 463

Download from Library of Wow! eBook <www.wowebook.com>

returned values. In much the same way, the call cannot return to the client any service-
side exceptions, and there may not be a client around to catch and handle the exceptions
anyway. In fact, WCF disallows using fault contracts on queued operations. Since the
client cannot be blocked by invoking the operation—or rather, the client is blocked,
but only for the briefest moment it takes to queue up the message—the queued calls
are inherently asynchronous from the client’s perspective. All of these are the classic
characteristics of one-way calls. Consequently, any contract exposed by an endpoint
that uses the NetMsmqBinding can have only one-way operations, and WCF verifies this
at service (and proxy) load time:

//Only one-way calls allowed on queued contracts
[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}

Because the interaction with MSMQ is encapsulated in the binding, there is nothing in
the service or client invocation code pertaining to the fact that the calls are queued. The
queued service and client code look like any other WCF service and client code, as
shown in Example 9-1.

Example 9-1. Implementing and consuming a queued service

//////////////////////// Service Side ///////////////////////////
[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}
//////////////////////// Client Side ///////////////////////////
MyContractClient proxy = new MyContractClient();
proxy.MyMethod();
proxy.Close();

Configuration and Setup
When you define an endpoint for a queued service, the endpoint address must contain
the queue’s name and designation (that is, the type of the queue). MSMQ defines two
types of queues: public and private. Public queues require an MSMQ domain controller
installation or Active Directory integration and can be accessed across machine boun-
daries. Applications in production often require public queues due to the secure and
disconnected nature of such queues. Private queues are local to the machine on which

464 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

they reside and do not require a domain controller. Such a deployment of MSMQ is
called a workgroup installation. During development, and for private queues they set
up and administer, developers usually resort to a workgroup installation.

You designate the queue type (private or public) as part of the queued endpoint address:

<endpoint
 address = "net.msmq://localhost/private/MyServiceQueue"
 binding = "netMsmqBinding"
 ...
/>

In the case of a public queue, you can omit the public designator and have WCF infer
the queue type. With private queues, you must include the designator. Also note that
there is no $ sign in the queue’s type.

Workgroup installation and security

When you’re using private queues in a workgroup installation, you typically disable
MSMQ security on the client and service sides. Chapter 10 discusses in detail how to
secure WCF calls, including queued calls. Briefly, the default MSMQ security config-
uration expects users to present certificates for authentication, and MSMQ certificate-
based security requires an MSMQ domain controller. Alternatively, selecting Windows
security for transport security over MSMQ requires Active Directory integration, which
is not possible with an MSMQ workgroup installation. For now, Example 9-2 shows
how to disable MSMQ security.

Example 9-2. Disabling MSMQ security

<system.serviceModel>
 ...
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue"
 binding = "netMsmqBinding"
 bindingConfiguration = "NoMSMQSecurity"
 contract = "..."
 />
 ...
<bindings>
 <netMsmqBinding>
 <binding name = "NoMSMQSecurity">
 <security mode = "None"/>
 </binding>
 </netMsmqBinding>
 </bindings>
</system.serviceModel>

If you must for some reason enable security for development in a work-
group installation, you can configure the service to use message security
with username credentials.

Queued Calls | 465

Download from Library of Wow! eBook <www.wowebook.com>

Creating the queue

On both the service and the client side, the queue must exist before client calls are
queued up against it. There are several options for creating the queue. The adminis-
trator (or the developer, during development) can use the MSMQ control panel applet
to create the queue, but that is a manual step that should be automated. The host
process can use the API of System.Messaging to verify that the queue exists before
opening the host. The class MessageQueue offers the Exists() method for verifying that
a queue is created, and the Create() methods for creating a queue:

public class MessageQueue : ...
{
 public static MessageQueue Create(string path); //Nontransactional
 public static MessageQueue Create(string path,bool transactional);
 public static bool Exists(string path);
 public void Purge();
 //More members
}

If the queue is not present, the host process can first create it and then proceed to open
the host. Example 9-3 demonstrates this sequence.

Example 9-3. Verifying a queue on the host

ServiceHost host = new ServiceHost(typeof(MyService));

if(MessageQueue.Exists(@".\private$\MyServiceQueue") == false)
{
 MessageQueue.Create(@".\private$\MyServiceQueue",true);
}
host.Open();

In this example, the host verifies against the MSMQ installation on its own machine
that the queue is present before opening the host. If it needs to, the hosting code creates
the queue. Note the use of the true value for the transactional queue, as discussed later.
Note also the use of the $ sign in the queue designation.

The obvious problem with Example 9-3 is that it hard-codes the queue name, not once,
but twice. It is preferable to read the queue name from the application config file by
storing it in an application setting, although there are problems even with that ap-
proach. First, you have to constantly synchronize the queue name in the application
settings and in the endpoint’s address. Second, you still have to repeat this code every
time you host a queued service. Fortunately, it is possible to encapsulate and automate
the code in Example 9-3 in my ServiceHost<T>, as shown in Example 9-4.

Example 9-4. Creating the queue in ServiceHost<T>

public class ServiceHost<T> : ServiceHost
{
 protected override void OnOpening()
 {
 foreach(ServiceEndpoint endpoint in Description.Endpoints)

466 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

 {
 endpoint.VerifyQueue();
 }
 base.OnOpening();
 }
 //More members
}
public static class QueuedServiceHelper
{
 public static void VerifyQueue(this ServiceEndpoint endpoint)
 {
 if(endpoint.Binding is NetMsmqBinding)
 {
 string queue = GetQueueFromUri(endpoint.Address.Uri);
 if(MessageQueue.Exists(queue) == false)
 {
 MessageQueue.Create(queue,true);
 }
 }
 }
 //Parses the queue name out of the address
 static string GetQueueFromUri(Uri uri)
 {...}
}

In Example 9-4, ServiceHost<T> overrides the OnOpening() method of its base class. This
method is called before opening the host, but after calling the Open() method. Service
Host<T> iterates over the collection of configured endpoints. For each endpoint, if the
binding used is NetMsmqBinding—that is, if queued calls are expected—Service
Host<T> calls the extension method VerifyQueue() of the ServiceEndpoint type and asks
it to verify the presence of the queue. The static extension VerifyQueue() method of
QueuedServiceHelper parses the queue’s name out of the endpoint’s address and uses
code similar to that in Example 9-3 to create the queue if needed.

Using ServiceHost<T>, Example 9-3 is reduced to:

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.Open();

The client must also verify that the queue exists before dispatching calls to it. Exam-
ple 9-5 shows the required steps on the client side.

Example 9-5. Verifying the queue by the client

if(MessageQueue.Exists(@".\private$\MyServiceQueue") == false)
{
 MessageQueue.Create(@".\private$\MyServiceQueue",true);
}
MyContractClient proxy = new MyContractClient();
proxy.MyMethod();
proxy.Close();

Again, you should not hardcode the queue name and should instead read the queue
name from the application config file by storing it in an application setting. And again,

Queued Calls | 467

Download from Library of Wow! eBook <www.wowebook.com>

you will face the challenges of keeping the queue name synchronized in the application
settings and in the endpoint’s address, and of writing queue verification logic every-
where your clients use the queued service. You can use QueuedServiceHelper directly
on the endpoint behind the proxy, but that forces you to create the proxy (or a
ServiceEndpoint instance) just to verify the queue. You can, however, extend my
QueuedServiceHelper to streamline and support client-side queue verification, as shown
in Example 9-6.

Example 9-6. Extending QueuedServiceHelper to verify the queue on the client side

public static class QueuedServiceHelper
{
 public static void VerifyQueues()
 {
 Configuration config = ConfigurationManager.OpenExeConfiguration(
 ConfigurationUserLevel.None);
 ServiceModelSectionGroup sectionGroup =
 ServiceModelSectionGroup.GetSectionGroup(config);

 foreach(ChannelEndpointElement endpointElement in
 sectionGroup.Client.Endpoints)
 {
 if(endpointElement.Binding == "netMsmqBinding")
 {
 string queue = GetQueueFromUri(endpointElement.Address);

 if(MessageQueue.Exists(queue) == false)
 {
 MessageQueue.Create(queue,true);
 }
 }
 }
 }
 //More members
}

Example 9-6 uses the type-safe programming model that is offered by the
ConfigurationManager class to parse a configuration file. It loads the WCF section (the
ServiceModelSectionGroup) and iterates over all the endpoints defined in the client
config file. For each endpoint that is configured with the MSMQ binding, Verify
Queues() creates the queue if required.

Using QueuedServiceHelper, Example 9-5 is reduced to:

QueuedServiceHelper.VerifyQueues();

MyContractClient proxy = new MyContractClient();
proxy.MyMethod();
proxy.Close();

Note that the client application needs to call QueuedServiceHelper.VerifyQueues() just
once anywhere in the application, before issuing the queued calls.

468 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

If the client is not using a config file to create the proxy (or is using a channel factory),
the client can still use the extrusion method VerifyQueue() of the ServiceEndpoint class:

EndpointAddress address = new EndpointAddress(...);
Binding binding = new NetMsmqBinding(...); //Can still read binding from config

MyContractClient proxy = new MyContractClient(binding,address);
proxy.Endpoint.VerifyQueue();

proxy.MyMethod();

proxy.Close();

Queue purging

When a host is launched, it may already have messages in queues, received by MSMQ
while the host was offline, and the host will immediately start processing these mes-
sages. Dealing with this very scenario is one of the core features of queued services, as
it enables you to have disconnected services. While this is, therefore, exactly the sort
of behavior you would like when deploying a queued service, it is typically a hindrance
in debugging. Imagine a debug session of a queued service. The client issues a few calls
and the service begins processing the first call, but while stepping through the code you
notice a defect. You stop debugging, change the service code, and relaunch the host,
only to have it process the remaining messages in the queue from the previous debug
session, even if those messages break the new service code. Usually, messages from one
debug session should not seed the next one. The solution is to programmatically purge
the queues when the host shuts down, in debug mode only. You can streamline this
with my ServiceHost<T>, as shown in Example 9-7.

Example 9-7. Purging the queues on host shutdown during debugging

public static class QueuedServiceHelper
{
 public static void PurgeQueue(ServiceEndpoint endpoint)
 {
 if(endpoint.Binding is NetMsmqBinding)
 {
 string queueName = GetQueueFromUri(endpoint.Address.Uri);
 if(MessageQueue.Exists(queueName) == true)
 {
 MessageQueue queue = new MessageQueue(queueName);
 queue.Purge();
 }
 }
 }
 //More members
}
public class ServiceHost<T> : ServiceHost
{
 protected override void OnClosing()
 {
 PurgeQueues();

Queued Calls | 469

Download from Library of Wow! eBook <www.wowebook.com>

 //More cleanup if necessary
 base.OnClosing();
 }
 [Conditional("DEBUG")]
 void PurgeQueues()
 {
 foreach(ServiceEndpoint endpoint in Description.Endpoints)
 {
 QueuedServiceHelper.PurgeQueue(endpoint);
 }
 }
 //More members
}

In this example, the QueuedServiceHelper class offers the static method PurgeQueue().
As its name implies, PurgeQueue() accepts a service endpoint. If the binding used by
that endpoint is the NetMsmqBinding, PurgeQueue() extracts the queue name out of the
endpoint’s address, creates a new MessageQueue object, and purges it. ServiceHost<T>
overrides the OnClosing() method, which is called when the host shuts down gracefully.
It then calls the private PurgeQueues() method. PurgeQueues() is marked with the
Conditional attribute, using DEBUG as a condition. This means that while the body of
PurgeQueues() always compiles, its call sites are conditioned on the DEBUG symbol. In
debug mode only, OnClosing() will actually call PurgeQueues(). PurgeQueues() iterates
over all endpoints of the host, calling QueuedServiceHelper.PurgeQueue() on each.

The Conditional attribute is the preferred way in .NET for using con-
ditional compilation and avoiding the pitfalls of explicit conditional
compilation with #if.

Queues, services, and endpoints

WCF requires you to always dedicate a queue per endpoint for each service. This means
a service with two contracts needs two queues for the two corresponding endpoints:

<service name = "MyService">
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue1"
 binding = "netMsmqBinding"
 contract = "IMyContract"
 />
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue2"
 binding = "netMsmqBinding"
 contract = "IMyOtherContract"
 />
</service>

The reason is that the client actually interacts with a queue, not a service endpoint. In
fact, there may not even be a service at all; there may only be a queue. Two distinct
endpoints cannot share queues because they will get each other’s messages. Since the

470 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

WCF messages in the MSMQ messages will not match, WCF will silently discard those
messages it deems invalid, and you will lose the calls. Much the same way, two poly-
morphic endpoints on two services cannot share a queue, because they will eat each
other’s messages.

Exposing metadata

WCF cannot exchange metadata over MSMQ. Consequently, it is customary for even
a service that will always have only queued calls to also expose a MEX endpoint or to
enable metadata exchange over HTTP-GET, because the service’s clients still need a
way to retrieve the service description and bind against it.

WAS hosting

When hosting a queued service in the WAS, the name of the queue must be the same
as the name of the .svc file leading to the virtual directory. For example:

<endpoint
 address = "net.msmq://localhost/private/WASService.svc"
 binding = "netMsmqBinding"
 contract = "IMyQueuedContract"
/>

Transactions
MSMQ is a WCF transactional resource manager. When you create a queue (either
programmatically or administratively), you can create the queue as a transactional
queue. If the queue is transactional, it is durable, and messages always persist to disk.
More importantly, posting messages to and removing messages from the queue will
always be done under a transaction. If the code that tries to interact with the queue has
an ambient transaction, the queue will silently join that transaction. If no ambient
transaction is present, MSMQ will start a new transaction for that interaction.
It is as if the queue is encased in a TransactionScope constructed with
TransactionScopeOption.Required. Once in a transaction, the queue will commit or roll
back along with the accessing transaction. For example, if the accessing transaction
posts a message to the queue and then aborts, the queue will reject the message.

Delivery and Playback
When a nontransactional client calls a queued service, client-side failures after the call
will not roll back posting the message to the queue, and the queued call will be dis-
patched to the service. However, a client calling a queued service may call under a
transaction, as shown in Figure 9-3.

The client calls are converted to WCF messages and then packaged in an MSMQ mes-
sage (or messages). If the client’s transaction commits, these MSMQ messages are

Transactions | 471

Download from Library of Wow! eBook <www.wowebook.com>

posted to the queue and persist there. If the client’s transaction aborts, the queue dis-
cards these MSMQ messages. In effect, WCF provides clients of a queued service with
an auto-cancellation mechanism for their asynchronous, potentially disconnected calls.
Normal connected asynchronous calls cannot be combined easily, if at all, with trans-
actions, because once the call is dispatched there is no way to recall it in case the original
transaction aborts. Unlike connected asynchronous calls, queued service calls are de-
signed for this very transactional scenario. In addition, the client may interact with
multiple queued services in the same transaction. Aborting the client transaction for
whatever reason will automatically cancel all calls to those queued services.

The delivery transaction

Since the client may not be on the same machine as the service, and since the client,
the service, or both could be disconnected, MSMQ maintains a client-side queue as
well. The client-side queue serves as a “proxy” to the service-side queue. In the case of
a remote queued call, the client first posts the message to the client-side queue. When
(or if) the client is connected, MSMQ will deliver the queued messages from the client-
side queue to the service-side queue, as shown in Figure 9-4.

Figure 9-4. The delivery transaction

Since MSMQ is a resource manager, removing the message from the client-side queue
will create a transaction (if indeed the queue is transactional). If MSMQ fails to deliver
the message to the service-side queue for whatever reason (such as a network fault or
service machine crash), the delivery transaction will abort, the message removal from
the client-side queue will be rolled back, and the message posting to the service-side
queue will also be canceled, resulting in the message being back in the client-side queue.
At this point, MSMQ will try again to deliver the message. Thus, while you can

Figure 9-3. Posting to a client-side queue

472 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

configure and control failure handling (as you will see later), excluding fatal errors that
can never be resolved, queued services actually enjoy a guaranteed delivery mechanism;
if it is technically possible to deliver the message (within the confines of the failure-
handling modes), the message will get from the client to the service. In effect, this is
WCF’s way of providing reliable messaging for queued services. Of course, there is no
direct support for the reliable messaging protocol, as there is with connected calls; this
is just the analogous mechanism.

The playback transaction

When WCF removes a message from the queue for playback to the service, this kick-
starts a new transaction (assuming the queue is transactional), as shown in
Figure 9-5.

Figure 9-5. Playback transaction

The service is usually configured to participate in the playback transaction. If the play-
back transaction aborts (usually due to service-side exceptions), the message rolls back
to the queue, where WCF detects it and dispatches it again to the service. This, in effect,
yields an auto-retry mechanism. Consequently, you should keep the service’s process-
ing of the queued call relatively short, or risk aborting the playback transaction. An
important observation here is that it is wrong to equate queued calls with lengthy
asynchronous calls.

Service Transaction Configuration
As just demonstrated, assuming transactional queues, there are actually three transac-
tions involved in every queued call: client, delivery, and playback, as shown in
Figure 9-6.

From a design perspective, you rarely, if ever, depict the delivery transaction in your
design diagrams and you simply take it for granted. In addition, the service will never
participate in the client’s transaction, so in effect my four logical transactional modes
from Chapter 7 (Client, Client/Service, Service, None) do not apply with queued serv-
ices. Configuring the service contract operation with TransactionFlowOption.Allowed
or TransactionFlowOption.NotAllowed leads to the same result—the client transaction

Transactions | 473

Download from Library of Wow! eBook <www.wowebook.com>

is never provided to the service. Not only that, but TransactionFlowOption.Mandatory
is disallowed for configuration on a queued contract, and this constraint is verified at
the service load time. The real issue is the relation between the playback transaction
and the service transactional configuration.

Participating in the playback transaction

From a WCF perspective, the playback transaction is treated as the incoming transac-
tion to the service. To participate in the playback transaction, the service needs to have
the operation behavior configured with TransactionScopeRequired set to true, as shown
in Example 9-8 and graphically in Figure 9-5.

Example 9-8. Participating in the playback transaction

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction.TransactionInformation.
 DistributedIdentifier != Guid.Empty);
 }
}

An interesting point made in Example 9-8 is that with both MSMQ 3.0 and MSMQ
4.0, every transaction always uses the DTC for transaction management, even in the
case of a single service and a single playback. This might change in the next release of
WCF and the .NET Framework.

Figure 9-6. Queued calls and transactions

474 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Ignoring the playback transaction

If the service is configured for not having any transactions (like the service shown in
Example 9-9), WCF will still use a transaction to read the message from the queue,
except that transaction will always commit (barring an unforeseen failure in MSMQ
itself). Exceptions and failures at the service itself will not abort the playback
transaction.

Example 9-9. Ignoring the playback transaction

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()
 {
 Transaction transaction = Transaction.Current;
 Debug.Assert(transaction == null);
 }
}

This scenario is depicted graphically in Figure 9-7.

Figure 9-7. Ignoring the playback transaction

Services that do not participate in the playback transaction will not have the benefit of
automated retries by WCF in the case of a playback failure, and it is possible for the
played-back call to fail while the de-queued transaction commits. The main motivation
for configuring queued services this way is to accommodate lengthy processing. If the
service does not participate in the playback transaction, the call can take any amount
of time to complete.

Using a separate transaction

You can also write a service so that it manually requires a new transaction, as shown
in Example 9-10.

Transactions | 475

Download from Library of Wow! eBook <www.wowebook.com>

Example 9-10. Using a new transaction

class MyService : IMyContract
{
 public void MyMethod()
 {
 using(TransactionScope scope = new TransactionScope())
 {
 ...
 scope.Complete();
 }
 }
}

This scenario is depicted in Figure 9-8.

Figure 9-8. Using a new transaction

When the service uses its own new transaction for each message, it should also
prevent participating in the playback transaction (by defaulting to the
TransactionScopeRequired value of false) so as not to affect the playback transaction
in any way. Again, this negates the benefit of the auto-retry mechanism. However,
having a new transaction separate from the playback transaction gives the service the
opportunity to perform its own transactional work. You would typically configure a
service to use its own transaction when the queued operation being called is nice to
have and should be performed under the protection of a transaction, yet does not need
to be retried in case of a failure.

Nontransactional Queues
The MSMQ queues described so far were both durable and transactional. The messages
persisted to the disk, and posting a message to and reading it from the queue was
transactional. However, MSMQ also supports nontransactional queues. Such queues
can be durable and persist on the disk or can be volatile (stored in memory). If the
queue is volatile, the messages in the queue will not persist across a machine shutdown
or a machine crash or just recycling of the MSMQ service.

When you create a queue (either using the MSMQ administration tool or program-
matically), you can configure it to be transactional or not, and that selection is fixed

476 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

for the life of the queue. Nontransactional queues do not offer any of the benefits of
transactional messaging systems, such as auto-cancellation, guaranteed delivery, and
auto-retries. When using a nontransactional queue, if the client transaction aborts, the
message or messages will stay in the queue and be delivered to the service. If the play-
back transaction aborts, the messages will be lost.

As inadvisable as it is, WCF can work with nontransactional queues. MsmqBinding
Base (the base class of NetMsmqBinding) offers the two Boolean properties Durable and
ExactlyOnce, and these properties default to true:

public abstract class MsmqBindingBase : Binding,...
{
 public bool Durable
 {get;set;}
 public bool ExactlyOnce
 {get;set;}
 //More members
}
public class NetMsmqBinding : MsmqBindingBase
{...}

To work with a nontransactional queue, the ExactlyOnce property must be set to
false. This will enable you to work both with volatile and durable queues. However,
because of the lack of guaranteed delivery, when using a volatile queue WCF requires
that you set the ExactlyOnce property of the binding to false; otherwise, WCF will
throw an InvalidOperationException at the service load time. Consequently, here is a
consistent configuration for a volatile nontransactional queue:

<netMsmqBinding>
 <binding name = "VolatileQueue"
 durable = "false"
 exactlyOnce = "false"
 />
</netMsmqBinding>

Instance Management
The contract session mode and the service instance mode have a paramount effect on
the behavior of the queued calls, the way the calls are played back to the service, and
the overall program workflow and allowed assumptions. The MSMQ binding cannot
maintain a transport session in the connected sense, since the client is inherently dis-
connected. Instead, the equivalent MSMQ concept is called a sessiongram. If the con-
tract is configured with SessionMode.Allowed (the default) or SessionMode.NotAllowed,
there will be no sessiongram. Every call the client makes on the proxy will be converted
to a single WCF message, and those WCF messages will be placed in individual MSMQ
messages and posted to the queue. A client making two calls on the proxy will result
in two MSMQ messages. If the contract is configured with SessionMode.Required, all
the calls made by the client against the same proxy will be packaged in a single MSMQ
message, in the order in which they were made and posted to the queue. On the service

Instance Management | 477

Download from Library of Wow! eBook <www.wowebook.com>

side, WCF will play the calls from the MSMQ message in the order they were made
(like a recording) to the same service instance. This mode is therefore analogous to a
transport session and a sessionful service.

Per-Call Queued Services
In the case of a per-call service, the client has no way of knowing whether its calls will
eventually end up being played to a queued per-call service. All the client sees is the
session mode of the contract. If the session mode is either SessionMode.Allowed or
SessionMode.NotAllowed, there will be no sessiongram. In this case, regardless of
whether the service is configured as per-call or sessionful it will amount to the same
result: per-call processing and instantiation.

Nontransactional clients

When a client without an ambient transaction calls a sessiongram-less queued endpoint
(as in Example 9-11), the MSMQ messages generated for each call are posted to the
queue immediately after each call. If the client has an exception, the messages posted
up to that point are not rejected and are delivered to the service.

Example 9-11. Nontransactional client of a sessionless queued endpoint

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}
//Client code
using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Suppress))
{
 MyContractClient proxy = new MyContractClient();

 proxy.MyMethod(); //Message posts to queue here
 proxy.MyMethod(); //Message posts to queue here

 proxy.Close();
}

Transactional clients

With a transactional client (that is, client code with an ambient transaction) of a ses-
siongram-less queued endpoint (as in Example 9-12), the messages corresponding to
each call are posted to the queue only when the client’s transaction commits. If the
client transaction aborts, all of those messages are rejected from the queue and all calls
are canceled.

478 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Example 9-12. Transactional client of a sessionless queued endpoint

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}
//Client code
using(TransactionScope scope = new TransactionScope())
{
 MyContractClient proxy = new MyContractClient();

 proxy.MyMethod(); //Message written to queue
 proxy.MyMethod(); //Message written to queue

 proxy.Close();
 scope.Complete();
} //Messages committed to queue here

There is no relationship between the proxy and the ambient transaction. If the client
uses a transaction scope (as in Example 9-12), the client can close the proxy inside or
outside the scope and may continue to use the proxy even after the transaction ends,
or in a new transaction. The client may also close the proxy before or after the call to
Complete().

Per-call processing

On the host side, the queued calls are dispatched separately to the service, and each
call is played to a separate service instance. This is the case even if the service instance
mode is per-session. I therefore recommend that when using a sessiongram-less queued
contract, you should always explicitly configure the service as per-call and configure
the contract for disallowing sessions, to increase the readability of the code and clearly
convey your design decision:

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{...}

After each call the service instance is disposed of, just as with a connected per-call
service. The per-call service may or may not be transactional. If it is transactional and
the playback transaction is aborted, only that particular call is rolled back to the queue
for a retry. As you will see later, due to concurrent playback and WCF’s failure-handling
behavior, calls to a per-call queued service can execute and complete in any order, and
the client cannot make any assumptions about call ordering. Note that even calls dis-
patched by a transactional client may fail or succeed independently. Never assume
order of calls with a sessiongram-less queued service.

Instance Management | 479

Download from Library of Wow! eBook <www.wowebook.com>

Sessionful Queued Services
For sessionful queued services, the service contract must be configured with Session
Mode.Required:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{...}

class MyService : IMyContract
{...}

As mentioned previously, when the client queues up calls against a sessionful queued
endpoint, all calls made throughout the session are grouped into a single MSMQ mes-
sage. Once that single message is dispatched and played to the service, WCF creates a
new dedicated service instance to handle all the calls in the message. All calls in the
message are played back to that instance in their original order. After the last call, the
instance is disposed of automatically.

WCF will provide both the client and the service with a unique session ID. However,
the client session ID will be uncorrelated to that of the service. To approximate the
session semantic, all calls on the same instance on the host side will share the same
session ID.

Clients and transactions

In the case of a sessionful queued endpoint, the client must have an ambient transaction
in order to call the proxy. Nontransactional clients are disallowed and will result in an
InvalidOperationException:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}

using(TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Suppress))
{
 MyContractClient proxy = new MyContractClient();

 proxy.MyMethod(); //Throws InvalidOperationException
 proxy.MyMethod();

 proxy.Close();
}

480 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

For a transactional client, WCF posts a single message to the queue when the transac-
tion commits, and that single message is rejected from the queue if the transaction
aborts:

using(TransactionScope scope = new TransactionScope())
{
 MyContractClient proxy = new MyContractClient();

 proxy.MyMethod();
 proxy.MyMethod();

 proxy.Close(); //Finish composing message, writes to queue

 scope.Complete();
} //Single message committed to queue here

It is important to note that the single message prepared by the proxy must be posted
to the queue within the same client transaction—that is, the client must end the session
inside the transaction. If the client does not close the proxy before the transaction is
complete, the transaction will always abort:

MyContractClient proxy = new MyContractClient();
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 proxy.MyMethod();

 scope.Complete();
} //Transaction aborts
proxy.Close();

This is required to enforce the atomicity of the sessiongram. All the calls in the session
should either be posted to or rejected from the queue. If the client were to use the proxy
in a second transaction that could commit or abort independently of the first, the results
could be ambiguous or even dangerous.

An interesting side effect of this edict is that there is no point in storing a proxy to a
queued sessionful endpoint in a member variable, because that proxy can only be used
once in a single transaction and cannot be reused across client transactions.

Not only does the client have to close the proxy before the transaction ends, but when
using a transaction scope, the client must close the proxy before completing the trans-
action. The reason is that closing the proxy to a queue’s sessionful endpoint requires
accessing the current ambient transaction, which is not possible after calling
Complete(). Trying to do so results in an InvalidOperationException:

MyContractClient proxy = new MyContractClient();
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 proxy.MyMethod();

 scope.Complete();

Instance Management | 481

Download from Library of Wow! eBook <www.wowebook.com>

 proxy.Close(); //Transaction aborts
}

A corollary of this requirement is that you cannot stack using statements in any order,
because doing so may result in calling Dispose() in the wrong order (first on the scope,
and then on the proxy):

using(MyContractClient proxy = new MyContractClient())
using(TransactionScope scope = new TransactionScope())
{
 proxy.MyMethod();
 proxy.MyMethod();

 scope.Complete();

} //Transaction aborts

Services and transactions

A sessionful queued service must be configured to use transactions in all operations by
setting TransactionScopeRequired to true. Failing to do so will abort all playback trans-
actions. The service is required to have a transaction in every operation so that all the
calls in the session fail or succeed as one atomic operation (i.e., so that a failure in one
of the operations causes the entire queued session to fail). In addition, the transaction
must be the same transaction for all operations in the session. Partial success is impos-
sible here, because WCF cannot return only a portion of the MSMQ message back to
the queue after a failure of one of the operations but not the others. The service must
equate the session boundary with the transaction boundary. Do this by setting
TransactionAutoComplete to false on all operations and relaying on TransactionAuto
CompleteOnSessionClose to true. This will also have the added benefit of creating the
affinity to the same transaction in all operations.

Only a sessionful service can support a sessiongram contract, since only
a service configured with InstanceContextMode.PerSession can set
TransactionAutoComplete to false.

To further enforce this constraint, the service cannot rely on setting ReleaseServ
iceInstanceOnTransactionComplete to false in order to restore the instance semantics
while completing in each operation. Trying to do so will cause all queued sessions to
always abort.

Example 9-13 is a template for implementing a queued sessionful service.

Example 9-13. Implementing a sessionful queued service

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{

482 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationContract(IsOneWay = true)]
 void MyMethod1();

 [OperationContract(IsOneWay = true)]
 void MyMethod2();

 [OperationContract(IsOneWay = true)]
 void MyMethod3();
}

[ServiceBehavior(TransactionAutoCompleteOnSessionClose = true)]
class MyService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod1()
 {...}

 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod2()
 {...}

 [OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = false)]
 public void MyMethod3()
 {...}
}

Singleton Service
A queued singleton service can never have a session and can only implement sessionless
contracts. Configuring the SessionMode as either SessionMode.Allowed or Session
Mode.NotAllowed has the same result: a sessiongram-less interaction. Consequently, I
recommend always explicitly configuring the contracts of a queued singleton service
as sessionless:

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{...}
[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
class MyService : IMyContract
{...}

A nontransactional queued singleton service behaves like a regular WCF singleton as
far as instancing. Regardless of the way the clients use their proxies, individual calls on
the proxies are packaged into separate MSMQ messages and dispatched separately to
the singleton, as with a per-call service. However, unlike with a per-call service, all these
calls will be played back to the same single instance.

A transactional queued singleton, on the other hand, behaves by default like a per-call
service, because after every call that completes the transaction WCF will release the

Instance Management | 483

Download from Library of Wow! eBook <www.wowebook.com>

singleton instance. The only difference between a true per-call service and a singleton
is that WCF will allow at most a single instance of the singleton, regardless of the
number of queued messages. While you could apply the techniques described in Chap-
ter 7 to create a state-aware transactional singleton, you can also restore the singleton
semantic by setting the ReleaseServiceInstanceOnTransactionComplete property to
false and use volatile resource managers.

Example 9-14 shows a template for implementing a transactional queued singleton.

Example 9-14. Transactional queued singleton

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single,
 ReleaseServiceInstanceOnTransactionComplete = false)]
class MySingleton : IMyContract,IDisposable
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
 //More members
}

Calls and order

Because the calls are packaged into individual MSMQ messages, they may be played
to the singleton in any order (due to retries and transactions). In addition, calls may
complete in any order, and even calls dispatched by a transactional client may fail or
succeed independently. Never assume order of calls with a singleton.

Concurrency Management
As with a connected service, the ConcurrencyMode property governs concurrent playback
of queued messages. With a per-call service, all queued messages are played at once to
different instances as fast as they come off the queue, up to the limit of the configured
throttle. There is no need to configure for reentrancy to support callbacks, because the
operation contexts can never have callback references. There is also no need to con-
figure for multiple concurrent access, because no two messages will ever share an in-
stance. In short, with a queued per-call service, the concurrency mode is ignored.

When it comes to a sessionful queued service, you are required to configure the service
with ConcurrencyMode.Single. The reason is that it is the only concurrency mode that
allows you to turn off auto-completion, which is essential to maintain the session

484 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

semantic. The calls in the message are always played to the same service instance, one
at a time.

A queued singleton is really the only instancing mode that has any leeway with its
concurrency mode. If the singleton is configured with ConcurrencyMode.Single, WCF
will retrieve the messages all at once from the queue (up to the thread pool and throttling
limits) and then queue up the calls in the internal queue the context lock maintains.
Calls will be dispatched to the singleton one at a time. If the singleton is configured
with ConcurrencyMode.Multiple, WCF will retrieve the messages all at once from the
queue (up to the thread pool and throttling limits) and play them concurrently to the
singleton. Obviously, in that case the singleton must provide for synchronized access
to its state. If the singleton is also transactional, it is prone to transactional deadlocks
over prolonged isolation maintained throughout each transaction.

Throttling
Queued calls have a nasty side effect of excelling at turning a low level of load into a
high level of stress. Imagine an offline queued service that sustained relatively low load,
such as a call per minute for one day. Once the host is launched, WCF flushes the
queued calls (all 1,440 of them) to the service all at once, subjecting it to high stress.
The fact that there are over 1,000 messages in the queue does not mean that your design
supports 1,000 concurrent instances and calls.

Throttling a queued service is your way of controlling the stress on the service and
avoiding turning load into stress. The important value to throttle is the number of
concurrent playbacks. This is an effective way of throttling the number of played mes-
sages, because if the maximum number of concurrent calls is exceeded (overall stress),
the excess messages will stay in the queue. With a per-call service, the throttle controls
the overall number of allowed concurrent instances (and their implied resource con-
sumption). With a per-session service, the throttle controls the number of allowed
sessions. In the case of a queued singleton, you can combine a throttle value with
ConcurrencyMode.Multiple to control just how many concurrent players are allowed
(stress) and how many messages to keep in the queue (buffered load).

Delivery Failures
As discussed in Chapter 6, a connected call may fail due to either communication
failures or service-side errors. Similarly, a queued call can fail due to delivery failures
or service-side playback errors. WCF provides dedicated error-handling mechanisms
for both types of errors, and understanding them and integrating your error-handling
logic with them is an intrinsic part of using queued services.

Delivery Failures | 485

Download from Library of Wow! eBook <www.wowebook.com>

While MSMQ can guarantee delivery of a message if it is technically possible to do so,
there are multiple examples of when it is not possible to deliver the message. These
include but are not limited to:

Timeouts and expiration
As you will see shortly, each message has a timestamp, and the message has to be
delivered and processed within the configured timeout. Failure to do so will cause
the delivery to fail.

Security mismatches
If the security credentials in the message (or the chosen authentication mechanism
itself) do not match up with what the service expects, the service will reject the
message.

Transactional mismatches
The client cannot use a local nontransactional queue while posting a message to a
transactional service-side queue.

Network problems
If the underlying network fails or is simply unreliable, the message may never reach
the service.

Machine crashes
The service machine may crash due to software or hardware failures and will not
be able to accept the message to its queue.

Purges
Even if the message is delivered successfully, the administrator (or any application,
programmatically) can purge messages out of the queue and avoid having the serv-
ice process them.

Quota breaches
Each queue has a quota controlling the maximum amount of data it can hold. If
the quota is exceeded, future messages are rejected.

After every delivery failure, the message goes back to the client’s queue, where MSMQ
will continuously retry to deliver it. While in some cases, such as intermittent network
failures or quota issues, the retries may eventually succeed, there are many cases where
MSMQ will never succeed in delivering the message. In practical terms, a large enough
number of retry attempts may be unacceptable and may create a dangerous amount of
thrashing. Delivery-failure handling deals with how to let MSMQ know that it should
not retry forever, how many attempts it should make before giving up, how much time
can elapse before it gives up, and what it should do with the failed messages.

MsmqBindingBase offers a number of properties governing handling of delivery failures:

public abstract class MsmqBindingBase : Binding,...
{
 public TimeSpan TimeToLive
 {get;set;}

486 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

 //DLQ settings
 public Uri CustomDeadLetterQueue
 {get;set;}
 public DeadLetterQueue DeadLetterQueue
 {get;set;}

 //More members
}

The Dead-Letter Queue
In messaging systems, after an evident failure to deliver a message, that message goes
to a special queue called the dead-letter queue (DLQ). The DLQ is somewhat analogous
to a classic dead-letter mailbox at the main post office. In the context of this discussion,
failure to deliver constitutes not only failure to reach the service-side queue, but also
failure to commit the playback transaction. MSMQ on the client and on the service
side constantly acknowledge to each other receipt and processing of messages. If the
service-side MSMQ successfully receives and retrieves the message from the service-
side queue (that is, if the playback transaction committed), it sends a positive acknowl-
edgment (ACK) to the client-side MSMQ. The service-side MSMQ can also send a
negative acknowledgment (NACK) to the client. When the client-side MSMQ receives
a NACK, it posts the message to the DLQ. If the client-side MSMQ receives neither an
ACK nor a NACK, the message is considered in-doubt.

With MSMQ 3.0 (that is, on Windows XP and Windows Server 2003), the dead-letter
queue is a system-wide queue. All failed messages from any application go to this single
repository. With MSMQ 4.0 (that is, on Windows Vista, Windows Server 2008, and
Windows 7 or later), you can configure a service-specific DLQ where only messages
destined to that specific service go. Application-specific dead-letter queues grossly sim-
plify both the administrator’s and the developer’s work.

When dealing with a nondurable queue, failed nontransactional mes-
sages go to a special system-wide DLQ.

Time to Live
With MSMQ, each message carries a timestamp initialized when the message is first
posted to the client-side queue. In addition, every queued WCF message has a timeout,
controlled by the TimeToLive property of MsmqBindingBase. After posting a message to
the client-side queue, WCF mandates that the message must be delivered and processed
within the configured timeout. Note that successful delivery to the service-side queue
is not good enough—the call must be processed as well. The TimeToLive property is
therefore somewhat analogous to the SendTimeout property of the connected bindings.

Delivery Failures | 487

Download from Library of Wow! eBook <www.wowebook.com>

The TimeToLive property is relevant only to the posting client; it has no effect on the
service side, nor can the service change it. TimeToLive defaults to one day. After con-
tinuously trying and failing to deliver (and process) a message for as long as TimeTo
Live allows, MSMQ stops trying and moves the message to the configured DLQ.

You can configure the time-to-live value either programmatically or administratively.
For example, using a config file, here is how to configure a time to live of five minutes:

<bindings>
 <netMsmqBinding>
 <binding name = "ShortTimeout"
 timeToLive = "00:05:00"
 />
 </netMsmqBinding>
</bindings>

The main motivation for configuring a short timeout is when dealing with time-sensitive
calls that must be processed in a timely manner. However, time-sensitive queued calls
go against the grain of disconnected queued calls in general: the more time-sensitive
the calls are, the more questionable the use of queued services is in the first place. The
correct way of viewing time to live is as a last-resort heuristic used to eventually bring
to the attention of the administrator the fact that the message was not delivered, not
as a way to enforce business-level interpretation of the message’s sensitivity.

Configuring the Dead-Letter Queue
MsmqBindingBase offers the DeadLetterQueue property, of the enum type DeadLetter
Queue:

public enum DeadLetterQueue
{
 None,
 System,
 Custom
}

When DeadLetterQueue is set to DeadLetterQueue.None, WCF makes no use of a dead-
letter queue. After a failure to deliver, WCF silently discards the message as if the call
never happened. DeadLetterQueue.System is the default value of the property. As its
name implies, it uses the system-wide DLQ: after a delivery failure, WCF moves the
message from the client-side queue to the system-wide DLQ.

The system-wide DLQ is a transactional queue, so you must have the
ExactlyOnce binding property set to its default value of true and the
Durable property set to its default value of true.

When DeadLetterQueue is set to DeadLetterQueue.Custom, the application can take ad-
vantage of a dedicated DLQ. DeadLetterQueue.Custom requires the use of MSMQ 4.0,

488 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

and WCF verifies that at the call time. In addition, WCF requires that the application
specify the custom DLQ address in the CustomDeadLetterQueue property of the binding.
The default value of CustomDeadLetterQueue is null, but when DeadLetterQueue.
Custom is employed, CustomDeadLetterQueue cannot be null:

<netMsmqBinding>
 <binding name = "CustomDLQ"
 deadLetterQueue = "Custom"
 customDeadLetterQueue = "net.msmq://localhost/private/MyCustomDLQ">
 </binding>
</netMsmqBinding>

Conversely, when the DeadLetterQueue property is set to any other value besides Dead
LetterQueue.Custom, then CustomDeadLetterQueue must be null.

It is important to realize that the custom DLQ is just another MSMQ queue. It is up to
the client-side developer to also deploy a DLQ service that processes its messages. All
WCF does on MSMQ 4.0 is automate the act of moving the message to the DLQ once
a failure is detected.

Custom DLQ verification

If a custom DLQ is required, as with any other queue, the client should verify at runtime
(before issuing queued calls) that the custom DLQ exists and, if necessary, create it.
Following the pattern presented previously, you can automate and encapsulate this
with the ServiceEndpoint extension method VerifyQueue() of QueuedServiceHelper,
shown in Example 9-15.

Example 9-15. Verifying a custom DLQ

public static class QueuedServiceHelper
{
 public static void VerifyQueue(this ServiceEndpoint endpoint)
 {
 if(endpoint.Binding is NetMsmqBinding)
 {
 string queue = GetQueueFromUri(endpoint.Address.Uri);
 if(MessageQueue.Exists(queue) == false)
 {
 MessageQueue.Create(queue,true);
 }
 NetMsmqBinding binding = endpoint.Binding as NetMsmqBinding;
 if(binding.DeadLetterQueue == DeadLetterQueue.Custom)
 {
 Debug.Assert(binding.CustomDeadLetterQueue != null);
 string DLQ = GetQueueFromUri(binding.CustomDeadLetterQueue);
 if(MessageQueue.Exists(DLQ) == false)
 {
 MessageQueue.Create(DLQ,true);
 }
 }
 }
 }

Delivery Failures | 489

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

Processing the Dead-Letter Queue
The client needs to somehow process the accumulated messages in the DLQ. In the
case of the system-wide DLQ, the client can provide a mega-service that supports all
contracts of all queued endpoints on the system to enable it to process all failed mes-
sages. This is clearly an impractical idea, though, because that service could not possibly
know about all queued contracts, let alone provide meaningful processing for all ap-
plications. The only feasible way to make this solution work would be to restrict the
client side to at most a single queued service per system. Alternatively, you can write a
custom application for direct administration and manipulation of the system DLQ
using the types in System.Messaging. That application will parse and extract the relevant
messages and process them. The problem with that approach (besides the inordinate
amount of work involved) is that if the messages are protected and encrypted (as they
should be), the application will have a hard time dealing with and distinguishing be-
tween them. In practical terms, the only possible solution for a general client-side en-
vironment is the one offered by MSMQ 4.0: a custom DLQ. When using a custom
DLQ, you also provide a client-side service whose queue is the application’s custom
DLQ. That service will process the failed messages according to the application-specific
requirements.

Defining the DLQ service

Implementing the DLQ service is done like any other queued service. The only re-
quirement is that the DLQ service be polymorphic with the original service’s contract.
If multiple queued endpoints are involved, you will need a DLQ per contract per end-
point. Example 9-16 shows a possible setup.

Example 9-16. DLQ service config file

<!-- Client side -->
<system.serviceModel>
 <client>
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue"
 binding = "netMsmqBinding"
 bindingConfiguration = "MyCustomDLQ"
 contract = "IMyContract"
 />
 </client>
 <bindings>
 <netMsmqBinding>
 <binding name = "MyCustomDLQ"
 deadLetterQueue = "Custom"
 customDeadLetterQueue = "net.msmq://localhost/private/MyCustomDLQ">
 </binding>
 </netMsmqBinding>

490 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

 </bindings>
</system.serviceModel>

<!-- DLQ service side -->
<system.serviceModel>
 <services>
 <service name = "MyDLQService">
 <endpoint
 address = "net.msmq://localhost/private/MyCustomDLQ"
 binding = "netMsmqBinding"
 contract = "IMyContract"
 />
 </service>
 </services>
</system.serviceModel>

The client config file defines a queued endpoint with the IMyContract contract. The
client uses a custom binding section to define the address of the custom DLQ. A sep-
arate queued service (potentially on a separate machine) also supports the
IMyContract contract. The DLQ service uses as its address the DLQ defined by the
client.

Failure properties

The DLQ service typically needs to know why the queued call delivery failed. WCF
therefore offers the MsmqMessageProperty class, used to find out the cause of the failure
and the current status of the message. MsmqMessageProperty is defined in the
System.ServiceModel.Channels namespace:

public sealed class MsmqMessageProperty
{
 public const string Name = "MsmqMessageProperty";

 public int AbortCount
 {get;}
 public DeliveryFailure? DeliveryFailure
 {get;}
 public DeliveryStatus? DeliveryStatus
 {get;}
 public int MoveCount
 {get;}
 //More members
}

The DLQ service needs to obtain the MsmqMessageProperty from the operation context’s
incoming message properties:

public sealed class OperationContext : ...
{
 public MessageProperties IncomingMessageProperties
 {get;}
 //More members
}
public sealed class MessageProperties : IDictionary<string,object>,...

Delivery Failures | 491

Download from Library of Wow! eBook <www.wowebook.com>

{
 public object this[string name]
 {get;set;}
 //More members
}

When a message is passed to the DLQ, WCF will add to its properties an instance of
MsmqMessageProperty detailing the failure. MessageProperties is merely a collection of
message properties that you can access using a string as a key. To obtain the
MsmqMessageProperty, use the constant MsmqMessageProperty.Name, as shown in
Example 9-17.

Example 9-17. Obtaining the MsmqMessageProperty

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod(string someValue);
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyDLQService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 MsmqMessageProperty msmqProperty = OperationContext.Current.
 IncomingMessageProperties[MsmqMessageProperty.Name] as MsmqMessageProperty;

 Debug.Assert(msmqProperty != null);
 //Process msmqProperty
 }
}

Note in Example 9-17 the use of the practices discussed so far for configuring the session
mode, instance management, and transactions—the DLQ service is, after all, just an-
other queued service.

The properties of MsmqMessageProperty detail the reasons for failure and offer some
contextual information. MoveCount is the number of attempts made to play the message
to the service, and AbortCount is the number of attempts made to read the message from
the queue. AbortCount is less relevant to recovery attempts, because it falls under the
responsibility of MSMQ and usually is of no concern. DeliveryStatus is a nullable enum
of the type DeliveryStatus, defined as:

public enum DeliveryStatus
{
 InDoubt,
 NotDelivered
}

When a regular WCF queued service processes a delivered call, DeliveryStatus is set
to null. With a DLQ service, DeliveryStatus will be set to DeliveryStatus.InDoubt

492 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

unless the message was positively not delivered (i.e., a NACK was received). For ex-
ample, expired messages are considered in-doubt because their time to live elapsed
before the service could acknowledge them one way or the other.

The DeliveryFailure property is a nullable enum of the type DeliveryFailure, defined
as follows (without the specific numerical values):

public enum DeliveryFailure
{
 AccessDenied,
 NotTransactionalMessage,
 Purged,
 QueueExceedMaximumSize,
 ReachQueueTimeout,
 ReceiveTimeout,
 Unknown
 //More members
}

When a regular WCF queued service processes a queued call and access
MsmqMessageProperty, both DeliveryStatus and DeliveryFailure are set
to null.

Implementing a DLQ service

The DLQ service cannot affect a message’s properties (for example, extending its time
to live). Handling of delivery failures typically involves some kind of compensating
workflow: notifying the administrator; trying to resend a new message, or resending a
new request with extended timeout; logging the error; or perhaps doing nothing (i.e.,
merely processing the failed call and returning, thus discarding the message).

Example 9-18 demonstrates a possible DLQ service implementation.

Example 9-18. Implementing a DLQ service

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyDLQService : IMyContract
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod(string someValue)
 {
 MsmqMessageProperty msmqProperty = OperationContext.Current.
 IncomingMessageProperties[MsmqMessageProperty.Name] as MsmqMessageProperty;
 //If tried more than 25 times: discard message
 if(msmqProperty.MoveCount >= 25)
 {
 return;
 }
 //If timed out: try again
 if(msmqProperty.DeliveryStatus == DeliveryStatus.InDoubt)
 {
 if(msmqProperty.DeliveryFailure == DeliveryFailure.ReceiveTimeout)

Delivery Failures | 493

Download from Library of Wow! eBook <www.wowebook.com>

 {
 MyContractClient proxy = new MyContractClient();
 proxy.MyMethod(someValue);
 proxy.Close();
 }
 return;
 }
 if(msmqProperty.DeliveryStatus == DeliveryStatus.InDoubt ||
 msmqProperty.DeliveryFailure == DeliveryFailure.Unknown)
 {
 NotifyAdmin();
 }
 }
 void NotifyAdmin()
 {...}
}

The DLQ service in Example 9-18 examines the cause of the failure. If WCF has tried
more than 25 times to deliver the message, the DLQ service simply gives up and drops
the message. If the cause for the failure was a timeout, the DLQ service tries again by
creating a proxy to the queued service and calling it, passing the same arguments from
the original call (the in-parameters to the DLQ service operation). If the message is in-
doubt or an unknown failure took place, the service notifies the application
administrator.

Playback Failures
Even after successful delivery, a message may still fail during playback to the service.
Such failures typically abort the playback transaction, which causes the message to
return to the service queue. WCF will then detect the message in the queue and retry.
If the next call fails too, the message will go back to the queue again, and so on. Con-
tinuously retrying this way is often unacceptable. If the initial motivation for the queued
service was load leveling, WCF’s auto-retry behavior will generate considerable stress
on the service. You need a smart failure-handling schema that deals with the case when
the call never succeeds (and, of course, defines “never” in practical terms). The failure
handling will determine after how many attempts to give up, after how long to give up,
and even the interval at which to try. Different systems need different retry strategies
and have different sensitivity to the additional thrashing and probability of success. For
example, retrying 10 times with a single retry once every hour is not the same strategy
as retrying 10 times at 1-minute intervals, or the same as retrying 5 times, with each
attempt consisting of a batch of 2 successive retries separated by a day. In general, it is
better to hedge your bets on the causes for the failure and the probability of future
success by retrying in a series of batches, to deal with sporadic and intermediate infra-
structure issues as well as fluctuating application state. A series of batches, each batch
comprised of a set number of retries in rapid succession, may just be able to catch the
system in a state that will allow the call to succeed. If it doesn’t, deferring some of the
retries to a future batch allows the system some time to recuperate. Additionally, once

494 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

you have given up on retries, what should you do with the failed message, and what
should you acknowledge to its sender?

Poison Messages
Transactional messaging systems are inherently susceptible to repeated failure, because
the retries thrashing can bring the system to its knees. Messages that continuously fail
playbacks are referred to as poison messages, because they literally poison the system
with futile retries. Transactional messaging systems must actively detect and eliminate
poison messages. Since there is no telling whether just one more retry might actually
succeed, you can use the following simple heuristic: all things being equal, the more
the message fails, the higher the likelihood is of it failing again. For example, if the
message has failed just once, retrying seems reasonable. But if the message has already
failed 1,000 times, it is very likely it will fail again the 1,001st time, so it is pointless to
try again. In this case, the message should be deemed a poison message. What exactly
constitutes “pointless” (or just wasteful) is obviously application-specific, but it is a
configurable decision. MsmqBindingBase offers a number of properties governing the
handling of playback failures:

public abstract class MsmqBindingBase : Binding,...
{
 //Poison message handling
 public int ReceiveRetryCount
 {get;set;}

 public int MaxRetryCycles
 {get;set;}

 public TimeSpan RetryCycleDelay
 {get;set;}

 public ReceiveErrorHandling ReceiveErrorHandling
 {get;set;}

 //More members
}

Poison Message Handling in MSMQ 4.0
With MSMQ 4.0 (available on Windows Vista, Windows Server 2008, and Windows
7 or later), WCF retries playing back a failed message in series of batches, for the rea-
soning just presented. WCF provides each queued endpoint with a retry queue and an
optional poison messages queue. After all the calls in the batch have failed, the message
does not return to the endpoint queue. Instead, it goes to the retry queue (WCF will
create that queue on the fly). Once the message is deemed poisonous, you may have
WCF move that message to the poison queue.

Playback Failures | 495

Download from Library of Wow! eBook <www.wowebook.com>

Retry batches

In each batch, WCF will immediately retry for ReceiveRetryCount times after the first
call failure. ReceiveRetryCount defaults to five retries, or a total of six attempts, includ-
ing the first attempt. After a batch has failed, the message goes to the retry queue. After
a delay of RetryCycleDelay minutes, the message is moved from the retry queue to the
endpoint queue for another retry batch. The retry delay defaults to 30 minutes. Once
that batch fails, the message goes back to the retry queue, where it will be tried again
after the delay has expired. Obviously, this cannot go on indefinitely. The
MaxRetryCycles property controls how many batches at the most to try. The default
of MaxRetryCycles is two cycles only, resulting in three batches in total. After
MaxRetryCycles number of retry batches, the message is considered a poison message.

When configuring nondefault values for MaxRetryCycles, I recommend setting its value
in direct proportion to RetryCycleDelay. The reason is that the longer the delay is, the
more tolerant your system will be of additional retry batches, because the overall stress
will be somewhat mitigated (having been spread over a longer period of time). With a
short RetryCycleDelay you should minimize the number of allowed batches, because
you are trying to avoid approximating continuous thrashing.

Finally, the ReceiveErrorHandling property governs what to do after the last retry fails
and the message is deemed poisonous. The property is of the enum type
ReceiveErrorHandling, defined as:

public enum ReceiveErrorHandling
{
 Fault,
 Drop,
 Reject,
 Move
}

ReceiveErrorHandling.Fault

The Fault value considers the poison message as a catastrophic failure and actively
faults the MSMQ channel and the service host. Doing so prevents the service from
processing any other messages, be they from a queued client or a regular connected
client. The poison message will remain in the endpoint queue and must be removed
from it explicitly by the administrator or by some compensating logic, since WCF will
refuse to process it again if you merely restart the host. In order to continue processing
client calls of any sort, you must open a new host (after you have removed the poison
message from the queue). While you could install an error-handling extension (as dis-
cussed in Chapter 6) to do some of that work, in practice there is no avoiding involving
the application administrator.

496 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

ReceiveErrorHandling.Fault is the default value of the ReceiveErrorHandling property.
With this setting, no acknowledgment of any sort is sent to the sender of the poison
message. ReceiveErrorHandling.Fault is both the most conservative poison message
strategy and the least useful from the system perspective, since it amounts to a
stalemate.

ReceiveErrorHandling.Drop

The Drop value, as its name implies, silently ignores the poison message by dropping it
and having the service keep processing other messages. You should configure for
ReceiveErrorHandling.Drop if you have high tolerance for both errors and retries. If the
message is not crucial (i.e., it is used to invoke a nice-to-have operation), dropping and
continuing is acceptable. In addition, while ReceiveErrorHandling.Drop does allow for
retries, conceptually you should not have too many retries—if you care that much about
the message succeeding, you should not just drop it after the last failure.

Configuring for ReceiveErrorHandling.Drop also sends an ACK to the sender, so from
the sender’s perspective, the message was delivered and processed successfully. For
many applications, ReceiveErrorHandling.Drop is an adequate choice.

ReceiveErrorHandling.Reject

The ReceiveErrorHandling.Reject value actively rejects the poison message and refuses
to have anything to do with it. Similar to ReceiveErrorHandling.Drop, it drops the mes-
sage, but it also sends a NACK to the sender, thus signaling ultimate delivery and
processing failure. The sender responds by moving the message to the sender’s dead-
letter queue. ReceiveErrorHandling.Reject is a consistent, defensive, and adequate op-
tion for the vast majority of applications (yet it is not the default, to accommodate
MSMQ 3.0 systems as well).

ReceiveErrorHandling.Move

The ReceiveErrorHandling.Move value is the advanced option for services that wish
to defer judgment on the failed message to a dedicated third party.
ReceiveErrorHandling.Move moves the message to the dedicated poison messages
queue, and it does not send back an ACK or a NACK. Acknowledging processing of
the message will be done after it is processed from the poison messages queue. While
ReceiveErrorHandling.Move is a great choice if indeed you have some additional error
recovery or compensation workflow to execute in case of a poison message, a relatively
smaller set of applications will find it useful, due to its increased complexity and inti-
mate integration with the system.

Playback Failures | 497

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Configuration sample

Example 9-19 shows a configuration section from a host config file, configuring poison
message handling on MSMQ 4.0.

Example 9-19. Poison message handling on MSMQ 4.0

<bindings>
 <netMsmqBinding>
 <binding name = "PoisonMessageHandling"
 receiveRetryCount = "2"
 retryCycleDelay = "00:05:00"
 maxRetryCycles = "2"
 receiveErrorHandling = "Move"
 />
 </netMsmqBinding>
</bindings>

Figure 9-9 illustrates graphically the resulting behavior in the case of a poison message.

Figure 9-9. Poison message handling of Example 9-19

Poison message service

Your service can provide a dedicated poison message–handling service to handle mes-
sages posted to its poison messages queue when the binding is configured with
ReceiveErrorHandling.Move. The poison message service must be polymorphic with the
service’s queued endpoint contract. WCF will retrieve the poison message from the
poison queue and play it to the poison service. It is therefore important that the poison
service does not throw unhandled exceptions or abort the playback transaction (con-
figuring it to ignore the playback transaction, as in Example 9-9, or to use a new trans-
action, as in Example 9-10, is a good idea). Such a poison message service typically
engages in some kind of compensating work associated with the failed message, such
as refunding a customer for a missing item in the inventory. Alternatively, a poison
service could do any number of things, including notifying the administrator, logging
the error, or just ignoring the message altogether by simply returning.

498 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

The poison message service is developed and configured like any other queued service.
The only difference is that the endpoint address must be the same as the original end-
point address, suffixed by ;poison. Example 9-20 demonstrates the required configu-
ration of a service and its poison message service. In Example 9-20, the service and its
poison message service share the same host process, but that is certainly optional.

Example 9-20. Configuring a poison message service

<system.serviceModel>
 <services>
 <service name = "MyService">
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue"
 binding = "netMsmqBinding"
 bindingConfiguration = "PoisonMesssageSettings"
 contract = "IMyContract"
 />
 </service>
 <service name = "MyPoisonServiceMessageHandler">
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue;poison"
 binding = "netMsmqBinding"
 contract = "IMyContract"
 />
 </service>
 </services>
 <bindings>
 <netMsmqBinding>
 <binding name = "PoisonMesssageSettings"
 receiveRetryCount = "..."
 retryCycleDelay = "..."
 maxRetryCycles = "..."
 receiveErrorHandling = "Move"
 />
 </netMsmqBinding>
 </bindings>
</system.serviceModel>

Playback Failures | 499

Download from Library of Wow! eBook <www.wowebook.com>

Receive Context
As mentioned at the beginning of this chapter, you should avoid having two or more
service endpoints monitoring the same queue, since this will result in them processing
each other’s messages. You may be tempted, however, to leverage this behavior as a
load balancing of sort: you can deploy your service on multiple machines while having
all the machines share the same queue. The problem in this scenario is poison message
handling. It is possible for one service to return the message to the queue after an error
for a retry, and then have a second service start processing that message, not knowing
it was already tried or how many times. I believe the fundamental problem here is not
with load balancing queued calls and playback errors; rather, it is with the need to load
balance the queued calls in the first place. Load balancing is done in the interest of
scalability and throughput. Both scalability and throughput have a temporal quality—
they imply a time constraint on the level of performance of the service, and yet queued
calls, by their very nature, indicate that the client does not care exactly when the calls
execute.

Nonetheless, to enable multiple services to share a queue and manage playback errors,
WCF defines the helper class ReceiveContext, defined as:

public abstract class ReceiveContext
{
 public virtual void Abandon(TimeSpan timeout);
 public virtual void Complete(TimeSpan timeout);

 public static bool TryGet(Message message,
 out ReceiveContext property);
 public static bool TryGet(MessageProperties properties,
 out ReceiveContext property);
 //More members
}

You enable the use of ReceiveContext with the ReceiveContextEnabled attribute:

public sealed class ReceiveContextEnabledAttribute : Attribute,
 IOperationBehavior
{
 public bool ManualControl
 {get;set;}

 //More members
}

After a failure, you can use ReceiveContext to lock the message in the queue and prevent
other services from processing it. This, however, results in a cumbersome programming
model that is nowhere near as elegant as the transaction-driven queued services. I rec-
ommend you design the system so that you do not need to load balance your queued
services and that you avoid ReceiveContext altogether.

500 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Poison Message Handling in MSMQ 3.0
With MSMQ 3.0 (available on Windows XP and Windows Server 2003), there is no
retry queue or optional poison queue. As a result, WCF supports at most a single retry
batch out of the original endpoint queue. After the last failure of the first batch, the
message is considered poisonous. WCF therefore behaves as if MaxRetryCycles is always
set to 0, and the value of RetryCycleDelay is ignored. The only values available
for the ReceiveErrorHandling property are ReceiveErrorHandling.Fault and
ReceiveErrorHandling.Drop. Configuring other values throws an InvalidOpera
tionException at the service load time.

Neither ReceiveErrorHandling.Fault nor ReceiveErrorHandling.Drop is
an attractive option. In MSMQ 3.0, the best way of dealing with a play-
back failure on the service side (that is, a failure that stems directly from
the service business logic, as opposed to some communication issue) is
to use a response service, as discussed later in this chapter.

Queued Versus Connected Calls
Although it is technically possible to use the same service code both connected and
queued (with simple changes such as configuring operations as one-way, or adding
another contract for the one-way operations), in reality it is unlikely that you will ac-
tually use the same service both ways. The reasons are similar to the arguments made
in the context of asynchronous calls, discussed in Chapter 8. Synchronous calls and
asynchronous calls addressing the same business scenario often have to use different
workflows, and these differences will necessitate changes to the service code to adapt
it for each case. The use of queued calls adds yet another barrier for using the same
service code (both connected and disconnected): changes to the transactional seman-
tics of the service. Consider, for example, Figure 9-10, which depicts an online store
application that uses connected calls only.

Figure 9-10. A connected application relies on a single transaction

Queued Versus Connected Calls | 501

Download from Library of Wow! eBook <www.wowebook.com>

The Store service uses three well-factored helper services to process the order: Order,
Shipment, and Billing. In the connected scenario, the Store service calls the Order serv-
ice to place the order. Only if the Order service succeeds in processing the order (that
is, if the item is available in the inventory) does the Store service call the Shipment
service, and only if the Shipment service succeeds does the Store service access the
Billing service to bill the customer. The connected case involves exactly one transac-
tion created by the client, and all operations commit or abort as one atomic operation.
Now, suppose the Billing service also exposes a queued endpoint for the use of the
Store service, as shown in Figure 9-11.

Figure 9-11. A disconnected application relies on multiple transactions

The queued call to the Billing service will be played to the service in a separate trans-
action from that of the rest of the store, and it could commit or abort separately from
the transaction that groups Order and Shipment. This, in turn, could jeopardize the
system’s consistency, so you must include some logic in the Billing service to detect
the failure of the other service and to initiate some compensating logic in the event that
it fails to do its work. As a result, the Billing service will no longer be the same service
used in the connected case.

Requiring Queuing
Since not every service can be connected and queued, and since some services may be
designed for a particular option and only that option, WCF lets you constrain a service’s
communication pattern. The DeliveryRequirements attribute presented in Chapter 1
also lets you insist on queued or connected delivery of messages to the service:

public enum QueuedDeliveryRequirementsMode
{
 Allowed,
 Required,
 NotAllowed
}

502 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

[AttributeUsage(AttributeTargets.Interface|AttributeTargets.Class,
 AllowMultiple = true)]
public sealed class DeliveryRequirementsAttribute : Attribute,...
{
 public QueuedDeliveryRequirementsMode QueuedDeliveryRequirements
 {get;set;}
 public bool RequireOrderedDelivery
 {get;set;}
 public Type TargetContract
 {get;set;}
}

This attribute can be used to constrain a contract (and all its supporting endpoints) or
a particular service type. The default value of the QueuedDeliveryRequirements property
is QueuedDeliveryRequirementsMode.Allowed, so these definitions are equivalent:

[ServiceContract]
interface IMyContract
{...}

[ServiceContract]
[DeliveryRequirements]
interface IMyContract
{...}

[ServiceContract]
[DeliveryRequirements(QueuedDeliveryRequirements =
 QueuedDeliveryRequirementsMode.Allowed)]
interface IMyContract
{...}

QueuedDeliveryRequirementsMode.Allowed grants permission for using the contract or
the service with either connected or queued calls. QueuedDeliveryRequirements
Mode.NotAllowed explicitly disallows the use of the MSMQ binding, so all calls on
the endpoint must be connected calls. Use this value when the contract or the
service is explicitly designed to be used in a connected fashion only.
QueuedDeliveryRequirementsMode.Required is the opposite: it mandates the use of the
MSMQ binding on the endpoint, and it should be used when the contract or the service
is designed from the ground up to be queued.

Even though the DeliveryRequirements attribute offers the RequireOrderedDelivery
property (discussed in Chapter 1), if QueuedDeliveryRequirementsMode.Required is used,
then RequireOrderedDelivery must be false, because queued calls inherently are un-
ordered and messages may be played back in any order.

When the DeliveryRequirements attribute is applied on an interface, it affects all services
that expose endpoints with that contract:

[ServiceContract]
[DeliveryRequirements(QueuedDeliveryRequirements =
 QueuedDeliveryRequirementsMode.Required)]
interface IMyQueuedContract
{...}

Queued Versus Connected Calls | 503

Download from Library of Wow! eBook <www.wowebook.com>

The client as well can apply the DeliveryRequirements attribute on its copy of the service
contract.

When the DeliveryRequirements attribute is applied on a service class, it affects all
endpoints of that service:

[DeliveryRequirements(QueuedDeliveryRequirements =
 QueuedDeliveryRequirementsMode.Required)]
class MyQueuedService : IMyQueuedContract,IMyOtherContract
{...}

When applied on a service class while using the TargetContract property, the attribute
affects all endpoints of the service that expose the specified contract:

[DeliveryRequirements(TargetContract = typeof(IMyQueuedContract),
 QueuedDeliveryRequirements =
 QueuedDeliveryRequirementsMode.Required)]
class MyService : IMyQueuedContract,IMyOtherContract
{...}

The Response Service
The programming model of queued calls described so far was one-sided: the client
posted a one-way message to a queue, and the service processed that message. This
model is sufficient when the queued operations are one-way calls by nature. However,
the queued service may need to report back to its client on the result of the invocation,
or return results or even errors. By default, this is not possible: WCF equates queued
calls with one-way calls, which inherently forbids any such response. In addition,
queued services (and their clients) are potentially disconnected. If a client posts a
queued call to a disconnected service, by the time the service finally gets the message
and processes it, there may no longer be a client to return the values to. The solution
is to have the service report back to a client-provided queued service. I call such a service
a response service.* Figure 9-12 shows the architecture of such a solution.

The response service is just another queued service in the system. The response service
may be disconnected toward the client as well, or it may share the client’s process, or
it may be hosted in a separate process or even on a separate machine. If the response
service shares the client’s process, when the client is launched the response service will
start processing the queued responses. Having the response service in a separate process
(or even on a separate machine) from the client’s helps to further decouple lifeline-wise
the response service from the client or clients that use it.

Not all queued services require a response service. Be pragmatic, and
use a response service only where appropriate; that is, where it adds the
most value.

* I first published my initial technique for a response service in the February 2007 issue of MSDN Magazine.

504 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Designing a Response Service Contract
As with any WCF service, the client and the service need to agree beforehand on the
response contract and what it will be used for; that is, whether it will be used for re-
turned values and error information, or just returned values. Note that you can also
split the response service into two services, and have one response service for results
and another for faults and errors. As an example, consider the ICalculator contract
implemented by the queued MyCalculator service:

[ServiceContract]
interface ICalculator
{
 [OperationContract(IsOneWay = true)]
 void Add(int number1,int number2);
 //More operations
}
class MyCalculator : ICalculator
{...}

The MyCalculator service is required to respond to its client with the result of the cal-
culation and report on any errors. The result of the calculation is an integer, and the
error is in the form of the ExceptionDetail data contract presented in Chapter 6. The
ICalculatorResponse contract could be defined as:

[ServiceContract]
interface ICalculatorResponse
{
 [OperationContract(IsOneWay = true)]
 void OnAddCompleted(int result,ExceptionDetail error);
 //More operations
}

Figure 9-12. A response service

The Response Service | 505

Download from Library of Wow! eBook <www.wowebook.com>

The response service supporting ICalculatorResponse needs to examine the returned
error information; notify the client application, the user, or the application adminis-
trator on the method completion; and make the results available to the interested par-
ties. Example 9-21 shows a simple response service that supports ICalculatorResponse.

Example 9-21. A simple response service

class MyCalculatorResponse : ICalculatorResponse
{
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 if(error != null)
 {
 //Handle error
 }
 else
 {
 MessageBox.Show("Result = " + result,"MyCalculatorResponse");
 }
 }

 //More operations
}

As demonstrated by Example 9-21, the response service is just that—a simple service.
There is nothing special about it other than its designation as a response service.

Response address and method ID

There are two immediate problems with the implementation of both MyCalculator and
MyCalculatorResponse. The first is that the same response service could be used to han-
dle the response (or completion) of multiple calls on multiple queued services, and yet,
as listed in Example 9-21, MyCalculatorResponse (and more importantly, the clients it
serves) has no way of distinguishing between responses. The solution for that is to have
the client that issued the original queued call tag the call by associating it with some
unique ID, or at least an ID that is unique enough across that client’s application. The
queued service MyCalculator needs to pass that ID to the response service
MyCalculatorResponse, so that it can apply its custom logic regarding that ID. Note that
the service typically has no direct use for the ID; all it needs to do is pass it along.

The second problem is how to enable the queued service to discover the address of the
response service. Unlike with duplex callbacks, there is no built-in support in WCF for
passing the response service’s reference to the queued service, so the queued service
needs to manually construct a proxy to the response service and invoke the operations
of the response contract. While the response contract is decided upon at design time,
and the binding is always NetMsmqBinding, the queued service lacks the address of the
response service to be able to respond. You could place that address in the service host
config file (in a client section) but such a course of action is to be avoided. The main

506 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

reason is that the same queued service could be called by multiple clients, each with its
own dedicated response service and address.

One possible solution is to explicitly pass both the client-managed ID and the desired
response service address as parameters to every operation on the queued service
contract:

[ServiceContract]
interface ICalculator
{
 [OperationContract(IsOneWay = true)]
 void Add(int number1,int number2,string responseAddress,string methodId);
}

Much the same way, the queued service could explicitly pass the method ID to the
response service as a parameter to every operation on the queued response contract:

[ServiceContract]
interface ICalculatorResponse
{
 [OperationContract(IsOneWay = true)]
 void OnAddCompleted(int result,ExceptionDetail error,string methodId);
}

The ResponseContext class

While passing the address and the ID as explicit parameters would work, it does distort
the original contract, and it introduces plumbing-level parameters alongside business-
level parameters in the same operation. A better solution is to have the client store the
response address and operation ID in the outgoing message headers of the call. Using
the message headers this way is a general-purpose technique for passing out-of-band
information to the service (information that is otherwise not present in the service
contract). Appendix B explains in detail the use of the incoming and outgoing headers,
including the related techniques and supporting classes in ServiceModelEx.

Since the client needs to pass both the address and the method ID in the message
headers, a single primitive type parameter will not do. Instead, use my
ResponseContext class, defined in Example 9-22.

Example 9-22. The ResponseContext class

[DataContract]
public class ResponseContext
{
 [DataMember]
 public readonly string ResponseAddress;

 [DataMember]
 public readonly string FaultAddress;

 [DataMember]
 public readonly string MethodId;

The Response Service | 507

Download from Library of Wow! eBook <www.wowebook.com>

 public ResponseContext(string responseAddress,string methodId) :
 this(responseAddress,methodId,null)
 {}
 public ResponseContext(string responseAddress) : this(responseAddress,
 Guid.NewGuid().ToString())
 {}
 public ResponseContext(string responseAddress,string methodId,
 string faultAddress)
 {
 ResponseAddress = responseAddress;
 MethodId = methodId;
 FaultAddress = faultAddress;
 }

 public static ResponseContext Current
 {
 get
 {
 return GenericContext<ResponseContext>.Current.Value;
 }
 set
 {
 GenericContext<ResponseContext>.Current =
 new GenericContext<ResponseContext>(value);
 }
 }
 //More members
}

ResponseContext provides a place to store both the response address and the ID. In
addition, if the client wants to use a separate response service for faults,
ResponseContext provides a field for the fault response service address. (This chapter
makes no use of that feature.) The client is responsible for constructing an instance of
ResponseContext with a unique ID. While the client can supply that ID as a construction
parameter, the client can also use the constructor of ResponseContext, which takes just
the response address, and have that constructor generate a GUID for the ID. To
streamline the act of storing a ResponseContext instance in and retrieving it from the
headers, ResponseContext provides the Current property, which merely encapsulates
my GenericContext<T>. The client can provide an ID for each method call (even when
dealing with a sessionful queued service) by using a different instance of
ResponseContext for each call.

508 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Client-Side Programming
My HeaderClientBase<T,H> proxy base class (defined in Appendix B) is designed to
automate passing information in the headers from the client to the service:

public abstract class InterceptorClientBase<T> : ClientBase<T> where T : class
{
 protected virtual void PreInvoke(ref Message request)
 {}
 //More members
}
public abstract partial class HeaderClientBase<T,H> : InterceptorClientBase<T>
 where T : class
{
 public H Header
 {get;protected set;}

 public HeaderClientBase(H header);
 public HeaderClientBase(H header,string endpointName);

 //More members
}

However, when it comes to the response context, there are differences compared with
the raw headers management discussed in Appendix B: specifically, changing the con-
text (that is, the headers) on each call as opposed to setting it only at construction time,
generating method IDs and providing them to the client, and enqueuing rather than
merely invoking the service call. While the client can easily use my HeaderClient
Base<T,H> to do all that, all clients will have to repeat such code for every contract and
proxy they have. It is better to automate and encapsulate these steps in a dedicated
proxy base class such as my ClientResponseBase<T>, shown in Example 9-23.

Example 9-23. The ClientResponseBase<T> class

public abstract class ClientResponseBase<T> :
 HeaderClientBase<T,ResponseContext> where T : class
{
 protected readonly string ResponseAddress;

 public ClientResponseBase(string responseAddress)
 {
 ResponseAddress = responseAddress;
 Endpoint.VerifyQueue();
 }
 public ClientResponseBase(string responseAddress,string endpointName)
 {...}
 public ClientResponseBase(string responseAddress,
 NetMsmqBinding binding,EndpointAddress address)
 {...}

The Response Service | 509

Download from Library of Wow! eBook <www.wowebook.com>

 /* More constructors */

 protected override void PreInvoke(ref Message request)
 {
 string methodId = GenerateMethodId();
 Header = new ResponseContext(ResponseAddress,methodId);
 base.PreInvoke(ref request);
 }
 protected virtual string GenerateMethodId()
 {
 return Guid.NewGuid().ToString();
 }
}

The constructors of ClientResponseBase<T> accept the response address and the regular
proxy parameters, such as the endpoint name, address, and binding. The constructors
store the response address in the read-only public field ResponseAddress. In addition,
the constructors use the VerifyQueue() endpoint extension method to verify that the
service queue (and the DLQ) exists and to create it if necessary.

ClientResponseBase<T> provides the virtual GenerateMethodId() method, which by de-
fault uses a GUID for the method ID. However, your subclasses of ClientResponse
Base<T> can override it and provide their own unique strings, such as an incremented
integer.

The heart of ClientResponseBase<T> is the overridden PreInvoke() method.
PreInvoke() is defined as virtual in the InterceptorClientBase<T> base class of Header
ClientBase<T,H>. InterceptorClientBase<T> is part of a generic interception framework
I wrote (defined in Appendix E) that enables you to perform custom pre-call and post-
call interception steps. For every operation invoked by the client, PreInvoke() generates
a new method ID, provides it to a new ResponseContext object (along with the response
address supplied to the constructor), and assigns the new ResponseContext object to
the Header property of HeaderClientBase<T,H>. Thanks to generics, Header is of the type
ResponseContext.

Using ClientResponseBase<T>

You use ClientResponseBase<T> like a regular proxy; for example, given this calculator
contract:

[ServiceContract]
interface ICalculator
{
 [OperationContract(IsOneWay = true)]
 void Add(int number1,int number2);
 //More operations
}

Example 9-24 shows the matching service proxy.

510 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Example 9-24. Deriving from ClientResponseBase<T>
class CalculatorClient : ClientResponseBase<ICalculator>,ICalculator
{
 public CalculatorClient(string responseAddress) : base(responseAddress)
 {}
 public CalculatorClient(string responseAddress,string endpointName) :
 base(responseAddress,endpointName)
 {}
 public CalculatorClient(string responseAddress,
 NetMsmqBinding binding,EndpointAddress address) :
 base(responseAddress,binding,address)
 {}
 //More constructors

 public void Add(int number1,int number2)
 {
 Channel.Add(number1,number2);
 }

 //More operations
}

Using the proxy in Example 9-24 yields this straightforward client code:

string responseAddress = "net.msmq://localhost/private/MyCalculatorResponseQueue";

CalculatorClient proxy = new CalculatorClient(responseAddress);
proxy.Add(2,3);
proxy.Close();

Note how closely the client that provides the response address to the proxy corresponds
to a client that provides a duplex callback object to a proxy (as demonstrated in Chap-
ter 5). In the queued services world, the response service address is the equivalent
callback reference.

A queued response service is not limited to being used only with a
queued service. You can use the same technique to pass the address and
method ID to a connected service and have that service respond to a
client-provided queued response service. You will need to rework
ClientResponseBase<T> so that it uses only Binding.

When managing the responses on the client side using a ClientResponseBase<T>-derived
proxy, it is often very handy to have the invoking client obtain the method ID used to
dispatch the call. You can do this easily with the Header property:

CalculatorClient proxy = new CalculatorClient(responseAddress);
proxy.Add(2,3);
string methodId = proxy.Header.MethodId;
proxy.Close();

The Response Service | 511

Download from Library of Wow! eBook <www.wowebook.com>

Queued Service-Side Programming
The service needs to construct a proxy that will dispatch messages to the client-side
response service. To simplify this, use my ServiceResponseBase<T>, defined as:

public abstract class ServiceResponseBase<T> : HeaderClientBase<T,ResponseContext>
 where T : class
{
 public ServiceResponseBase();
 public ServiceResponseBase(string bindingName);
 public ServiceResponseBase(NetMsmqBinding binding);
}

ServiceResponseBase<T> automates reading the response context from the message
headers and writing the response itself to the outgoing headers. Other than that, you
can use it like any other proxy base class. Example 9-25 demonstrates the usage of
ServiceResponseBase<T>.

Example 9-25. Using ServiceResponseBase<T>

class CalculatorResponseClient : ServiceResponseBase<ICalculatorResponse>,
 ICalculatorResponse
{
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 Channel.OnAddCompleted(result,error);
 }
}
class MyCalculator : ICalculator
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void Add(int number1,int number2)
 {
 int result = 0;
 ExceptionDetail error = null;

 try
 {
 result = number1 + number2;
 }
 //Don't rethrow
 catch(Exception exception)
 {
 error = new ExceptionDetail(exception);
 }
 finally
 {
 CalculatorResponseClient proxy = new CalculatorResponseClient();

 proxy.OnAddCompleted(result,error);

 proxy.Close();
 }
 }
}

512 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

In Example 9-25, the MyCalculator service catches any exception thrown by the busi-
ness logic operation and wraps that exception with an ExceptionDetail object. The
service does not rethrow the exception. As you will see later, in the context of trans-
actions and response services, rethrowing the exception would also cancel the response.
Moreover, when using a response service, being able to respond in case of an error is a
much better strategy than relying on WCF’s playback error handling.

In the finally statement, regardless of exceptions, the service responds. It creates a
new proxy to the response service to enqueue the response. The proxy in Exam-
ple 9-25 will default to using the same MSMQ binding as the host.

Example 9-26 shows the implementation of ServiceResponseBase<T>.

Example 9-26. Implementing ServiceResponseBase<T>

public abstract class ServiceResponseBase<T> : HeaderClientBase<T,ResponseContext>
 where T : class
{
 public ServiceResponseBase() : this(OperationContext.Current.Host.
 Description.Endpoints[0].Binding as NetMsmqBinding)
 {}
 public ServiceResponseBase(string bindingName) :
 this(new NetMsmqBinding(bindingName))
 {}

 public ServiceResponseBase(NetMsmqBinding binding) :
 base(ResponseContext.Current,binding,
 new EndpointAddress(ResponseContext.Current.ResponseAddress))
 {
 Endpoint.VerifyQueue();
 }
}

The default constructor of ServiceResponseBase<T> uses the same queued binding the
host was using to dequeue the client’s call. You can also specify an MSMQ binding
section in the config file or provide the constructor with the binding instance to use.
Both of these constructors delegate the work to the third constructor, which accepts
the MSMQ binding to use. That constructor reads the response address out of the
response context and provides those two along with the response context to the base
constructor of HeaderClientBase<T,H>. It also verifies the presence of the response
queue.

The Response Service | 513

Download from Library of Wow! eBook <www.wowebook.com>

Note that ServiceResponseBase<T> sends the response service the entire response con-
text (not just the ID). This is done both for simplicity’s sake and because it may be
beneficial for the response service to have access to the fault and response address used.

Response Service-Side Programming
The response service accesses its response context, reads from it the method ID, and
responds accordingly. Example 9-27 demonstrates a possible implementation of such
a response service.

Example 9-27. Implementing a response service

class MyCalculatorResponse : ICalculatorResponse
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 string methodId = ResponseContext.Current.MethodId;
 ...
 }
}

It is common for the response service to update the application’s user
interfaces with the queued results (or errors). Chapter 8 introduced my
FormHost<F> class, which you can certainly leverage to support the
queued response contract. For example:

class CalculatorResponse :
 FormHost<CalculatorResponse>,
 ICalculatorResponse
{
 [OperationBehavior(TransactionScopeRequired=true)]
 public void OnAddCompleted(int result,
 ExceptionDetail error)
 {
 Text = "Add returned: " + result;
 ...
 }
}

In fact, nothing prevents you from having the client itself be the response
service as well.

Transactions
A queued service typically queues up the response as part of the incoming playback
transaction. Given the queued service definition of Example 9-28, Figure 9-13 depicts
the resulting transaction and the participating actions.

514 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Example 9-28. Queuing up a response as part of the playback transaction
class MyCalculator : ICalculator
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void Add(int number1,int number2)
 {
 ...
 try
 {
 ...
 }
 catch //Do not rethrow
 {
 ...
 }
 finally
 {
 CalculatorResponseClient proxy = new CalculatorResponseClient();

 proxy.OnAddCompleted(result,error);

 proxy.Close();
 }
 }
}

Design-wise, the nice thing about having the queued call playback and the queued
response in the same transaction is that if the playback transaction is aborted for what-
ever reason (including due to other services in the transaction aborting), the response
is canceled automatically. This is by far the most common choice for most applications.

Note in Example 9-28 that the service catches all exceptions and does not rethrow them.
This is important, because any unhandled exception (or rethrown exception) will abort
the response, so there won’t be any point in the service bothering to respond. Using a

Figure 9-13. Queuing up in the playback transaction

The Response Service | 515

Download from Library of Wow! eBook <www.wowebook.com>

response service intrinsically means that the service does not rely on the automatic retry
mechanism of WCF, and it handles its own business logic failures because the clients
expect it to respond in a prescribed manner.

Using a new transaction

As an alternative to always having the response be part of the playback transaction, the
service can respond in a new transaction by encasing the response in a new transaction
scope, as shown in Example 9-29 and illustrated in Figure 9-14.

Example 9-29. Responding in a new transaction

class MyCalculator : ICalculator
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void Add(int number1,int number2)
 {
 ...
 finally
 {
 using(TransactionScope transactionScope =
 new TransactionScope(TransactionScopeOption.RequiresNew))
 {
 CalculatorResponseClient proxy = new CalculatorResponseClient();

 proxy.OnAddCompleted(result,error);

 proxy.Close();
 }
 }
 }
}

Figure 9-14. Responding in a new transaction

516 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Responding in a new transaction is required in two cases. The first is when the service
wants to respond regardless of the outcome of the playback transaction (which could
be aborted by other downstream services). The second case is when the response is nice
to have, and the service does not mind if the playback transaction commits but the
response aborts.

Response service and transactions

Since a response service is just another queued service, the mechanics of managing and
participating in a transaction are just like those of any other queued service. However,
there are a few points worth mentioning in this particular context. The response service
can process the response as part of the incoming response playback transaction:

class MyCalculatorResponse : ICalculatorResponse
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void OnAddCompleted(...)
 {...}
}

This is by far the most common option, because it allows for retries. That said, the
response service should avoid lengthy processing of the queued response, because it
may risk aborting the playback transaction. The response service can process the
response in a separate transaction if the response is nice to have (as far as the provider
of the response service is concerned):

class MyCalculatorResponse : ICalculatorResponse
{
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 using(TransactionScope scope = new TransactionScope())
 {...}
 }
}

When the response is processed in a new transaction, if that transaction aborts, WCF
will not retry the response out of the response service’s queue. Finally, for response
processing of long duration, you can configure the response service not to use a trans-
action at all (including the playback transaction):

class MyCalculatorResponse : ICalculatorResponse
{
 public void OnAddCompleted(...)
 {...}
}

The Response Service | 517

Download from Library of Wow! eBook <www.wowebook.com>

The HTTP Bridge
The MSMQ binding is designed to be employed in the intranet. It cannot go through
firewalls by default, and more importantly, it uses a Microsoft-specific encoding and
message format. Even if you could tunnel through the firewall, you would need the
other party to use WCF as well. While requiring WCF at both ends is a reasonable
assumption in the intranet, it is unrealistic to demand that from Internet-facing clients
and services, and it violates the core service-oriented principles that service boundaries
should be explicit and that the implementation technology used by a service should be
immaterial to its clients. That said, Internet services may benefit from queued calls just
like intranet clients and services, and yet the lack of an industry standard for such
queued interoperability (and the lack of support in WCF) prevents such interaction.
The solution to that problem is a technique I call the HTTP bridge. Unlike most of my
other techniques shown in this book, the HTTP bridge is a configuration pattern rather
than a set of helper classes. The HTTP bridge, as its name implies, is designed to provide
queued calls support for clients and services connected over the Internet. The bridge
requires the use of the WSHttpBinding (rather than the basic binding) because it is a
transactional binding. There are two parts to the HTTP bridge. The bridge enables
WCF clients to queue up calls to an Internet service that uses the WS binding, and it
enables a WCF service that exposes an HTTP endpoint over the WS binding to queue
up calls from its Internet clients. You can use each part of the bridge separately, or you
can use them in conjunction. The bridge can only be used if the remote service contract
can be queued (that is, if the contract has only one-way operations), but that is usually
the case; otherwise, the client would not have been interested in the bridge in the first
place.

Designing the Bridge
Since you cannot really queue up calls with the WS binding, you can facilitate that
instead using an intermediary bridging client and service. When the client wishes to
queue up a call against an Internet-based service, the client will in fact queue up the
call against a local (that is, intranet-based) queued service called MyClientHttpBridge.
In its processing of the queued call, the client-side queued bridge service will use the
WS binding to call the remote Internet-based service. When an Internet-based service
wishes to receive queued calls, it will use a queue. But because non-WCF clients cannot
access that queue over the Internet, the service will use a façade: a dedicated connected
service called MyServiceHttpBridge that exposes a WS-binding endpoint. In its pro-
cessing of the Internet call, MyServiceHttpBridge simply makes a queued call against
the local service. Figure 9-15 shows the HTTP bridge architecture.

518 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Figure 9-15. The HTTP bridge

Transaction Configuration
It is important to use transactions between MyClientHttpBridge, the client side of the
bridge, and the remote service, and it is important to configure the service-side bridge
(MyServiceHttpBridge) to use the Client transaction mode discussed in Chapter 7. The
rationale is that by using a single transaction from the playback of the client call to
the MyClientHttpBridge to the MyServiceHttpBridge (if present) you will approximate
the transactional delivery semantic of a normal queued call, as shown in Figure 9-16.

Figure 9-16. The HTTP bridge and transactions

Compare Figure 9-16 with Figure 9-6. If the delivery transaction in the bridge aborts
for any reason, the message will roll back to the MyClientHttpBridge queue for another
retry. To maximize the chances of successful delivery, you should also turn on reliability
for the call between MyClientHttpBridge and the remote service.

The HTTP Bridge | 519

Download from Library of Wow! eBook <www.wowebook.com>

Service-Side Configuration
MyServiceHttpBridge converts a regular connected call over the WS binding into a
queued call and posts it to the service queue. MyServiceHttpBridge implements a con-
tract that is similar, but not identical, to that of the queued service. The reason is that
the service-side bridge should be able to participate in the incoming transaction, but
transactions cannot flow over one-way operations. The solution is to modify the con-
tract to support (indeed, mandate) transactions. For example, if this is the original
service contract:

[ServiceContract]
public interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod();
}

then MyServiceHttpBridge should expose this contract instead:

[ServiceContract]
public interface IMyContractHttpBridge
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Mandatory)]
 void MyMethod();
}

In essence, you need to set IsOneWay to false and use TransactionFlowOption.
Mandatory. For readability’s sake, I recommend that you also rename the interface by
suffixing it with HttpBridge. MyServiceHttpBridge can be hosted anywhere in the serv-
ice’s intranet, including in the service’s own process. Example 9-30 shows the required
configuration of the service and its HTTP bridge.

Example 9-30. Service-side configuration of the HTTP bridge

<!-- MyService Config File -->
<services>
 <service name = "MyService">
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue"
 binding = "netMsmqBinding"
 contract = "IMyContract"
 />
 </service>
</services>

<!-- MyServiceHttpBridge Config File -->
<services>
 <service name = "MyServiceHttpBridge">
 <endpoint
 address = "http://localhost:8001/MyServiceHttpBridge"
 binding = "wsHttpBinding"
 bindingConfiguration = "ReliableTransactedHTTP"
 contract = "IMyContractHttpBridge"

520 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

 />
 </service>
</services>

<client>
 <endpoint
 address = "net.msmq://localhost/private/MyServiceQueue"
 binding = "netMsmqBinding"
 contract = "IMyContract"
 />
</client>

<bindings>
 <wsHttpBinding>
 <binding name = "ReliableTransactedHTTP" transactionFlow = "true">
 <reliableSession enabled = "true"/>
 </binding>
 </wsHttpBinding>
</bindings>

The service MyService exposes a simple queued endpoint with IMyContract. The service
MyServiceHttpBridge exposes an endpoint with WSHttpBinding and the IMyContractHttp
Bridge contract. MyServiceHttpBridge is also a client of the queued endpoint defined
by the service. Example 9-31 shows the corresponding implementation. Note that
MyServiceHttpBridge is configured for the Client transaction mode.

Example 9-31. Service-side implementation of the HTTP bridge

class MyService : IMyContract
{
 //This call comes in over MSMQ
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {...}
}
class MyServiceHttpBridge : IMyContractHttpBridge
{
 //This call comes in over HTTP
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 MyContractClient proxy = new MyContractClient();

 //This call goes out over MSMQ
 proxy.MyMethod();

 proxy.Close();
 }
}

The HTTP Bridge | 521

Download from Library of Wow! eBook <www.wowebook.com>

Client-Side Configuration
The client uses queued calls against the local MyClientHttpBridge service. MyClientHttp
Bridge can be hosted in the same process as the client, in a different process, or even
on a separate machine on the client’s intranet. The local MyClientHttpBridge service
uses the WSHttpBinding to call the remote service. The client needs to retrieve the
metadata of the remote Internet service (such as the definition of IMyContractHttp
Bridge) and convert it to a queued contract (such as IMyContract). Example 9-32 shows
the required configuration of the client and its HTTP bridge.

Example 9-32. Client-side configuration of the HTTP bridge

<!-- Client Config File -->
<client>
 <endpoint
 address = "net.msmq://localhost/private/MyClientHttpBridgeQueue"
 binding = "netMsmqBinding"
 contract = "IMyContract"
 />
</client>

<!-- MyClientHttpBridge Config File -->
<services>
 <service name = "MyClientHttpBridge">
 <endpoint
 address = "net.msmq://localhost/private/MyClientHttpBridgeQueue"
 binding = "netMsmqBinding"
 contract = "IMyContract"
 />
 </service>
</services>
<client>
 <endpoint
 address = "http://localhost:8001/MyServiceHttpBridge"
 binding = "wsHttpBinding"
 bindingConfiguration = "ReliableTransactedHTTP"
 contract = "IMyContractHttpBridge"
 />
</client>
<bindings>
 <wsHttpBinding>
 <binding name = "ReliableTransactedHTTP" transactionFlow = "true">
 <reliableSession enabled = "true"/>
 </binding>
 </wsHttpBinding>
</bindings>

MyClientHttpBridge exposes a simple queued endpoint with IMyContract. MyClientHttp
Bridge is also a client of the connected WS-binding endpoint defined by the service.
Example 9-33 shows the corresponding implementation.

522 | Chapter 9: Queued Services

Download from Library of Wow! eBook <www.wowebook.com>

Example 9-33. Client-side implementation of the HTTP bridge

MyContractClient proxy = new MyContractClient();

//This call goes out over MSMQ
proxy.MyMethod();

proxy.Close();

//////////////// Client-Side Bridge Implementation ////////////
class MyClientHttpBridge : IMyContract
{
 //This call comes in over MSMQ
 [OperationBehavior(TransactionScopeRequired = true)]
 public void MyMethod()
 {
 MyContractHttpBridgeClient proxy = new MyContractHttpBridgeClient();

 //This call goes out over HTTP
 proxy.MyMethod();

 proxy.Close();
 }
}

The HTTP Bridge | 523

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 10

Security

There are several aspects pertaining to secure interaction between a client and a service.
As in traditional client/server and component-oriented applications, the service needs
to authenticate its callers and often also authorize the callers before executing sensitive
operations. In addition, regardless of the technology, when securing a service (and its
clients) as in any distributed system, you need to secure the messages while they are en
route from the client to the service. Once the messages arrive securely and are authen-
ticated and authorized, the service has a number of options regarding the identity it
uses to execute the operation. This chapter will explore these classic security aspects—
authentication, authorization, transfer security, and identity management—as well as
something more abstract, which I call overall security policy: that is, your own personal
and your company’s (or customer’s) approach to and mindset regarding security. This
chapter starts by defining the various aspects of security in the context of WCF and the
options available to developers when it comes to utilizing WCF and .NET security.
Then, it explains how to secure the canonical and prevailing types of applications.
Finally, I will present my declarative security framework, which vastly reduces the
complexity of the WCF security programming model by eliminating the need to un-
derstand and tweak the many details of WCF security.

Authentication
Authentication is the act of verifying that the caller of a service is indeed who that caller
claims to be. While authentication is typically referred to in the context of verification
of the caller, from the client perspective there is also a need for service authentication;
that is, assuring the client that the service it calls really is the service it intends to call.
This is especially important with clients who call over the Internet, because if a mali-
cious party subverts the client’s DNS service, it could hijack the client’s calls. WCF
offers various authentication mechanisms:

No authentication
The service does not authenticate its callers, and virtually all callers are allowed.

525

Download from Library of Wow! eBook <www.wowebook.com>

Windows authentication
The service typically uses Kerberos when a Windows Domain Server is available,
or NTLM when deployed in a workgroup configuration. The caller provides the
service with its Windows credentials (such as a ticket or a token) and the service
authenticates that against Windows.

Username and password
The caller provides the service with a username and a password. The service then
uses these credentials against some kind of credentials store, such as Windows
accounts or a custom credentials store (such as a dedicated database).

X509 certificate
The client identifies itself using a certificate. Typically, that certificate is known in
advance to the service. The service looks up the certificate on the host side and
validates it, thus authenticating the client. Alternatively, the service may implicitly
trust the issuer of the certificate and hence the client presenting it.

Custom mechanism
WCF allows developers to replace the built-in authentication mechanisms with
any protocol and credential type, such as using biometrics. These custom solutions
are beyond the scope of this book.

Issued token
The caller and the service can both rely on a secure token service to issue the client
a token that the service recognizes and trusts. Such a service is typically federated
and encapsulates the act of authenticating and securing the call. Windows Card-
Space is an example of such a secure token service. However, federated security
and CardSpace are beyond the scope of this book.

Authorization
Authorization is concerned with what the caller is allowed to do: typically, which op-
erations the client is allowed to invoke on the service. Authorizing of the caller is done
under the assumption that the caller is indeed who the caller claims to be—in other
words, authorization is meaningless without authentication. For authorization, the
service typically relies on some kind of credentials store, where callers are mapped to
logical roles. When authorizing an operation, the operation declares or explicitly de-
mands that only certain roles can access it, and the service needs to look up the caller’s
role or roles from the store and verify that the caller is a member of the requested roles.
Out of the box, WCF supports two credentials stores: the service can use Windows
groups (and accounts) for authorization, or it can use an ASP.NET provider (such as
the SQL Server provider) to store user accounts and roles. WCF also supports custom
role repositories, but I have found that the easiest option by far for implementing a
custom store is to implement a custom ASP.NET provider. This chapter will address the
ASP.NET providers at length later.

526 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

WCF offers an elaborate and extensible infrastructure for authenticating
and authorizing the caller based on a set of claims contained in the mes-
sage. However, discussion of this mechanism is beyond the scope of this
book.

Transfer Security
Both authentication and authorization deal with two local aspects of security—if (and
to what extent) to grant access to the caller once the service has received the message.
In this respect, WCF services are not much different from traditional client/server
classes. However, both authentication and authorization are predicated on secure de-
livery of the message itself. The transfer of the message from the client to the service
has to be secure, or both authentication and authorization are moot. There are three
essential aspects to transfer security, and all three aspects must be enforced to provide
for secure services. Message integrity deals with how to ensure that the message itself
is not tampered with en route from the client to the service. A malicious party or in-
termediary could, in practice, intercept the message and modify its content; for exam-
ple, altering the account numbers in the case of a transfer operation in a banking service.
Message privacy deals with ensuring the confidentiality of the message, so that no third
party can even read the contents of the message. Privacy complements integrity. With-
out it, even if the malicious party does not tamper with the message, that party can still
cause harm by gleaning sensitive information (again, such as account numbers) from
the message content. Finally, transfer security must provide for mutual authentica-
tion, which deals with assuring the client that only the proper service is able to read the
content of its message—in other words, that the client connects to the correct service.
Once the credentials in the message are received, the service must authenticate those
credentials locally. The mutual authentication mechanism also needs to detect and
eliminate replay attacks and denial of service (DOS) attacks. In a replay attack, a ma-
licious party records a valid message from the wire and later sends that valid message
back to the service. With a DOS attack, a malicious party floods the service with mes-
sages (either valid messages or bogus invalid messages) at such a frequency as to degrade
the service’s availability.

Transfer Security Modes
WCF supports five different ways of accomplishing the three aspects of transfer secur-
ity. Choosing the correct transfer security mode is perhaps the prime decision to be
made in the context of securing a service. The five transfer security modes are None,
Transport security, Message security, Mixed, and Both.

Transfer Security | 527

Download from Library of Wow! eBook <www.wowebook.com>

None transfer security mode

As its name implies, the None transfer security mode has transfer security completely
turned off—in fact, all aspects of WCF security are turned off. No client credentials are
provided to the service, and the message itself is wide open to any malicious party to
do with it as it pleases. Obviously, setting transfer security to None is highly inadvisable.

Transport transfer security mode

When configured for Transport security, WCF uses a secure communication protocol.
The available secure transports are HTTPS, TCP, IPC, and MSMQ. Transport security
encrypts all communication on the channel and thus provides for integrity, privacy,
and mutual authentication. Integrity is provided because without knowing the encryp-
tion key, any attempt to modify the message will corrupt it so that it will become useless.
Privacy is provided because no party other than the recipient can see the content of the
message. Mutual authentication is supported because only the intended recipient of
the message can read it; the client need not be concerned with message rerouting to
malicious endpoints, as those will not be able to use the message. Once the message is
decrypted, the service can read the client’s credentials and authenticate the client.

Transport security requires the client and the service to negotiate the details of the
encryption, but that is done automatically as part of the communication protocol in
the respective binding. Transport security can benefit from hardware acceleration done
on the network card so as to avoid burdening the host machine’s CPU with the en-
cryption and decryption of the messages. Hardware acceleration obviously caters to
high throughput, and it may even make the security overhead unnoticeable. Transport
security is the simplest way of achieving transfer security, and the most performant
option. Its main downside is that it can only guarantee transfer security point-to-point,
meaning when the client connects directly to the service. Having multiple intermedia-
ries between the client and the service renders Transport security questionable, as those
intermediaries may not be secure. Consequently, Transport security is typically used
only by intranet applications, where you can ensure a single hop between the client and
the service in a controlled environment.

When configuring any of the HTTP bindings for Transport security,
WCF verifies at the service load time that the corresponding address on
the endpoint uses HTTPS rather than mere HTTP.

Message transfer security mode

The Message transfer security mode simply encrypts the message itself. By encrypting
the message, you gain integrity and privacy and enable mutual authentication, for the
same reason that Transport security provides these features when the communication
channel is encrypted. However, encrypting the message rather than the transport en-
ables the service to communicate securely over nonsecure transports, such as HTTP.

528 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Because of that, Message security provides for end-to-end security, regardless of the
number of intermediaries involved in transferring the message and regardless of
whether or not the transport is secure. In addition, Message security is based on a set
of industry standards designed both for interoperability and for thwarting common
attacks such as replay and DOS attacks, and the support WCF offers for it is both rich
and extensible. The downside of Message security is that it may introduce call latency
due to its inherent overhead. Message security is typically used by Internet applications,
where the call patterns are less chatty and the transport is not necessarily secure.

Mixed transfer security mode

The Mixed transfer security mode uses Transport security for message integrity and
privacy as well as service authentication, and it uses Message security for securing the
client’s credentials. The Mixed mode tries to combine the advantages of both Transport
and Message security by benefiting from the secure transport and even hardware
acceleration offered by Transport security to cater to high throughput, and from the
extensibility and richer types of client credentials offered by Message security. The
downside of the Mixed mode is that it is only secure point-to-point, as a result of the
use of Transport security. Application developers rarely need to use the Mixed mode,
but it is available for advanced cases.

Both transfer security mode

As its name implies, the Both transfer security mode uses both Transport security and
Message security. The message itself is secured using Message security, and then it is
transferred to the service over a secure transport. The Both mode maximizes security,
yet it may be overkill for most applications (with the exception perhaps of disconnected
applications, where the additional latency it introduces will go unnoticed).

Transfer Security Mode Configuration
Configuring the transfer security mode is done in the binding, and both the client and
the service must use the same transfer security mode and, of course, comply with its
requirements. Like any other binding configuration, you can configure transfer security
either programmatically or administratively, in a config file. All the common bindings
offer a construction parameter indicating the transfer security mode, and all bindings
offer a Security property with a Mode property identifying the configured mode using
a dedicated enumeration. As shown in Table 10-1, not all bindings support all transfer
security modes: the supported modes are driven by the target scenarios for the binding.

Table 10-1. Bindings and transfer security modes

Name None Transport Message Mixed Both

BasicHttpBinding Yes (default) Yes Yes Yes No

NetTcpBinding Yes Yes (default) Yes Yes No

Transfer Security | 529

Download from Library of Wow! eBook <www.wowebook.com>

Name None Transport Message Mixed Both

NetNamedPipeBinding Yes Yes (default) No No No

WSHttpBinding Yes Yes Yes (default) Yes No

NetMsmqBinding Yes Yes (default) Yes No Yes

The intranet bindings (NetTcpBinding, NetNamedPipeBinding, and NetMsmqBinding) all
default to Transport security. Thus, no special programming is required on behalf of
the service or client developer. The reason is that on the intranet calls are typically
point-to-point, and Transport security yields the best performance. However, the in-
tranet bindings can also be configured for the None transfer mode; that is, they can be
used on the same transport protocol, only without security. The NetNamedPipeBinding
supports only None and Transport security—there is no sense in using Message se-
curity over IPC, since with IPC there is always exactly one hop from the client to the
service. Also note that only the NetMsmqBinding supports the Both mode.

The Internet bindings all default to Message security, to enable them to be used over
nonsecure transports (that is, HTTP) and to accommodate multiple hops and
intermediaries.

With one noticeable exception, all of the WCF bindings are configured with some kind
of transfer security and are therefore secure by default. Only the BasicHttpBinding de-
faults to having no security. The reason is that the basic binding is designed to make a
WCF service look like a legacy ASMX service, and ASMX is unsecured by default. That
said, you can and should configure the BasicHttpBinding to use a different transfer
security mode, such as Message security.

Specific binding configurations

The BasicHttpBinding uses the BasicHttpSecurityMode enum for transfer mode config-
uration. The enum is available via the Mode property of the Security property of the
binding:

public enum BasicHttpSecurityMode
{
 None,
 Transport,
 Message,
 TransportWithMessageCredential,
 TransportCredentialOnly
}
public sealed class BasicHttpSecurity
{
 public BasicHttpSecurityMode Mode
 {get;set;}
 //More members
}
public class BasicHttpBinding : Binding,...
{

530 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 public BasicHttpBinding();
 public BasicHttpBinding(BasicHttpSecurityMode securityMode);
 public BasicHttpSecurity Security
 {get;}
 //More members
}

Security is of the type BasicHttpSecurity. One of the constructors of BasicHttp
Binding takes the BasicHttpSecurityMode enum as a parameter. To secure the basic
binding for Message security, you can either construct it secured or set the security
mode post-construction. Consequently, in Example 10-1, binding1 and binding2 are
equivalent.

Example 10-1. Programmatically securing the basic binding

BasicHttpBinding binding1 = new BasicHttpBinding(BasicHttpSecurityMode.Message);

BasicHttpBinding binding2 = new BasicHttpBinding();
binding2.Security.Mode = BasicHttpSecurityMode.Message;

Instead of programmatic settings, you can use a config file, as in Example 10-2.

Example 10-2. Administratively securing the basic binding

<bindings>
 <basicHttpBinding>
 <binding name = "SecuredBasic">
 <security mode = "Message"/>
 </binding>
 </basicHttpBinding>
</bindings>

The rest of the bindings all use their own enumerations and dedicated security classes,
yet they are configured just as in Example 10-1 and Example 10-2. For example, the
NetTcpBinding and the WSHttpBinding use the SecurityMode enum, defined as:

public enum SecurityMode
{
 None,
 Transport,
 Message,
 TransportWithMessageCredential //Mixed
}

These bindings offer a matching construction parameter and a matching Security
property.

The NetNamedPipeBinding uses the NetNamedPipeSecurityMode enum, which supports
only the None and Transport security modes:

public enum NetNamedPipeSecurityMode
{
 None,
 Transport
}

Transfer Security | 531

Download from Library of Wow! eBook <www.wowebook.com>

The NetMsmqBinding uses the NetMsmqSecurityMode enum:

public enum NetMsmqSecurityMode
{
 None,
 Transport,
 Message,
 Both
}

NetMsmqSecurityMode is the only enum that offers the Both transfer mode.

The reason that almost every common binding has its own dedicated enum for the
security mode is that the designers of WCF security opted for increased safety at
the expense of overall complexity. They could have defined just a single all-inclusive
enum with values corresponding to the five possible transfer security modes, but then
it would have been possible at compile time to assign invalid values, such as Message
security for the NetNamedPipeBinding. Opting for specialized enums makes configuring
security less error-prone, yet there are more moving parts to come to terms with.

Transport Security and Credentials
WCF lets you select from a number of possible client credential types. For example,
the client can identify itself using a classic username and password, or a Windows
security token. Windows credentials can then be authenticated using NTLM or Ker-
beros, when available. Alternatively, the client can use an X509 certificate, or choose
to provide no credentials at all and be anonymous. When configuring transfer security
for Transport security, however, not all bindings support all client credential types, as
shown in Table 10-2.

Table 10-2. Bindings and Transport security client credentials

Name None Windows Username Certificate

BasicHttpBinding Yes (default) Yes Yes Yes

NetTcpBinding Yes Yes (default) No Yes

NetNamedPipeBinding No Yes (default) No No

WSHttpBinding Yes Yes (default) Yes Yes

NetMsmqBinding Yes Yes (default) No Yes

Which types of credentials a binding supports is largely a product of the target scenario
for which the binding is designed. For example, all of the intranet bindings default to
Windows credentials since they are used in a Windows environment, and the BasicHttp
Binding defaults to no credentials, just like a classic ASMX web service. The odd default
is that of the WSHttpBinding, which defaults to Windows credentials to enable the bind-
ing to be used over Transport security with minimum effort out of the box.

532 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Message Security and Credentials
When it comes to using Message transfer security, WCF lets applications use the same
types of credentials as with Transport security, with the addition of the issued token
credential type. Again, when configured for Message security not all bindings support
all client credential types, as shown in Table 10-3.

Table 10-3. Bindings and Message security client credentials

Name None Windows Username Certificate Issued token

BasicHttpBinding No No No Yes No

NetTcpBinding Yes Yes (default) Yes Yes Yes

NetNamedPipeBinding N/A N/A N/A N/A N/A

WSHttpBinding Yes Yes (default) Yes Yes Yes

NetMsmqBinding Yes Yes (default) Yes Yes Yes

While it makes sense that all intranet bindings that support Message security default
to Windows credentials, it is interesting to note that the WSHttpBinding as Internet
binding also defaults to Windows credentials, even though (as discussed later) Internet
applications rarely use Windows credentials over HTTP. The reason for this default is
to enable developers to securely use the WS binding out of the box, in its correct transfer
security mode without resorting first to custom credentials stores.

The BasicHttpBinding supports username client credentials for Message
security only when configured for Mixed mode. This may be a source
of runtime validation errors, since the BasicHttpMessageCredential
Type enum contains the BasicHttpMessageCredentialType.UserName
value.

Identity Management
Identity management is the security aspect that deals with which security identity the
client sends to the service and, in turn, what the service can do with the client’s identity.
Not only that, but when designing a service, you need to decide in advance which
identity the service will execute under. The service can execute under its own identity;
it can impersonate the client’s identity (when applicable); or it can use a mixture of
identities, alternating in a single operation between its own identity, the client’s iden-
tity, or even a third identity altogether. Selecting the correct identity has drastic impli-
cations for the application’s scalability and administration cost. In WCF, when
enabled, the security identity flows down the call chain, and each service can find out
who its caller is, regardless of the identity of the service.

Identity Management | 533

Download from Library of Wow! eBook <www.wowebook.com>

Overall Policy
To the traditional commonplace security aspects of authentication, authorization,
transfer security, and identity management, I would like to add one that is less technical
and conventional, but to me just as important: what is your business’s approach, or
even your personal approach, to security? That is, what is your security policy? I believe
that in the vast majority of cases, applications simply cannot afford not to be secured.
And while security carries with it performance and throughput penalties, these should
be of no concern. Simply put, it costs to live. Paying the security penalty is an unavoid-
able part of designing and administering modern connected applications. Gone are the
days when developers could afford not to care about security and deploy applications
that relied on the ambient security of the target environment, such as physical security
provided by employee access cards or firewalls.

Since most developers cannot afford to become full-time security experts (nor should
they), the approach I advocate for overall security policy is simple: crank security all
the way up until someone complains. If the resulting application performance and
throughput are still adequate with the maximum security level, leave it at that level.
Only if the resulting performance is inadequate should you engage in detailed threat
analysis to find out what you can trade in security in exchange for performance. In my
experience, you will rarely need to actually go this route; most developers should never
need to compromise security this way.

The security strategies described in this chapter follow my overall security policy.
WCF’s overall approach to security is very much aligned with my own, and I will ex-
plicitly point out the few places it is not (and how to rectify it). With the noticeable
exception of the BasicHttpBinding, WCF is secured by default, and even the BasicHttp
Binding can easily be secured. All other WCF bindings by default authenticate all callers
to the service and rely on transfer security.

Scenario-Driven Approach
Security is by far the most intricate area of WCF. The following list shows the elements
that govern security in every WCF operation call:

• Service contract

• Operation contract

• Fault contract

• Service behavior

• Operation behavior

• Host configuration

• Method configuration and code

• Client-side behavior

534 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

• Proxy configuration

• Binding configuration

Each of the items in the list may have a dozen or more security-related properties.
Obviously, there are an overwhelming number of possible combinations and permu-
tations. In addition, not all combinations are allowed or supported, and not all allowed
combinations make sense or are consistent; for example, while technically possible, it
does not make sense to use a certificate for client credentials in a homogeneous Win-
dows intranet, much as it makes little sense to use Windows accounts in an Internet
application. The solution I chose for this book is to focus on a few key scenarios (and
slight variations of them) that address the security needs of the majority of applications
today.

The scenarios are:

• Intranet application

• Internet application

• Business-to-business application

• Anonymous application

• No security

I will demonstrate how to make each of these scenarios consistent and secure. In each
scenario I will discuss how to support the security aspects of transfer security, authen-
tication, authorization, and identity management. If you need an additional scenario,
you can follow my analysis approach to derive the required security aspects and
settings.

Intranet Application Scenario
The characteristics of the intranet application are that both the clients and the service
use WCF, and that they are deployed in the same intranet. The clients reside behind
the firewall, and you can use Windows-based security for transfer security, authenti-
cation, and authorization. You can rely on Windows accounts and groups to store the
client’s credentials. The intranet scenario addresses a wide range of business applica-
tions, from finance to manufacturing to in-house IT applications. The intranet scenario
is also the richest scenario of all in the options it offers developers for configuring
security.

This section on the intranet scenario will define the terminology, techniques, and types
used in the other scenarios.

Intranet Application Scenario | 535

Download from Library of Wow! eBook <www.wowebook.com>

Securing the Intranet Bindings
For the intranet scenario, you should use the intranet bindings: namely, NetTcpBinding,
NetNamedPipeBinding, and NetMsmqBinding. You can rely on Transport mode for transfer
security because the calls are invariably point-to-point. Conveniently, Transport se-
curity is the default transfer mode of the intranet bindings (see Table 10-1). You can
also use the default for the client credentials type, which is Windows (see Table 10-2).
You need to configure this on both the client and the service.

Transport security protection level

Each of the three intranet bindings has a configurable protection level, which is the
master switch for Transport protection. The three protection levels are:

None
When configured for this protection level, WCF does not protect the message on
transfer from the client to the service. Any malicious party can read the content of
the message, or even alter it.

Signed
When configured for this protection level, WCF ensures that the message could
have come only from an authenticated sender and that the message integrity was
not compromised during transfer. To accomplish this, WCF appends an encrypted
checksum to the message. Upon receiving the message, the service calculates the
checksum and compares it to the original. If the two do not match, the message is
rejected. As a result, the message is impervious to tampering. However, the message
content is still visible during the transfer.

Encrypted and Signed
When configured for this protection level, WCF both signs the message and en-
crypts its content. The Encrypted and Signed protection level provides integrity,
privacy, and authenticity.

The Signed protection level offers a clear trade-off between a measured degree of se-
curity and performance. However, I consider this to be a trade-off to avoid, and I rec-
ommend that you always opt instead for the Encrypted and Signed protection level.
WCF represents the protection level with the ProtectionLevel enum, defined as:

public enum ProtectionLevel
{
 None,
 Sign,
 EncryptAndSign
}

Not all Internet bindings default to the same protection level. Both the NetTcpBinding
and the NetNamedPipeBinding default to Encrypted and Signed, yet the NetMsmq
Binding defaults to Signed.

536 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

NetTcpBinding configuration

NetTcpBinding takes a construction parameter indicating the desired transfer security
mode:

public class NetTcpBinding : ...
{
 public NetTcpBinding(SecurityMode securityMode);
 public NetTcpSecurity Security
 {get;}
 //More members
}

The Security property of the type NetTcpSecurity contains the transfer mode (Trans-
port or Message) and two respective properties with their specific settings:

public sealed class NetTcpSecurity
{
 public SecurityMode Mode
 {get;set;}
 public MessageSecurityOverTcp Message
 {get;}
 public TcpTransportSecurity Transport
 {get;}
}

In the intranet security scenario, you should select Transport security for the transfer
security mode and set the values of the Transport property of the type
TcpTransportSecurity:

public sealed class TcpTransportSecurity
{
 public TcpClientCredentialType ClientCredentialType
 {get;set;}

 public ProtectionLevel ProtectionLevel
 {get;set;}
}

The Transfer property should be initialized with the client credential type set to Win-
dows using the TcpClientCredentialType enum, defined as:

public enum TcpClientCredentialType
{
 None,
 Windows,
 Certificate
}

The Transport property should also have the protection level set to ProtectionLevel.
EncryptAndSign. Since both of those settings are the defaults for this binding, these two
declarations are equivalent:

NetTcpBinding binding1 = new NetTcpBinding();

NetTcpBinding binding2 = new NetTcpBinding(SecurityMode.Transport);

Intranet Application Scenario | 537

Download from Library of Wow! eBook <www.wowebook.com>

binding2.Security.Transport.ClientCredentialType =
 TcpClientCredentialType.Windows;
binding2.Security.Transport.ProtectionLevel = ProtectionLevel.EncryptAndSign;

Alternatively, you can configure the binding using a config file:

<bindings>
 <netTcpBinding>
 <binding name = "TCPWindowsSecurity">
 <security mode = "Transport">
 <transport
 clientCredentialType = "Windows"
 protectionLevel = "EncryptAndSign"
 />
 </security>
 </binding>
 </netTcpBinding>
</bindings>

The NetTcpContextBinding and the WSHttpContextBinding also offer the
ContextProtectionLevel property of the type ProtectionLevel, used to
indicate the desired protection level for the custom context.
ContextProtectionLevel defaults to ProtectionLevel.Sign. When using
Transport security, the value of ContextProtectionLevel is ignored
(since the transport protects the whole message during transfer). Due
to a bug in WCF, it is also ignored when using Message security. The
same is true for the NetNamedPipeContextBinding defined in
Appendix B (since it uses the same WCF facility).

For the sake of completeness, although it’s not required by the intranet scenario, here
is how to configure NetTcpBinding for Message security with username client
credentials:

public enum MessageCredentialType
{
 None,
 Windows,
 UserName,
 Certificate,
 IssuedToken
}
public sealed class MessageSecurityOverTcp
{
 public MessageCredentialType ClientCredentialType
 {get;set;}
 //More members
}
NetTcpBinding binding = new NetTcpBinding(SecurityMode.Message);
binding.Security.Message.ClientCredentialType = MessageCredentialType.UserName;

538 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

NetTcpSecurity offers the Message property of the type MessageSecurityOverTcp. You’ll
need to set the credentials type using the MessageCredentialType enum. Most bindings
use the MessageCredentialType enum for representing Message security client
credentials.

Figure 10-1 shows the security-related elements of the NetTcpBinding.

NetTcpBinding has a reference to NetTcpSecurity, which uses the SecurityMode enum to
indicate the transfer security mode. When Transport security is used, NetTcpSecurity
will use an instance of TcpTransportSecurity containing the client credentials type via
the TcpClientCredentialType enum and the configured protection level via the
ProtectionLevel enum. When Message security is used, NetTcpSecurity will use an
instance of MessageSecurityOverTcp containing the client credentials type via the
MessageCredentialType enum.

NetNamedPipeBinding configuration

NetNamedPipeBinding takes a construction parameter indicating the desired transfer
security mode:

public class NetNamedPipeBinding : Binding,...
{
 public NetNamedPipeBinding(NetNamedPipeSecurityMode securityMode);

 public NetNamedPipeSecurity Security
 {get;}
 //More members
}

Figure 10-1. NetTcpBinding and security

Intranet Application Scenario | 539

Download from Library of Wow! eBook <www.wowebook.com>

The Security property of the type NetNamedPipeSecurity contains the transfer mode
(Transport or None) and a single property with the specific Transport settings:

public sealed class NetNamedPipeSecurity
{
 public NetNamedPipeSecurityMode Mode
 {get;set;}
 public NamedPipeTransportSecurity Transport
 {get;}
}

For the intranet security scenario, select Transport security for the transfer security
mode and set the values of the Transport property of the type NamedPipeTransport
Security:

public sealed class NamedPipeTransportSecurity
{
 public ProtectionLevel ProtectionLevel
 {get;set;}
}

The Transfer property should be initialized with the protection level set to Protection
Level.EncryptAndSign. Because this is the default for the binding, these two declarations
are equivalent:

NetNamedPipeBinding binding1 = new NetNamedPipeBinding();

NetNamedPipeBinding binding2 = new NetNamedPipeBinding(
 NetNamedPipeSecurityMode.Transport);
binding2.Security.Transport.ProtectionLevel = ProtectionLevel.EncryptAndSign;

You can also configure the binding administratively, using a config file:

<bindings>
 <netNamedPipeBinding>
 <binding name = "IPCWindowsSecurity">
 <security mode = "Transport">
 <transport protectionLevel = "EncryptAndSign"/>
 </security>
 </binding>
 </netNamedPipeBinding>
</bindings>

There is no need (or option) to set the client credentials type, since only Windows
credentials are supported (see Table 10-2). Figure 10-2 shows the security-related
elements of the NetNamedPipeBinding.

540 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Figure 10-2. NetNamedPipeBinding and security

NetNamedPipeBinding has a reference to NetNamedPipeSecurity, which uses the
NetNamedPipeSecurityMode enum to indicate the transfer security mode. When Trans-
port security is used, NetTcpSecurity will use an instance of NamedPipeTransportSecur
ity containing the configured protection level via the ProtectionLevel enum.

NetMsmqBinding configuration

NetMsmqBinding offers a construction parameter for the transfer security mode and a
Security property:

public class NetMsmqBinding : MsmqBindingBase
{
 public NetMsmqBinding(NetMsmqSecurityMode securityMode);
 public NetMsmqSecurity Security
 {get;}
 //More members
}

The Security property of the type NetMsmqSecurity contains the transfer mode (Trans-
port or Message) and two respective properties with their specific settings:

public sealed class NetMsmqSecurity
{
 public NetMsmqSecurityMode Mode
 {get;set;}
 public MsmqTransportSecurity Transport
 {get;}
 public MessageSecurityOverMsmq Message
 {get;}
}

Intranet Application Scenario | 541

Download from Library of Wow! eBook <www.wowebook.com>

For the intranet security scenario, select Transport security for the transfer security
mode and set the values of the Transport property of the type MsmqTransportSecurity:

public sealed class MsmqTransportSecurity
{
 public MsmqAuthenticationMode MsmqAuthenticationMode
 {get;set;}
 public ProtectionLevel MsmqProtectionLevel
 {get;set;}
 //More members
}

The Transfer property should be initialized with the client credential type set to Win-
dows domain using the MsmqAuthenticationMode enum, defined as:

public enum MsmqAuthenticationMode
{
 None,
 WindowsDomain,
 Certificate
}

Windows domain is the default credentials type. In addition, you need to set the pro-
tection level to ProtectionLevel.EncryptAndSign because the MSMQ binding defaults
to ProtectionLevel.Signed. The following two definitions are equivalent:

NetMsmqBinding binding1 = new NetMsmqBinding();
binding1.Security.Transport.MsmqProtectionLevel = ProtectionLevel.EncryptAndSign;

NetMsmqBinding binding2 = new NetMsmqBinding();
binding2.Security.Mode = NetMsmqSecurityMode.Transport;
binding2.Security.Transport.MsmqAuthenticationMode =
 MsmqAuthenticationMode.WindowsDomain;
binding2.Security.Transport.MsmqProtectionLevel = ProtectionLevel.EncryptAndSign;

Alternatively, you can configure the binding using a config file:

<bindings>
 <netMsmqBinding>
 <binding name = "MSMQWindowsSecurity">
 <security mode = "Transport">
 <transport
 msmqAuthenticationMode = "WindowsDomain"
 msmqProtectionLevel = "EncryptAndSign"
 />
 </security>
 </binding>
 </netMsmqBinding>
</bindings>

Figure 10-3 shows the security-related elements of the NetMsmqBinding.

542 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Figure 10-3. NetMsmqBinding and security

NetMsmqBinding has a reference to NetMsmqSecurity, which uses the NetMsmqSecurity
Mode enum to indicate the transfer security mode. When Transport security is used,
NetMsmqSecurity will use an instance of MsmqTransportSecurity containing the client
credentials type via the MsmqAuthenticationMode enum, and the configured protection
level via the ProtectionLevel enum. There are similar references to types controlling
Message security.

Constraining Message Protection
While a service should ideally use the highest possible level of security, it is actually at
the mercy of its host, because the host is the one configuring the binding. This is es-
pecially problematic if the service is to be deployed in an unknown environment with
an arbitrary host. To compensate, WCF lets service developers insist on a protection
level, or rather, constrain the minimum protection level at which their service is willing
to operate. Both the service and the client can constrain the protection level, inde-
pendently of each other. You can constrain the protection level in three places. When
constrained at the service contract, all operations on the contract are considered sen-
sitive and protected. When constrained at the operation contract, only that operation
is protected; other operations on the same contract are not. Finally, you can constrain
the protection level for an individual fault contract. This can be required because
sometimes the error information returned to the client is sensitive, containing param-
eter values, exception messages, and the call stack. The respective contract attributes
offer the ProtectionLevel property of the enum type ProtectionLevel:

[AttributeUsage(AttributeTargets.Interface|AttributeTargets.Class,
 Inherited = false)]
public sealed class ServiceContractAttribute : Attribute
{
 public ProtectionLevel ProtectionLevel
 {get;set;}

Intranet Application Scenario | 543

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}
[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationContractAttribute : Attribute
{
 public ProtectionLevel ProtectionLevel
 {get;set;}
 //More members
}
[AttributeUsage(AttributeTargets.Method,AllowMultiple = true,
 Inherited = false)]
public sealed class FaultContractAttribute : Attribute
{
 public ProtectionLevel ProtectionLevel
 {get;set;}
 //More members
}

As an example, here is how to set the protection level on a service contract:

[ServiceContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]
interface IMyContract
{...}

Setting the ProtectionLevel property on the contract attributes merely indicates the
low-water mark; that is, the minimum protection level accepted by this contract. If
the binding is configured for a lower protection level, it will result in an
InvalidOperationException at the service load time or the time the proxy is opened. If
the binding is configured for a higher level, the contract will use that level. The
ProtectionLevel property on the contract attributes defaults to Protec
tionLevel.None, meaning it has no effect.

The desired protection constraint is considered a local implementation detail of the
service, so the required protection level is not exported with the service metadata.
Consequently, the client may require a different level and enforce it separately from the
service.

Even though the Internet bindings do not offer a protection level prop-
erty, the protection level constraint at the service-, operation-, or fault-
contract level is satisfied when using Transport or Message security. The
constraint is not satisfied when security is turned off by using the None
security mode.

Authentication
By default, when a client calls a proxy that targets an endpoint whose binding is con-
figured for using Windows credentials with Transport security, there is nothing explicit
the client needs to do to pass its credentials. WCF will automatically pass the Windows
identity of the client’s process to the service:

544 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

class MyContractClient : ClientBase<IMyContract>,IMyContract
{...}

MyContractClient proxy = new MyContractClient();
proxy.MyMethod(); //Client identity passed here
proxy.Close();

When the service receives the call, WCF will authenticate the caller on the service side.
If the client’s credentials represent a valid Windows account, the caller will be allowed
to access the requested operation on the service.

Providing alternative Windows credentials

Instead of using the identity of the process in which it happens to be running, the client
can pass alternative Windows credentials. The ClientBase<T> base class offers the
ClientCredentials property of the type ClientCredentials:

public abstract class ClientBase<T> : ...
{
 public ClientCredentials ClientCredentials
 {get;}
}
public class ClientCredentials : ...,IEndpointBehavior
{
 public WindowsClientCredential Windows
 {get;}
 //More members
}

ClientCredentials contains the property Windows of the type WindowsClient
Credential, defined as:

public sealed class WindowsClientCredential
{
 public NetworkCredential ClientCredential
 {get;set;}
 //More members
}

WindowsClientCredential has the property ClientCredential of the type Network
Credential, which is where the client needs to set the alternative credentials:

public class NetworkCredential : ...
{
 public NetworkCredential();
 public NetworkCredential(string userName,string password);
 public NetworkCredential(string userName,string password,string domain);

 public string Domain
 {get;set;}
 public string UserName
 {get;set;}
 public string Password
 {get;set;}
}

Intranet Application Scenario | 545

Download from Library of Wow! eBook <www.wowebook.com>

Example 10-3 demonstrates how to use these classes and properties to provide alter-
native Windows credentials.

Example 10-3. Providing alternative Windows credentials

MyContractClient proxy = new MyContractClient();

proxy.ClientCredentials.Windows.ClientCredential.Domain = "MyDomain";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "MyUsername";
proxy.ClientCredentials.Windows.ClientCredential.Password = "MyPassword";

proxy.MyMethod();
proxy.Close();

Once you specify an alternative identity and open the proxy, the proxy cannot use any
other identity later.

If you do try specifying alternative credentials after opening the proxy,
those credentials will be silently ignored.

Clients can use the technique demonstrated in Example 10-3 when the credentials
provided are collected dynamically at runtime, perhaps using a login dialog box.

When working with a channel factory instead of a proxy class, the ChannelFactory base
class offers the Credentials property of the type ClientCredentials:

public abstract class ChannelFactory : ...
{
 public ClientCredentials Credentials
 {get;}
 //More members
}
public class ChannelFactory<T> : ChannelFactory,...
{
 public T CreateChannel();
 //More members
}

In this case, simply set the alternative credentials in the Credentials property, as was
done in Example 10-3:

ChannelFactory<IMyContract> factory = new ChannelFactory<IMyContract>(...);

factory.Credentials.Windows.ClientCredential.Domain = "MyDomain";
factory.Credentials.Windows.ClientCredential.UserName = "MyUsername";
factory.Credentials.Windows.ClientCredential.Password = "MyPassword";

IMyContract proxy = factory.CreateChannel();

Note that you cannot use the static CreateChannel() methods of ChannelFactory<T>,
since you have to first instantiate a factory in order to access the Credentials property.

546 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Identities
All Windows processes run with an authenticated security identity, and the process
hosting a WCF service is no different. The identity is actually a Windows account whose
security token is attached to the process (and to every thread in the process). However,
it is up to the application administrator to decide which identity to use. One option is
to have the host run with an interactive user identity; that is, the identity of the user
who launched the host process. An interactive identity is typically used when self-
hosting and is ideal for debugging, because the debugger will automatically attach itself
to the host process when launched from within Visual Studio. However, relying on an
interactive identity is impractical for deployment on a server machine, where there will
not necessarily be a logged-on user, and if there is a logged-on user that user may not
have the necessary credentials to perform the requested work. For production deploy-
ment, you typically rely on a designated account, which is a preset Windows account
used primarily by your service or services. To launch the service under a designated
account, you can use the “Run as” shell option. However, “Run as” is useful only for
simple testing. You can also have an NT service as your host and use the Control Panel
Services applet to assign a designated identity to the host. If you’re hosting in IIS 5/6
or the WAS, you can use those environments’ configuration tools to assign a designated
identity to the process from the pool.

The IIdentity interface

In .NET, the IIdentity interface (from the System.Security.Principal namespace)
represents a security identity:

public interface IIdentity
{
 string AuthenticationType
 {get;}
 bool IsAuthenticated
 {get;}
 string Name
 {get;}
}

The interface lets you know whether the identity behind the interface is authenticated
(and, if so, which authentication mechanism was used) and allows you to obtain the
name of the identity. Out of the box, WCF takes advantage of three implementations
of IIdentity offered by .NET: WindowsIdentity, GenericIdentity, and X509Identity.
The WindowsIdentity class represents a Windows account. The GenericIdentity class
is a general-purpose class whose main use is to wrap an identity name with an
IIdentity. With both GenericIdentity and WindowsIdentity, if the identity name is an
empty string, that identity is considered unauthenticated, and any other non-zero-
length name is considered authenticated. Finally, X509Identity is an internal class that
represents an identity that was authenticated using an X509 certificate. The identity
behind an X509Identity is always authenticated.

Intranet Application Scenario | 547

Download from Library of Wow! eBook <www.wowebook.com>

Working with WindowsIdentity

The WindowsIdentity class offers a few useful methods above and beyond the mere
implementation of IIdentity:

public class WindowsIdentity : IIdentity,...
{
 public WindowsIdentity(string sUserPrincipalName);
 public static WindowsIdentity GetAnonymous();
 public static WindowsIdentity GetCurrent();
 public virtual bool IsAnonymous
 {get;}
 public virtual bool IsAuthenticated
 {get;}
 public virtual string Name
 {get;}
 //More members
}

The IsAnonymous Boolean property indicates whether the underlying identity is
anonymous and the GetAnonymous() method returns an anonymous Windows identity,
typically used for impersonation to mask the real identity:

WindowsIdentity identity = WindowsIdentity.GetAnonymous();
Debug.Assert(identity.Name == "");
Debug.Assert(identity.IsAuthenticated == false);
Debug.Assert(identity.IsAnonymous == true);

The GetCurrent() static method returns the identity of the process where it is called.
That identity is always non-anonymous and authenticated:

WindowsIdentity currentIdentity = WindowsIdentity.GetCurrent();
Debug.Assert(currentIdentity.Name != "");
Debug.Assert(currentIdentity.IsAuthenticated == true);
Debug.Assert(currentIdentity.IsAnonymous == false);

The Security Call Context
Every operation on a secured WCF service has a security call context. The security call
context is represented by the class ServiceSecurityContext, defined as:

public class ServiceSecurityContext
{
 public static ServiceSecurityContext Current
 {get;}
 public bool IsAnonymous
 {get;}
 public IIdentity PrimaryIdentity
 {get;}
 public WindowsIdentity WindowsIdentity
 {get;}
 //More members
}

548 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

The main use for the security call context is for custom security mechanisms, as well
as analysis and auditing. While it is presented here in the context of the intranet sce-
nario, all other secured scenarios have use for the security call context as well.

Note that in spite of its name, this is the security context of the call, not the service.
Two operations on the same service can definitely have different security call contexts.

The security call context is stored in the TLS, so every method on every object down
the call chain from the service can access the security call context, including your service
constructor. To obtain your current security call context, simply access the Current
static property. Another way of accessing the security call context is via the
ServiceSecurityContext property of the OperationContext:

public sealed class OperationContext : ...
{
 public ServiceSecurityContext ServiceSecurityContext
 {get;}
 //More members
}

Regardless of which mechanism you use, you will get the same object:

ServiceSecurityContext context1 = ServiceSecurityContext.Current;
ServiceSecurityContext context2 = OperationContext.Current.ServiceSecurityContext;
Debug.Assert(context1 == context2);

Your service has a security call context only if security is enabled. When
security is disabled, ServiceSecurityContext.Current returns null.

The PrimaryIdentity property of ServiceSecurityContext contains the identity of the
immediate client up the call chain. If the client is unauthenticated, PrimaryIdentity will
reference an implementation of IIdentity with a blank identity. When Windows
authentication is used, the PrimaryIdentity property will be set to an instance of
WindowsIdentity.

The WindowsIdentity property is meaningful only when using Windows authentication,
and it will always be of the type WindowsIdentity. When valid Windows credentials are
provided, the WindowsIdentity property will contain the corresponding client identity
and will match the value of PrimaryIdentity.

The constructor of a singleton service does not have a security call con-
text, since it is called when the host is launched, not as a result of a client
call.

Intranet Application Scenario | 549

Download from Library of Wow! eBook <www.wowebook.com>

Impersonation
Some resources, such as the file system, SQL Server, sockets, and even DCOM objects,
grant access to themselves based on the caller’s security token. Typically, the host
process is assigned an identity with elevated permissions that are required to access
such resources, so that it can function properly. Clients, however, typically have re-
stricted credentials compared with those of the service. Legacy technologies such as
unmanaged Visual Basic or C++ did not offer role-based security support, so developers
used impersonation to address this credentials gap. Impersonation lets the service as-
sume the client’s identity, primarily in order to verify whether the client is authorized
to perform the work it’s asking the service to do. Impersonation has a number of key
detrimental effects on your application, which will be discussed at the end of this sec-
tion. Instead of impersonation, you should apply role-based security to authorize the
callers, coupled with a trusted subsystem pattern across layers. That said, many devel-
opers are used to designing systems using impersonation, so both .NET and WCF
support this technique.

Manual impersonation

The service can impersonate its calling client by calling the Impersonate() method of
the WindowsIdentity class:

public class WindowsIdentity : IIdentity,...
{
 public virtual WindowsImpersonationContext Impersonate();
 //More members
}
public class WindowsImpersonationContext : IDisposable
{
 public void Dispose();
 public void Undo();
}

Impersonate() returns an instance of WindowsImpersonationContext containing the serv-
ice’s previous identity. To revert back to that identity, the service calls the Undo()
method. To impersonate a client, the service needs to call Impersonate() on the identity
of the caller, which is available via the WindowsIdentity property of its security call
context, as shown in Example 10-4.

Example 10-4. Explicit impersonation and reversion

class MyService : IMyContract
{
 public void MyMethod()
 {
 WindowsImpersonationContext impersonationContext =
 ServiceSecurityContext.Current.WindowsIdentity.Impersonate();
 try
 {
 /* Do work as client */

550 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 }
 finally
 {
 impersonationContext.Undo();
 }
 }
}

Note in Example 10-4 that the call to Undo() is in the finally statement, so the service
will revert to its old identity even if exceptions occur. To somewhat simplify reverting,
the WindowsImpersonationContext implementation of Dispose() also reverts, which en-
ables you to use it in a using statement:

public void MyMethod()
{
 using(ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 /* Do work as client */
 }
}

Declarative impersonation

Instead of impersonating manually, you can instruct WCF to automatically imperso-
nate the caller of the method. The OperationBehavior attribute offers the Impersona
tion property of the enum type ImpersonationOption:

public enum ImpersonationOption
{
 NotAllowed,
 Allowed,
 Required
}
[AttributeUsage(AttributeTargets.Method)]
public sealed class OperationBehaviorAttribute : Attribute,IOperationBehavior
{
 public ImpersonationOption Impersonation
 {get;set;}
 //More members
}

The default value is ImpersonationOption.NotAllowed. This value indicates that WCF
should not auto-impersonate, but you can write code (as in Example 10-4) that ex-
plicitly impersonates.

ImpersonationOption.Allowed instructs WCF to automatically impersonate the caller
whenever Windows authentication is used, but it has no effect with other authentica-
tion mechanisms. When WCF auto-impersonates, it will also auto-revert to the previ-
ous service identity once the method returns.

The ImpersonationOption.Required value mandates the use of Windows authentication
and will throw an exception if any other authentication mechanism is used. As its name

Intranet Application Scenario | 551

Download from Library of Wow! eBook <www.wowebook.com>

implies, with this setting WCF will always auto-impersonate (and revert) in every call
to the operation:

class MyService : IMyContract
{
 [OperationBehavior(Impersonation = ImpersonationOption.Required)]
 public void MyMethod()
 {
 /* Do work as client */
 }
}

Note that there is no way to use declarative impersonation with the service constructor
because you cannot apply the OperationBehavior attribute on a constructor. Construc-
tors can only use manual impersonation. If you do impersonate in the constructor,
always revert as well in the constructor, to avoid side effects on the operations of the
service (and even other services in the same host).

Impersonating all operations

In the event that you need to enable impersonation in all the service operations, the
ServiceHostBase class has the Authorization property of the type ServiceAuthoriza
tionBehavior:

public abstract class ServiceHostBase : ...
{
 public ServiceAuthorizationBehavior Authorization
 {get;}
 //More members
}
public sealed class ServiceAuthorizationBehavior : IServiceBehavior
{
 public bool ImpersonateCallerForAllOperations
 {get;set;}
 //More members
}

ServiceAuthorizationBehavior provides the Boolean property ImpersonateCallerFor
AllOperations, which is false by default. Contrary to what its name implies, when set
to true, this property merely verifies that the service does not have any operations
configured with ImpersonationOption.NotAllowed. This constraint is verified at service
load time, yielding an InvalidOperationException when violated.

In effect, when Windows authentication is used, this will amount to the service auto-
matically impersonating the client in all operations, but all the operations must be
explicitly decorated with ImpersonationOption.Allowed or ImpersonationOption.Requi
red. ImpersonateCallerForAllOperations has no effect on constructors.

You can set the ImpersonateCallerForAllOperations property programmatically or in
the config file. If you set it programmatically, you can do so only before opening the
host:

552 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

ServiceHost host = new ServiceHost(typeof(MyService));
host.Authorization.ImpersonateCallerForAllOperations = true;
host.Open();

If you set it using a config file, you need to reference the matching service behavior in
the service declaration:

<services>
 <service name = "MyService" behaviorConfiguration= "ImpersonateAll">
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "ImpersonateAll">
 <serviceAuthorization impersonateCallerForAllOperations = "true"/>
 </behavior>
 </serviceBehaviors>
</behaviors>

To automate impersonating in all operations without the need to apply the Operation
Behavior attribute on every method, I wrote the SecurityHelper static class, with the
ImpersonateAll() extension methods:

public static class SecurityHelper
{
 public static void ImpersonateAll(this ServiceHostBase host);
 public static void ImpersonateAll(this ServiceDescription description);
 //More members
}

The extension methods work on both ServiceHost and ServiceHost<T>.

You can only call ImpersonateAll() before opening the host:

//Will impersonate in all operations
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}
ServiceHost host = new ServiceHost(typeof(MyService));
host.ImpersonateAll();
host.Open();

Example 10-5 shows the implementation of ImpersonateAll().

Example 10-5. Implementing SecurityHelper.ImpersonateAll()

public static class SecurityHelper
{
 public static void ImpersonateAll(this ServiceHostBase host)
 {
 host.Authorization.ImpersonateCallerForAllOperations = true;
 host.Description.ImpersonateAll();
 }
 public static void ImpersonateAll(this ServiceDescription description)

Intranet Application Scenario | 553

Download from Library of Wow! eBook <www.wowebook.com>

 {
 foreach(ServiceEndpoint endpoint in description.Endpoints)
 {
 if(endpoint.Contract.Name == "IMetadataExchange")
 {
 continue;
 }
 foreach(OperationDescription operation in endpoint.Contract.Operations)
 {
 OperationBehaviorAttribute attribute = operation.Behaviors.
 Find<OperationBehaviorAttribute>();
 attribute.Impersonation = ImpersonationOption.Required;
 }
 }
 }
 //More members
}

In Example 10-5, ImpersonateAll() (for the sake of good manners) first sets the
ImpersonateCallerForAllOperations property of the provided host to true, then obtains
the service description from the host and calls the other overloaded extension method
of ServiceDescription. This version explicitly configures all operations with
ImpersonationOption.Required, by iterating over the endpoints collection of the service
description. For each endpoint (except the metadata exchange endpoints),
ImpersonateAll() accesses the operations collection of the contract. For each operation,
there is always exactly one OperationBehaviorAttribute in the collection of operation
behaviors, even if you did not provide one explicitly. The method then simply sets the
Impersonation property to ImpersonationOption.Required.

Restricting impersonation

Authorization and authentication protect the service from being accessed by unau-
thorized, unauthenticated, potentially malicious clients. However, how should the cli-
ent be protected from malicious services? One of the ways an adversarial service could
abuse the client is by assuming the client’s identity and credentials and causing harm
while masquerading as the client. This tactic enables the malicious service both to leave
an identity trail pointing back to the client and to elevate its own potentially demoted,
less-privileged credentials to the client’s level.

In some cases, the client may not want to allow the service to obtain its identity at all.
WCF therefore lets the client indicate the degree to which the service can obtain the
client’s identity and how it can use it. Impersonation is actually a range of options
indicating the level of trust between the client and the service. The WindowsClient
Credential class provides the AllowedImpersonationLevel enum of the type
TokenImpersonationLevel, found in the System.Security.Principal namespace:

public enum TokenImpersonationLevel
{
 None,
 Anonymous,

554 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 Identification,
 Impersonation,
 Delegation
}
public sealed class WindowsClientCredential
{
 public TokenImpersonationLevel AllowedImpersonationLevel
 {get;set;}
 //More members
}

The client can use AllowedImpersonationLevel to restrict the allowed impersonation
level both programmatically and administratively. For example, to programmatically
restrict the impersonation level to TokenImpersonationLevel.Identification, before
opening the proxy the client would write:

MyContractClient proxy = new MyContractClient();
proxy.ClientCredentials.Windows.AllowedImpersonationLevel =
 TokenImpersonationLevel.Identification;
proxy.MyMethod();
proxy.Close();

When using a config file, the administrator should define the allowed impersonation
level as a custom endpoint behavior and reference it from the relevant endpoint section:

<client>
 <endpoint behaviorConfiguration = "ImpersonationBehavior"
 ...
 />
</client>
<behaviors>
 <endpointBehaviors>
 <behavior name = "ImpersonationBehavior">
 <clientCredentials>
 <windows allowedImpersonationLevel = "Identification"/>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
</behaviors>

TokenImpersonationLevel.None simply means that no impersonation level is assigned,
so the client provides no identity information. This setting therefore amounts to the
same thing as TokenImpersonationLevel.Anonymous, where the client provides no cre-
dentials at all. These two values are, of course, the safest from the client’s perspective,
but they are the least useful options from the application’s perspective, since the service
cannot perform any authentication or authorization. Not sharing credentials is possible
only if the service is configured for anonymous access or for having no security, which
is not the case with the intranet scenario. If the service is configured for Windows
security, these two values yield an ArgumentOutOfRangeException on the client side.

With TokenImpersonationLevel.Identification, the service can identify the client (i.e.,
obtain the security identity of the calling client). The service, however, is not allowed
to impersonate the client—everything the service does must be done under the service’s

Intranet Application Scenario | 555

Download from Library of Wow! eBook <www.wowebook.com>

own identity. Trying to impersonate will throw an ArgumentOutOfRangeException on the
service side. Note, however, that if the service and the client are on the same machine,
the service will still be able to impersonate the client, even when TokenImpersonation
Level.Identification is used. TokenImpersonationLevel.Identification is the default
value used with Windows security and is the recommended value for the intranet
scenario.

TokenImpersonationLevel.Impersonation grants the service permission both to obtain
the client’s identity and to impersonate the client. Impersonation indicates a great deal
of trust between the client and the service, since the service can do anything the client
can do, even if the service host is configured to use a less privileged identity. The only
difference between the real client and the impersonating service is that if the service is
on a separate machine from the client, it cannot access resources or objects on other
machines as the client, because the service machine does not really have the client’s
password. In the case where the service and the client are on the same machine, the
service impersonating the client can make one network hop to another machine, since
the machine it resides on can still authenticate the impersonated client identity.

Finally, TokenImpersonationLevel.Delegation provides the service with the client’s Ker-
beros ticket. In this case, the service can freely access resources on any machine as the
client. If service is also configured for delegation, when it calls other downstream serv-
ices the client’s identity could be propagated further and further down the call chain.
Delegation-required Kerberos authentication is not possible on Windows workgroup
installations. Both the client and server user accounts must be properly configured in
Active Directory to support delegation, due to the enormous trust (and hence security
risk) involved. Delegation uses by default another security service called cloaking, which
propagates the caller’s identity along the call chain.

Delegation is extremely dangerous from the client’s perspective, since the client has no
control over who ends up using its identity, or where. When the impersonation level
is set to TokenImpersonationLevel.Impersonation, the client takes a calculated risk: it
knows which services it is accessing, and if those services are on a different machine,
the client identity cannot propagate across the network. I consider delegation some-
thing that enables the service not just to impersonate the client, but to act as an im-
poster; security-wise, as far as the client is concerned, this is tantamount to waiving
security.

Avoiding impersonation

You should design your services so that they do not rely on impersonation, and your
clients should use TokenImpersonationLevel.Identification. Impersonation is a relic
of the ’90s, typically used in classic two-tier systems in the absence of role-based security
support, where scalability was not a concern and managing a small number of identities
across resources was doable.

556 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

As a general design guideline, the further down the call chain from the client, the less
relevant the client’s identity is. If you use some kind of layered approach in your system
design, each layer should run under its own identity, authenticate its immediate callers,
and implicitly trust its calling layer to authenticate its callers, thereby maintaining a
chain of trusted, authenticated callers. This is called the trusted subsystem pattern.
Impersonation, on the other hand, requires you to keep propagating the identity further
and further down the call chain, all the way to the underlying resources. Doing so
impedes scalability, because many resources (such as SQL Server connections) are al-
located per identity. With impersonation, you will need as many resources as clients,
and you will not be able to benefit from resource pooling (such as connection pooling).
Impersonation also complicates resource administration, because you need to grant
access to the resources to all of the original client identities, and there could be nu-
merous such identities to manage. A service that always runs under its own identity
poses no such problems, regardless of how many identities access that service. To con-
trol access to the resources, you should use authorization, as discussed next.

Multitier systems that do use impersonation typically gravitate toward delegation, since
that is the only way to propagate the client identities across tiers and machines. In fact,
the main reason developers today use impersonation has little to do with resource
access authorization (which can easily be accomplished with role-based security); in-
stead, it is used as a mechanism for auditing and identity propagation. If the application
is required to provide at lower layers the identity of the topmost client or all clients up
the chain, impersonation (if not full-fledged delegation) may look like a viable option.
There are three good solutions for these requirements. First, if the business use cases
require you to provide the top-level identity to downstream parties, there is nothing
wrong with providing it as explicit method arguments since they are part of the required
behavior of the system. The second solution is to use security audits (discussed later)
and leave a trail across the call chain. At any point, you can reconstruct that chain of
identities from the local audits. The third option is to propagate the identity of the
original caller (or the entire stack of callers) in the message headers. Doing that trans-
parently across the call chain requires passing the identities out-of-band in the headers
and using the elegant generic interception technique described in Appendix E.
ServiceModelEx contains those helper classes (look for SecurityCallStackClient
Base<T>, OperationSecurityCallStackAttribute, and SecurityCallStackBehav
iorAttribute).

Finally, relying on impersonation precludes non-Windows authentication mecha-
nisms. If you do decide to use impersonation, use it judiciously and only as a last resort,
when there is no other, better design approach.

Impersonation is not possible with queued services.

Intranet Application Scenario | 557

Download from Library of Wow! eBook <www.wowebook.com>

Authorization
While authentication deals with verifying that the client is indeed who the client claims
to be, most applications also need to verify that the client (or more precisely, the identity
it presents) has permission to perform the operation. Since it would be impractical to
program access permissions for each individual identity, it is better to grant permissions
to the roles clients play in the application domain. A role is a symbolic category of
identities that share the same security privileges. When you assign a role to an appli-
cation resource, you are granting access to that resource to anyone who is a member
of that role. Discovering the roles clients play in your business domain is part of your
application-requirements analysis and design, just like factoring services and interfaces.
By interacting with roles instead of particular identities, you isolate your application
from changes made in real life, such as adding new users, moving existing users between
positions, promoting users, or users leaving their jobs. .NET allows you to apply
role-based security both declaratively and programmatically, if the need to verify role
membership is based on a dynamic decision.

The security principal

For security purposes, it is convenient to lump together an identity and the information
about its role membership. This representation is called the security principal.

The principal in .NET is any object that implements the IPrincipal interface, defined
in the System.Security.Principal namespace:

public interface IPrincipal
{
 IIdentity Identity
 {get;}
 bool IsInRole(string role);
}

The IsInRole() method simply returns true if the identity associated with this principal
is a member of the specified role, and false otherwise. The Identity read-only property
provides access to read-only information about the identity, in the form of an object
implementing the IIdentity interface. Out of the box, .NET offers several implemen-
tations of IPrincipal. GenericPrincipal is a general-purpose principal that has to be
preconfigured with the role information. It is typically used when no authorization
is required, in which case GenericPrincipal wraps a blank identity. The
WindowsPrincipal class looks up role membership information inside the Windows NT
groups.

Every .NET thread has a principal object associated with it, obtained via the Current
Principal static property of the Thread class:

public sealed class Thread
{
 public static IPrincipal CurrentPrincipal
 {get;set;}

558 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

For example, here is how to discover the username as well as whether or not the caller
was authenticated:

IPrincipal principal = Thread.CurrentPrincipal;
string userName = principal.Identity.Name;
bool isAuthenticated = principal.Identity.IsAuthenticated;

Selecting an authorization mode

As presented earlier, the ServiceHostBase class provides the Authorization property of
the type ServiceAuthorizationBehavior. ServiceAuthorizationBehavior has the
PrincipalPermissionMode property of the enum type PrincipalPermissionMode,
defined as:

public enum PrincipalPermissionMode
{
 None,
 UseWindowsGroups,
 UseAspNetRoles,
 Custom
}
public sealed class ServiceAuthorizationBehavior : IServiceBehavior
{
 public PrincipalPermissionMode PrincipalPermissionMode
 {get;set;}
 //More members
}

Before opening the host, you can use the PrincipalPermissionMode property to select
the principal mode; that is, which type of principal to install to authorize the caller.

If PrincipalPermissionMode is set to PrincipalPermissionMode.None, principal-based
authorization is impossible. After authenticating the caller (if authentication is required
at all), WCF installs GenericPrincipal with a blank identity and attaches it to the thread
that invokes the service operation. That principal will be available via Thread.Current
Principal.

When PrincipalPermissionMode is set to PrincipalPermissionMode.UseWindowsGroups,
WCF installs a WindowsPrincipal with an identity matching the provided credentials.
If no Windows authentication took place (because the service did not require it), WCF
will install a WindowsPrincipal with a blank identity.

PrincipalPermissionMode.UseWindowsGroups is the default value of the Principal
PermissionMode property, so these two definitions are equivalent:

ServiceHost host1 = new ServiceHost(typeof(MyService));

ServiceHost host2 = new ServiceHost(typeof(MyService));
host2.Authorization.PrincipalPermissionMode =
 PrincipalPermissionMode.UseWindowsGroups;

Intranet Application Scenario | 559

Download from Library of Wow! eBook <www.wowebook.com>

When using a config file, you need to reference a custom behavior section assigning
the principal mode:

<services>
 <service name = "MyService" behaviorConfiguration = "WindowsGroups">
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "WindowsGroups">
 <serviceAuthorization principalPermissionMode = "UseWindowsGroups"/>
 </behavior>
 </serviceBehaviors>
</behaviors>

Declarative role-based security

You apply service-side declarative role-based security using the attribute Principal
PermissionAttribute, defined in the System.Security.Permissions namespace:

public enum SecurityAction
{
 Demand,
 //More members
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public sealed class PrincipalPermissionAttribute : CodeAccessSecurityAttribute
{
 public PrincipalPermissionAttribute(SecurityAction action);

 public bool Authenticated
 {get;set; }
 public string Name
 {get;set;}
 public string Role
 {get;set;}
 //More members
}

The PrincipalPermission attribute lets you declare the required role membership. For
the intranet scenario, when you specify a Windows NT group as a role, you don’t have
to prefix the role name with your domain or machine name (if you wish to authorize
against its roles). You can also explicitly specify another domain, if you have a trust
relationship with it.

In Example 10-6, the declaration of the PrincipalPermission attribute grants access to
MyMethod() only to callers whose identities belong to the Managers group.

Example 10-6. Declarative role-based security on the intranet

[ServiceContract]
interface IMyContract

560 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 [PrincipalPermission(SecurityAction.Demand,Role = "Manager")]
 public void MyMethod()
 {...}
}

If the caller is not a member of that role, .NET throws an exception of type
SecurityException.

When experimenting with Windows role-based security, you often add
users to or remove users from user groups. Because Windows caches
user-group information at login time, the changes you make are not
reflected until the next login.

If multiple roles are allowed to access the method, you can apply the attribute multiple
times:

[PrincipalPermission(SecurityAction.Demand,Role = "Manager")]
[PrincipalPermission(SecurityAction.Demand,Role = "Customer")]
public void MyMethod()
{...}

When multiple PrincipalPermission attributes are used, .NET verifies that the caller
is a member of at least one of the demanded roles. If you want to verify that the caller
is a member of both roles, you need to use programmatic role membership checks,
discussed later.

While the PrincipalPermission attribute by its very definition can be applied on meth-
ods and classes, in a WCF service class you can apply it only on methods. The reason
is that in WCF, unlike with normal classes, the service class constructor always executes
under a GenericPrincipal with a blank identity, regardless of the authentication mech-
anisms used. As a result, the identity under which the constructor is running is unau-
thenticated and will always fail any kind of authorization attempt (even if the client is
a member of the role and even when not using Windows NT groups):

//Will always fail
[PrincipalPermission(SecurityAction.Demand,Role = "...")]
class MyService : IMyContract
{...}

Avoid sensitive work that requires authorization in the service con-
structor. With a per-call service, perform such work in the operations
themselves, and with a sessionful service, provide a dedicated
Initialize() operation where you can initialize the instance and au-
thorize the callers.

Intranet Application Scenario | 561

Download from Library of Wow! eBook <www.wowebook.com>

By setting the Name property of the PrincipalPermission attribute, you can even insist
on granting access only to a particular user:

[PrincipalPermission(SecurityAction.Demand,Name = "John")]

or to a particular user that is a member of a particular role:

[PrincipalPermission(SecurityAction.Demand,Name = "John",
 Role = "Manager")]

These practices are inadvisable, however, because it is best to avoid hardcoding
usernames.

Declarative role-based security hardcodes the role name. If your appli-
cation looks up role names dynamically you have to use programmatic
role verification, as presented next.

Programmatic role-based security

Sometimes you need to programmatically verify role membership. Usually, you need
to do that when the decision as to whether to grant access depends both on role mem-
bership and on some other values known only at call time, such as parameter values,
time of day, and location. Another case in which programmatic role membership ver-
ification is needed is when you’re dealing with localized user groups. To demonstrate
the first category, imagine a banking service that lets clients transfer sums of money
between two specified accounts. Only customers and tellers are allowed to call the
TransferMoney() operation, with the following business rule: if the amount transferred
is greater than 50,000, only tellers are allowed to do the transfer. Declarative role-based
security can verify that the caller is either a teller or a customer, but it cannot enforce
the additional business rule. For that, you need to use the IsInRole() method of
IPrincipal, as shown in Example 10-7.

Example 10-7. Programmatic role-based security

[ServiceContract]
interface IBankAccounts
{
 [OperationContract]
 void TransferMoney(double sum,long sourceAccount,long destinationAccount);
}
static class AppRoles
{
 public const string Customer = "Customer";
 public const string Teller = "Teller";
}
class BankService : IBankAccounts
{

 [PrincipalPermission(SecurityAction.Demand,Role = AppRoles.Customer)]
 [PrincipalPermission(SecurityAction.Demand,Role = AppRoles.Teller)]

562 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 public void TransferMoney(double sum,long sourceAccount,long destinationAccount)
 {
 IPrincipal principal = Thread.CurrentPrincipal;
 Debug.Assert(principal.Identity.IsAuthenticated);

 bool isCustomer = principal.IsInRole(AppRoles.Customer);
 bool isTeller = principal.IsInRole(AppRoles.Teller);

 if(isCustomer && ! isTeller)
 {
 if(sum > 50000)
 {
 string message = "Caller does not have sufficient authority to" +
 "transfer this sum";
 throw new SecurityException(message);
 }
 }
 DoTransfer(sum,sourceAccount,destinationAccount);
 }
 //Helper method
 void DoTransfer(double sum,long sourceAccount,long destinationAccount)
 {...}
}

Example 10-7 also demonstrates a number of other points. First, even though it uses
programmatic role membership verification with the value of the sum argument, it still
uses declarative role-based security as the first line of defense, allowing access only to
clients who are members of the Customer or Teller roles. Second, you can program-
matically assert that the caller is authenticated using the IsAuthenticated property of
IIdentity. Finally, note the use of the AppRoles static class to encapsulate the actual
string used for the role to avoid hardcoding the roles in multiple places.

There is a complete disconnect between role-based security and the ac-
tual principal type. When the PrincipalPermission attribute is asked to
verify role membership, it simply gets hold of its thread’s current prin-
cipal in the form of IPrincipal, and calls its IsInRole() method. This is
also true of programmatic role membership verification that uses only
IPrincipal, as shown in Example 10-7. The separation of the
IPrincipal interface from its implementation is the key to providing
other role-based security mechanisms besides Windows NT groups, as
you will see in the other scenarios.

Identity Management
In the intranet scenario, after successful authentication, WCF will attach to the oper-
ation thread a principal identity of the type WindowsIdentity, which will have the value
of its Name property set to the username (or Windows account) provided by the client.
Since valid credentials are provided, the security call context’s two identities—the pri-
mary identity and the Windows identity—will be set to the same identity as the

Intranet Application Scenario | 563

Download from Library of Wow! eBook <www.wowebook.com>

principal identity. All three identities will be considered authenticated. The identities
and their values are shown in Table 10-4.

Table 10-4. Identity management in the intranet scenario

Identity Type Value Authenticated

Thread principal WindowsIdentity Username Yes

Security context primary WindowsIdentity Username Yes

Security context Windows WindowsIdentity Username Yes

Windows Roles Localization
If your application is deployed in international markets and you use Windows groups
as roles, it’s likely the role names will not match. In the intranet scenario, the principal
object attached to the thread accessing the service is of the type WindowsPrincipal:

public class WindowsPrincipal : IPrincipal
{
 public WindowsPrincipal(WindowsIdentity ntIdentity);

 //IPrincipal implementation
 public virtual IIdentity Identity
 {get;}
 public virtual bool IsInRole(string role);

 //Additional methods:
 public virtual bool IsInRole(int rid);
 public virtual bool IsInRole(WindowsBuiltInRole role);
}

WindowsPrincipal provides two additional IsInRole() methods that are intended to ease
the task of localizing Windows NT groups. You can provide IsInRole() with an
enum of the type WindowsBuiltInRole matching the built-in NT roles, such as
WindowsBuiltInRole.Administrator or WindowsBuiltInRole.User. The other version of
IsInRole() accepts an integer indexing specific roles. For example, a role index of 512
maps to the Administrators group. The MSDN Library contains a list of both the pre-
defined indexes and ways to provide your own aliases and indexes to user groups.

Note that while the host processes retain their designated identities, the principal iden-
tity will be that of the caller. I call this behavior soft impersonation. When it is used in
conjunction with role-based security, it largely negates the need to ever perform real
impersonation and replace the security token with that of the client.

Callbacks
When it comes to security on the intranet, there are several key differences between
normal service operations and callbacks. First, with a callback contract you can only
assign a protection level at the operation level, not the callback contract level. For
example, this protection-level constraint will be ignored:

564 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{...}

//Demand for protection level will be ignored
[ServiceContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]
interface IMyContractCallback
{...}

Only the service contract designating the callback contract can set a contract-level pro-
tection constraint. WCF deliberately ignores the service contract attribute on the
callback contract (as explained in Chapter 5) to avoid a potential conflict between two
contract attributes that apply to the same channel.

You can take advantage of operation-level demand for a protection level as follows:

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{...}

interface IMyContractCallback
{
 [OperationContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]
 void OnCallback();
}

All calls into the callback object come in with an unauthenticated principal, even if
Windows security was used across the board to invoke the service. As a result, the
principal identity will be set to a Windows identity with a blank identity, which will
preclude authorization and role-based security.

While the callback does have a security call context, the Windows identity will be set
to a WindowsIdentity instance with a blank identity, which will preclude impersonation.
The only meaningful information will be in the primary identity, which will be set to
the service host’s process identity and machine name:

class MyClient : IMyContractCallback
{
 public void OnCallback()
 {
 IPrincipal principal = Thread.CurrentPrincipal;
 Debug.Assert(principal.Identity.IsAuthenticated == false);

 ServiceSecurityContext context = ServiceSecurityContext.Current;
 Debug.Assert(context.PrimaryIdentity.Name == "MyHost/localhost");

 Debug.Assert(context.IsAnonymous == false);
 }
}

I recommend avoiding any sensitive work in the callback, since you cannot easily use
role-based security.

Intranet Application Scenario | 565

Download from Library of Wow! eBook <www.wowebook.com>

Internet Application Scenario
In the Internet scenario, the clients or services may not be using WCF, or even Win-
dows. If you are writing an Internet service or client, you cannot assume the use of
WCF on the other end. In addition, an Internet application typically has a relatively
large number of clients calling the service. These client calls originate from outside the
firewall. You need to rely on HTTP for transport, and multiple intermediaries are pos-
sible. In an Internet application, you typically do not want to use Windows accounts
and groups for credentials; instead, the application needs to access some custom
credentials store. That said, you could still be using Windows security, as demonstrated
later.

Securing the Internet Bindings
In an Internet application, you must use Message security for the transfer security mode
to provide for end-to-end security across all intermediaries. The client should provide
credentials in the form of a username and password, as this is a safe, low common
denominator that all platforms support. For the Internet scenario, you should use the
WSHttpBinding. You cannot use the basic binding because it does not provide for user-
name credentials over Message security. In addition, if you have an intranet application
that uses the NetTcpBinding but you do not wish to use Windows security for user
accounts and groups, you should follow the same configuration as with the WS-based
binding. This is done uniformly across these bindings by selecting MessageCredential
Type.Username for the client credentials type used with Message security. You need to
configure the bindings this way both at the client and at the service.

WSHttpBinding configuration

WSHttpBinding offers the Security property of the type WSHttpSecurity:

public class WSHttpBinding : WSHttpBindingBase
{
 public WSHttpBinding();
 public WSHttpBinding(SecurityMode securityMode);
 public WSHttpSecurity Security
 {get;}
 //More members
}

With WSHttpSecurity, you need to set the Mode property of the type SecurityMode to
SecurityMode.Message. The Message property of WSHttpSecurity will then take effect:

public sealed class WSHttpSecurity
{
 public SecurityMode Mode
 {get;set;}
 public NonDualMessageSecurityOverHttp Message
 {get;}
 public HttpTransportSecurity Transport

566 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 {get;}
}

Message is of the type NonDualMessageSecurityOverHttp, which derives from Message
SecurityOverHttp:

public class MessageSecurityOverHttp
{
 public MessageCredentialType ClientCredentialType
 {get;set;}
 //More members
}
public sealed class NonDualMessageSecurityOverHttp : MessageSecurityOverHttp
{...}

You need to set the ClientCredentialType property of MessageSecurityOverHttp to
MessageCredentialType.Username. Recall that the default Message security credentials
type of the WSHttpBinding is Windows (see Table 10-3).

Because Message security is the default security mode of the WSHttpBinding (see
Table 10-1), these three definitions are equivalent:

WSHttpBinding binding1 = new WSHttpBinding();
binding1.Security.Message.ClientCredentialType = MessageCredentialType.UserName;

WSHttpBinding binding2 = new WSHttpBinding(SecurityMode.Message);
binding2.Security.Message.ClientCredentialType = MessageCredentialType.UserName;

WSHttpBinding binding3 = new WSHttpBinding();
binding3.Security.Mode = SecurityMode.Message;
binding3.Security.Message.ClientCredentialType = MessageCredentialType.UserName;

You can achieve the same configuration using a config file as follows:

<bindings>
 <wsHttpBinding>
 <binding name = "UserNameWS">
 <security mode = "Message">
 <message clientCredentialType = "UserName"/>
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

Or, since Message security is the default, you can omit explicitly setting the mode in
the config file:

<bindings>
 <wsHttpBinding>
 <binding name = "UserNameWS">
 <security>
 <message clientCredentialType = "UserName"/>
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

Internet Application Scenario | 567

Download from Library of Wow! eBook <www.wowebook.com>

Figure 10-4 shows the security-related elements of the WSHttpBinding.

WSHttpBinding has a reference to WSHttpSecurity, which uses the SecurityMode enum to
indicate the transfer security mode. When Transport security is used, WSHttpSecurity
will use an instance of HttpTransportSecurity. When Message security is used,
WSHttpSecurity will use an instance of NonDualMessageSecurityOverHttp containing the
client credentials type via the MessageCredentialType enum.

Message Protection
Since in the Internet scenario the client’s message is transferred to the service over plain
HTTP, it is vital to protect its content (both the client’s credentials and the body of the
message) by encrypting it. Encryption will provide for message integrity and privacy.
One technical option for encryption is to use the client’s password. However, WCF
never uses this option, for a number of reasons. First, there are no guarantees that the
password is strong enough, so anyone monitoring the communication could potentially
break the encryption using a dictionary attack. Second, this approach forces the service
(or more precisely, its host) to have access to the password, thus coupling the host to
the credentials store. Finally, while the password may protect the message, it will not
authenticate the service to the client.

Instead, to protect the message, WCF uses an X509 certificate. The certificate provides
strong protection, and it authenticates the service to the client. A certificate works by
using two keys, called the public and private keys, as well as a common name (CN) such
as “MyCompanyCert.” What is important about those keys is that anything encrypted
with the public key can only be decrypted with the matching private one. The certificate
contains the public key and the common name, and the private key is kept in some
secure storage on the host machine to which the host has access. The host makes the
certificate (and its public key) publicly available, so any client can access the host’s
endpoints and obtain the public key.

Figure 10-4. WSHttpBinding and security

568 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

In a nutshell, what happens during a call is that WCF on the client’s side uses the public
key to encrypt all messages to the service. Upon receiving the encrypted message, WCF
decrypts the message on the host side using the private key. Once the message is de-
crypted, WCF will read the client’s credentials from the message, authenticate the cli-
ent, and allow it to access the service. The real picture is a bit more complex, because
WCF also needs to secure the reply messages and callbacks from the service to the
client. One of the standards WCF supports deals with setting up such a secure
conversation. In fact, several calls are made before the first request message from the
client to the service, where WCF on the client’s side generates a temporary shared secret
it passes encrypted (using the service certificate) to the service. The client and the service
will use that shared secret to protect all subsequent communication between them.

Configuring the host certificate

The ServiceHostBase class offers the Credentials property of the type Service
Credentials. ServiceCredentials is a service behavior:

public abstract class ServiceHostBase : ...
{
 public ServiceCredentials Credentials
 {get;}
 //More members
}
public class ServiceCredentials : ...,IServiceBehavior
{
 public X509CertificateRecipientServiceCredential ServiceCertificate
 {get;}
 //More members
}

ServiceCredentials provides the ServiceCertificate property of the type X509
CertificateRecipientServiceCredential:

public sealed class X509CertificateRecipientServiceCredential
{
 public void SetCertificate(StoreLocation storeLocation,
 StoreName storeName,
 X509FindType findType,
 object findValue);
 //More members
}

You can use the SetCertificate() method to instruct WCF where and how to load the
service certificate. You typically provide this information in the host config file as a
custom behavior under the serviceCredentials section, as shown in Example 10-8.

Example 10-8. Configuring the service certificate

<services>
 <service name = "MyService" behaviorConfiguration = "Internet">
 ...
 </service>

Internet Application Scenario | 569

Download from Library of Wow! eBook <www.wowebook.com>

</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "Internet">
 <serviceCredentials>
 <serviceCertificate
 findValue = "MyServiceCert"
 storeLocation = "LocalMachine"
 storeName = "My"
 x509FindType = "FindBySubjectName"
 />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>

Using the host certificate

The client developer can obtain the service certificate using any out-of-band mechanism
(such as email, or via a public web page). The client can then include in its config file
in the endpoint behavior section detailed information about the service certificate, such
as where it is stored on the client side and how to find it. This is by far the most secure
option from the client’s perspective, because any attempt to subvert the client’s address
resolving and redirect the call to a malicious service will fail since the other service will
not have the correct certificate. This is the least flexible option as well, however, because
every time the client needs to interact with a different service, the client administrator
will need to rework the client’s config file.

A reasonable alternative to explicitly referencing the certificates of all services the client
may interact with is to store those certificates in the client’s Trusted People certificate
folder. The administrator can then instruct WCF to allow calls only to services whose
certificates are in that folder. In that case, the client will need to obtain the service
certificate at runtime as part of the initial pre-call negotiation, check to see whether it
is in the Trusted People store, and, if so, proceed to use it to protect the message. This
certificate negotiation behavior is the default for the WS bindings. You can disable it
and use a hard-configured certificate instead, but for the Internet scenario I strongly
recommend using certificate negotiation and storing the certificates in the Trusted
People store.

Service certificate validation

To instruct WCF as to what degree to validate and trust the service certificate, add a
custom endpoint behavior to the client’s config file. The behavior should use the cli
entCredentials section. ClientCredentials is an endpoint behavior that offers the
ServiceCertificate property of the type X509CertificateRecipientClientCredential:

public class ClientCredentials : ...,IEndpointBehavior
{
 public X509CertificateRecipientClientCredential ServiceCertificate
 {get;}

570 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

X509CertificateRecipientClientCredential offers the Authentication property of the
type X509CertificateRecipientClientCredential:

public sealed class X509CertificateRecipientClientCredential
{
 public X509ServiceCertificateAuthentication Authentication
 {get;}
 //More members
}

X509CertificateRecipientClientCredential provides the CertificateValidationMode
property of the enum type X509CertificateValidationMode:

public enum X509CertificateValidationMode
{
 None,
 PeerTrust,
 ChainTrust,
 PeerOrChainTrust,
 Custom
}

public class X509ServiceCertificateAuthentication
{
 public X509CertificateValidationMode CertificateValidationMode
 {get;set;}
 //More members
}

Example 10-9 demonstrates setting the service certificate validation mode in the client’s
config file.

Example 10-9. Validating the service certificate

<client>
 <endpoint behaviorConfiguration = "ServiceCertificate"
 ...
 </endpoint>
</client>
<behaviors>
 <endpointBehaviors>
 <behavior name = "ServiceCertificate">
 <clientCredentials>
 <serviceCertificate>
 <authentication certificateValidationMode = "PeerTrust"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
</behaviors>

X509CertificateValidationMode.PeerTrust instructs WCF to trust the negotiated serv-
ice certificate if it is present in the client’s Trusted People store. X509CertificateVali

Internet Application Scenario | 571

Download from Library of Wow! eBook <www.wowebook.com>

dationMode.ChainTrust instructs WCF to trust the certificate if it was issued by a root
authority (such as VeriSign or Thwart) whose certificate is found in the client’s Trusted
Root Authority folder. X509CertificateValidationMode.ChainTrust is the default value
used by WCF. X509CertificateValidationMode.PeerOrChainTrust allows either of those
options. Since there are a number of illicit ways of obtaining a valid certificate
from a public root authority, I do not recommend using this value.
X509CertificateValidationMode.PeerOrChainTrust is available for tightly controlled
environments that purge all public root authorities and install their own root certifi-
cates, which are used to sign other certificates.

Working with a test certificate

Developers often do not have access to their organizations’ certificates, and therefore
resort to using test certificates such as the ones generated by the MakeCert.exe
command-line utility. There are two problems with test certificates. The first is that
they will fail the default certificate validation on the client side, since the client uses
X509CertificateValidationMode.ChainTrust by default. You can easily overcome this
by installing the test certificate in the client’s Trusted People store and using
X509CertificateValidationMode.PeerTrust. The second problem is that WCF by de-
fault expects the service certificate name to match the service host’s domain (or
machine) name. This provides yet another line of defense, since typically with an
Internet-facing service, the host domain name will match its certificate common name.
To compensate, the client must explicitly specify the test certificate name in the end-
point identity’s dns section:

<client>
 <endpoint
 address = "http://localhost:8001/MyService"
 binding = "wsHttpBinding"
 contract = "IMyContract">
 <identity>
 <dns value = "MyServiceCert"/>
 </identity>
 </endpoint>
</client>

Authentication
The client needs to provide its credentials to the proxy. The ClientCredentials property
(presented earlier) of the ClientBase<T> base class has the UserName property of the type
UserNamePasswordClientCredential:

public class ClientCredentials : ...,IEndpointBehavior
{
 public UserNamePasswordClientCredential UserName
 {get;}
 //More members
}

572 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

public sealed class UserNamePasswordClientCredential
{
 public string UserName
 {get;set;}
 public string Password
 {get;set;}
}

The client uses UserNamePasswordClientCredential to pass its username and password
to the service, as demonstrated in Example 10-10.

Example 10-10. Providing username and password credentials

MyContractClient proxy = new MyContractClient();

proxy.ClientCredentials.UserName.UserName = "MyUsername";
proxy.ClientCredentials.UserName.Password = "MyPassword";

proxy.MyMethod();
proxy.Close();

The client need not provide a domain name (if Windows security is
used) or application name (if the ASP.NET providers are used). The host
will use its service domain or a configured application name, as
appropriate.

When working with a channel factory instead of a proxy class, you must set the
Credentials property of the factory with the credentials:

ChannelFactory<IMyContract> factory = new ChannelFactory<IMyContract>("");

factory.Credentials.UserName.UserName = "MyUsername";
factory.Credentials.UserName.Password = "MyPassword";

IMyContract proxy = factory.CreateChannel();
using(proxy as IDisposable)
{
 proxy.MyMethod();
}

Note that you cannot use the static CreateChannel() methods of ChannelFactory<T>,
since you have to instantiate a factory in order to access the Credentials property.

Once the username and password credentials are received by the WCF on the service
side, the host can choose to authenticate them as Windows credentials, ASP.NET mem-
bership provider’s credentials, or even custom credentials. Whichever option you
choose, make sure it matches your role-based policy configuration.

The ServiceCredentials class (available via the Credentials property of Service
HostBase) provides the UserNameAuthentication property of the type UserName
PasswordServiceCredential:

Internet Application Scenario | 573

Download from Library of Wow! eBook <www.wowebook.com>

public class ServiceCredentials : ...,IServiceBehavior
{
 public UserNamePasswordServiceCredential UserNameAuthentication
 {get;}
 //More members
}

UserNamePasswordServiceCredential has the UserNamePasswordValidationMode property
of a matching enum type:

public enum UserNamePasswordValidationMode
{
 Windows,
 MembershipProvider,
 Custom
}
public sealed class UserNamePasswordServiceCredential
{
 public MembershipProvider MembershipProvider
 {get;set;}
 public UserNamePasswordValidationMode UserNamePasswordValidationMode
 {get; set;}
 //More members
}

By setting the UserNamePasswordValidationMode property, the host chooses how to au-
thenticate the incoming username and password credentials.

Using Windows Credentials
While not necessarily common, WCF lets the Internet-facing service authenticate the
incoming credentials as Windows credentials. To authenticate the client’s username
and password as Windows credentials, you need to set UserNamePasswordValida
tionMode to UserNamePasswordValidationMode.Windows. Because UserNamePasswordVali
dationMode.Windows is the default value of the UserNamePasswordValidationMode prop-
erty, these two definitions are equivalent:

ServiceHost host1 = new ServiceHost(typeof(MyService));

ServiceHost host2 = new ServiceHost(typeof(MyService));
host2.Credentials.UserNameAuthentication.UserNamePasswordValidationMode =
 UserNamePasswordValidationMode.Windows;

When using a config file, add a custom behavior that assigns the username and pass-
word authentication mode along with the service certificate information, as shown in
Example 10-11.

Example 10-11. Internet security with Windows credentials

<services>
 <service name = "MyService" behaviorConfiguration = "UsernameWindows">
 ...
 </service>

574 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "UsernameWindows">
 <serviceCredentials>
 <userNameAuthentication userNamePasswordValidationMode = "Windows"/>
 <serviceCertificate
 ...
 />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>

As with the programmatic case, adding this line to the config file:

<userNameAuthentication userNamePasswordValidationMode = "Windows"/>

is optional because it is the default setting.

Authorization

If the PrincipalPermissionMode property of ServiceAuthorizationBehavior is set to its
default value of PrincipalPermissionMode.UseWindowsGroups, once the username and
password are authenticated against Windows, WCF installs a Windows principal ob-
ject and attaches it to the thread. This enables the service to freely use Windows NT
groups for authorization, just as with the intranet case, both declaratively and
programmatically.

Identity management

As long as the principal permission mode is set to PrincipalPermissionMode.Use
WindowsGroups, the identity management aspect of the Internet scenario is just as with
the intranet scenario, including the identities of the security call context, as shown in
Table 10-4. The main difference between an intranet application and an Internet ap-
plication that both use Windows credentials is that with the latter the client cannot
dictate the allowed impersonation level, and the host can impersonate at will. This is
because WCF will assign TokenImpersonationLevel.Impersonation to the Windows
identity of the security call context.

Using the ASP.NET Providers
By default, role-based security in WCF uses Windows user groups for roles and Win-
dows accounts for security identities. There are several drawbacks to this default policy.
First, you may not want to assign a Windows account for every client of your Internet
application. Second, the security policy is only as granular as the user groups in the
hosting domain. Often you do not have control over your end customers’ IT depart-
ments, and if you deploy your application in an environment in which the user groups
are coarse or don’t map well to the actual roles users play in your application, or if the

Internet Application Scenario | 575

Download from Library of Wow! eBook <www.wowebook.com>

group names are slightly different, Windows role-based security will be of little use to
you. Role localization presents yet another set of challenges, because role names will
likely differ between customer sites in different locales. Consequently, Internet appli-
cations hardly ever use Windows accounts and groups. Out of the box, .NET 2.0 (and
later) provides a custom credential management infrastructure called the ASP.NET
Providers. Despite its name, non-ASP.NET applications (such as WCF applications) can
easily use it to authenticate users and authorize them, without ever resorting to Win-
dows accounts.

One of the concrete implementations of the ASP.NET providers includes a SQL Server
store. SQL Server is often the repository of choice for Internet applications, so I will
use it in this scenario. To use the SQL Server provider, run the setup file
aspnet_regsql.exe, found under %Windir%\Microsoft.NET\Framework\v4.0.30319.
The setup program will create a new database called aspnetdb, containing the tables
and stored procedures required to manage the credentials.

The SQL Server credentials store is well designed and uses the latest best practices for
credential management, such as password salting, stored procedures, normalized ta-
bles, and so on. In addition to providing a high-quality, secure solution, this infra-
structure aids productivity, saving developers valuable time and effort. That said, the
credential management architecture is that of a provider model, and you can easily add
other storage options if required, such as an Access database.

The credentials providers

Figure 10-5 shows the architecture of the ASP.NET credentials providers.

Figure 10-5. The ASP.NET provider model

Membership providers are responsible for managing users (usernames and passwords),
and role providers are responsible for managing roles. Out of the box, ASP.NET offers
support for membership stores in SQL Server or Active Directory, and roles can be
stored in SQL Server, a file (the authorization store provider), or NT groups (the Win-
dows token provider).

Username and password authentication is done using a class called Membership
Provider from the System.Web.Security namespace, defined as:

576 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

public abstract class MembershipProvider : ProviderBase
{
 public abstract string ApplicationName
 {get;set;}
 public abstract bool ValidateUser(string username,string password);
 //Additional members
}

MembershipProvider’s goal is to encapsulate the actual provider used and the details of
the actual data access, as well as to enable changing the membership provider without
affecting the application itself. Depending on the configured security provider in
the host config file, WCF will use a concrete data access class such as
SqlMembershipProvider, targeting SQL Server or SQL Server Express:

public class SqlMembershipProvider : MembershipProvider
{...}

However, WCF interacts only with the MembershipProvider base functionality. WCF
obtains the required membership provider by accessing the Provider static property of
the Membership class, defined as:

public static class Membership
{
 public static string ApplicationName
 {get;set;}
 public static MembershipProvider Provider
 {get;}
 public static bool ValidateUser(string username,string password);
 //Additional members
}

Membership offers many members, which support the many aspects of user manage-
ment. Membership.Provider retrieves the type of the configured provider from the
System.Web section in the host config file. Unspecified, the role provider defaults to
SqlMembershipProvider.

Because all membership providers derive from the abstract class
MembershipProvider, if you write your own custom credential provider
it needs to derive from MembershipProvider as well.

A single credentials store can serve many applications, and those applications may
define the same usernames. To allow for that, every record in the credentials store is
scoped by an application name (similar to the way usernames in Windows are scoped
by a domain or machine name).

The ApplicationName property of Membership is used to set and retrieve the application
name, and the ValidateUser() method is used to authenticate the specified credentials
against the store, returning true if they match and false otherwise.
Membership.ValidateUser() is shorthand for retrieving and using the configured
provider.

Internet Application Scenario | 577

Download from Library of Wow! eBook <www.wowebook.com>

If you have configured your application to use the ASP.NET credentials store for author-
ization and if you enabled roles support, after authentication WCF will install an in-
stance of the internal class RoleProviderPrincipal and attach it to the thread invoking
the operation:

sealed class RoleProviderPrincipal : IPrincipal
{...}

RoleProviderPrincipal uses the abstract class RoleProvider for authorization:

public abstract class RoleProvider : ProviderBase
{
 public abstract string ApplicationName
 {get;set;}
 public abstract bool IsUserInRole(string username,string roleName);
 //Additional members
}

The ApplicationName property of RoleProvider binds the role provider to the particular
application. The IsUserInRole() method verifies the user’s role membership. Just as all
membership providers must derive from MembershipProvider, all role providers (in-
cluding custom role providers) must derive from RoleProvider.

RoleProvider encapsulates the actual provider used, and the role provider to use is
specified in the host config file. Depending on the configured role provider,
RoleProviderPrincipal uses a corresponding data access class such as
SqlRoleProvider to authorize the caller:

public class SqlRoleProvider : RoleProvider
{...}

You can obtain the required role provider by accessing the Provider static property of
the Roles class, defined as:

public static class Roles
{
 public static string ApplicationName
 {get;set;}
 public static bool IsUserInRole(string username,string roleName);
 public static RoleProvider Provider
 {get;}
 //Additional members
}

Roles.IsUserInRole() is shorthand for first accessing Roles.Provider and then calling
IsUserInRole() on it. Roles.Provider retrieves the type of the configured provider from
the host config file. If unspecified, the role provider defaults to SqlRoleProvider.

Credentials administration

If you use SQL Server, .NET installs website administration pages under \Inetpub
\wwwroot\aspnet_webadmin\<version number>. Developers can configure the applica-
tion directly from within Visual Studio 2010. When you select ASP.NET Configuration

578 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

from the Web Site menu, Visual Studio 2010 will launch the ASP.NET development
server used for the administration pages, browse to the ASP.NET administration pages,
and allow you to configure various parameters, including security. You can configure
the following aspects for your application:

• Create new users and delete existing ones

• Create new roles and delete existing ones

• Allocate users to roles

• Retrieve a user’s details

• Set a user’s status

• Use additional features not relevant to this chapter

Shortcomings of Visual Studio 2010

There are a number of significant shortcomings to using the Visual Studio 2010-driven
administration pages. First, you need Visual Studio 2010. It is unlikely that application
or system administrators will have Visual Studio 2010, let alone know how to use it.
The administration pages use “/” by default for the application name, and do not offer
any visual way to modify that. Also, you must create a web application to activate the
administration pages and there is no remote access: the application and Visual Studio
2010 must be co-located in order for Visual Studio 2010 to be able to access the appli-
cation’s configuration file, and the ASP.NET development server used for the adminis-
tration pages cannot accept remote calls. The browser-based user interface is somewhat
annoying (you need to frequently click the Back button) and rather dull. Furthermore,
many features that administrators are likely to want to use are not available via the
administration pages, despite the fact that the underlying provider classes support those
features. Some of the things missing from the Visual Studio 2010–driven administration
pages include the ability to:

• Update most if not all of the details in a user account

• Retrieve a user’s password

• Change a user’s password

• Reset a user’s password

• Retrieve information about the number of current online users

• Remove all users from a role in one operation

• Retrieve information about the password management policy (such as length, reset
policy, type of passwords, etc.)

• Test user credentials

• Verify user role membership

There are additional features that administrators are likely to want, yet they are not
supported even by the provider classes. These features include the ability to retrieve a

Internet Application Scenario | 579

Download from Library of Wow! eBook <www.wowebook.com>

list of all of the applications in the store, the ability to remove all users from an appli-
cation, the ability to remove all roles from an application, the ability to delete an ap-
plication (and all its associated users and roles), and the ability to delete all applications.

The IIS7 control panel applet also offers some administrative support
for managing the roles and membership providers. However, this sup-
port is on a par with that of Visual Studio 2010.

Credentials Manager

This tools disparity motivated me to develop the Credentials Manager application, a
smart client application that compensates for all of the shortcomings just listed.
Figure 10-6 shows a screenshot of Credentials Manager.*

Figure 10-6. The Credentials Manager utility

* I first published an earlier version of Credentials Manager in my article “Manage Custom Security Credentials
the Smart (Client) Way” (CoDe Magazine, November 2005).

580 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

In Credentials Manager, which is available with ServiceModelEx, I wrapped the
ASP.NET providers with a WCF service (which can be self-hosted or IIS 5/6- or WAS-
hosted) and added the missing features, such as the ability to delete an application.

Credentials Manager uses the dedicated WCF service to administer the credentials
store. In addition, it lets administrators select the address of the credentials service at
runtime, and using the MetadataHelper class presented in Chapter 2, it verifies that the
address provided does indeed support the required contracts.

Authentication

To authenticate the client’s username and password using an ASP.NET provider, set the
UserNamePasswordValidationMode property to UserNamePasswordValidationMode.Member
shipProvider:

ServiceHost host = new ServiceHost(typeof(MyService));
host.Credentials.UserNameAuthentication.UserNamePasswordValidationMode =
 UserNamePasswordValidationMode.MembershipProvider;

Which provider is used depends on the host config file. In addition, the host config file
must contain any provider-specific settings such as a SQL Server connection string, as
shown in Example 10-12.

Example 10-12. Internet security using an ASP.NET SQL Server provider

<connectionStrings>
 <add name= "AspNetDb" connectionString = "data source=(local);
 Integrated Security=SSPI;Initial Catalog=aspnetdb"/>
</connectionStrings>

<system.serviceModel>
 <services>
 <service name = "MyService" behaviorConfiguration = "ASPNETProviders">
 <endpoint
 ...
 />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name = "ASPNETProviders">
 <serviceCredentials>
 <userNameAuthentication
 userNamePasswordValidationMode = "MembershipProvider"/>
 <serviceCertificate
 ...
 />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

Internet Application Scenario | 581

Download from Library of Wow! eBook <www.wowebook.com>

The default application name will be a useless /, so you must assign your application’s
name. Once the ASP.NET providers are configured, WCF initializes the
MembershipProvider property of UserNamePasswordServiceCredential with an instance
of the configured membership provider. You can programmatically access that mem-
bership provider and set its application name:

ServiceHost host = new ServiceHost(typeof(MyService));
Debug.Assert(host.Credentials.UserNameAuthentication.MembershipProvider != null);
Membership.ApplicationName = "MyApplication";
host.Open();

You can also configure the application name in the config file, but for that you need to
define a custom ASP.NET membership provider, as shown in Example 10-13.

Example 10-13. Configuring the application name for the membership provider

<system.web>
 <membership defaultProvider = "MySqlMembershipProvider">
 <providers>
 <add name = "MySqlMembershipProvider"
 type = "System.Web.Security.SqlMembershipProvider"
 connectionStringName = "AspNetDb"
 applicationName = "MyApplication"
 />
 </providers>
 </membership>
</system.web>
<connectionStrings>
 <add name = "AspNetDb"
 ...
 />
</connectionStrings>

First, you add a system.Web section with a providers section, where you add a custom
membership provider and set that to be the new default membership provider. Next,
you need to list the fully qualified type name of the new provider. Nothing prevents
you from referencing an existing implementation of a membership provider (such as
SqlMembershipProvider, as in Example 10-13). When using the SQL provider, you must
also list the connection string to use, and you cannot rely on the default connection
string from machine.config. Most importantly, you must set the ApplicationName tag to
the desired application name.

Authorization

To support authorizing the users, the host must enable role-based security by adding
this to the config file:

<system.web>
 <roleManager enabled = "true"/>
</system.web>

582 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

To enable the role manager programmatically, you have to use
reflection.

Enabling roles this way will initialize the Roles class and have its Provider property
set to the configured provider. To use the ASP.NET role provider, set the
PrincipalPermissionMode property to PrincipalPermissionMode.UseAspNetRoles:

ServiceHost host = new ServiceHost(typeof(MyService));
host.Authorization.PrincipalPermissionMode =
 PrincipalPermissionMode.UseAspNetRoles;
host.Open();

Alternatively, when using a config file, you can add a custom behavior to that effect:

<services>
 <service name = "MyService" behaviorConfiguration = "ASPNETProviders">
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "ASPNETProviders">
 <serviceAuthorization principalPermissionMode = "UseAspNetRoles"/>
 ...
 </behavior>
 </serviceBehaviors>
</behaviors>

After authenticating the client, the RoleProvider property of ServiceAuthorization
Behavior will be set to the configured role provider:

public sealed class ServiceAuthorizationBehavior : IServiceBehavior
{
 public RoleProvider RoleProvider
 {get;set;}
 //More members
}

The default application name will be a useless /, so you must assign your application’s
name using the static helper class Roles:

ServiceHost host = new ServiceHost(typeof(MyService));
Debug.Assert(host.Credentials.UserNameAuthentication.MembershipProvider != null);
Roles.ApplicationName = "MyApplication";

You can also configure the application name in the config file, but for that you need to
define a custom ASP.NET role provider, as shown in Example 10-14.

Internet Application Scenario | 583

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Example 10-14. Configuring the application name for the role provider
<system.web>
 <roleManager enabled = "true" defaultProvider = "MySqlRoleManager">
 <providers>
 <add name = "MySqlRoleManager"
 type = "System.Web.Security.SqlRoleProvider"
 connectionStringName = "AspNetDb"
 applicationName = "MyApplication"
 />
 </providers>
 </roleManager>
</system.web>
<connectionStrings>
 <add name = "AspNetDb"
 ...
 />
</connectionStrings>

As with the membership provider, you add a system.Web section with a providers sec-
tion, where you add a custom role provider and set that to be the new default role
provider. Next you need to list the fully qualified type name of the new provider. As
with the membership provider, you can reference any existing implementation of a role
provider, such as SqlRoleProvider, in which case you must also list the connection
string to use. Finally, you must set the ApplicationName tag to the desired application
name.

Declarative role-based security

You can use the PrincipalPermission attribute to verify role membership just as in the
intranet scenario, because all the attribute does is access the principal object attached
to the thread, which WCF has already set to RoleProviderPrincipal. Example 10-15
demonstrates declarative role-based security using the ASP.NET providers.

Example 10-15. ASP.NET role provider declarative role-based security

class MyService : IMyContract
{
 [PrincipalPermission(SecurityAction.Demand,Role = "Manager")]
 public void MyMethod()
 {...}
}

Identity Management
In the Internet scenario, when you use the ASP.NET providers, the identity associated
with the principal object is a GenericIdentity that wraps the username provided by the
client. That identity is considered authenticated. The security call context’s primary
identity will match the principal identity. The Windows identity, on the other hand,
will be set to a Windows identity with a blank username; that is, it is unauthenticated.
Table 10-5 shows the identities in this scenario.

584 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Table 10-5. Identity management in the Internet scenario with providers

Identity Type Value Authenticated

Thread principal GenericIdentity Username Yes

Security context primary GenericIdentity Username Yes

Security context Windows WindowsIdentity - No

Impersonation

Since no valid Windows credentials are provided, the service cannot impersonate any
of its clients.

Business-to-Business Application Scenario
In the business-to-business scenario, the service and its clients are disparate business
entities. They do not share credentials or accounts, and the communication between
them is typically closed to the public. There are relatively few clients interacting with
the service, and the client can only interact with the service after an elaborate business
agreement has been established and other conditions have been met. Instead of Win-
dows accounts or usernames, the clients identify themselves to the service using X509
certificates. These certificates are usually known a priori to the service. The client or
service may not necessarily be using WCF, or even Windows. Therefore, if you are
writing a service or a client, you cannot assume the use of WCF at the other end. The
client calls originate from outside the firewall, and you need to rely on HTTP for trans-
port. Also, multiple intermediaries are possible.

Securing the Business-to-Business Bindings
For the business-to-business scenario, you should use the Internet bindings; namely,
BasicHttpBinding and WSHttpBinding. You must use Message security for the transfer
security mode, to provide for end-to-end security across all intermediaries. The message
will be protected using a service-side certificate, just as with the Internet scenario.
However, unlike with the Internet scenario, here the clients provide credentials in the
form of a certificate. This is done uniformly across these bindings by selecting Message
CredentialType.Certificate for the client credentials type to be used with the Message
security mode. You need to configure this on both the client and the service. For ex-
ample, to configure the WSHttpBinding programmatically, you would write:

WSHttpBinding binding = new WSHttpBinding();
binding.Security.Message.ClientCredentialType = MessageCredentialType.Certificate;

Business-to-Business Application Scenario | 585

Download from Library of Wow! eBook <www.wowebook.com>

Or with a config file:

<bindings>
 <wsHttpBinding>
 <binding name = "WSCertificateSecurity">
 <security mode = "Message">
 <message clientCredentialType = "Certificate"/>
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

Authentication
The service administrator has a number of options as to how to authenticate the cer-
tificates sent by the clients. If its certificate is validated, the client is considered au-
thenticated. If no validation is done on the service side, merely sending a certificate will
do. If the validation mode is set to use a chain of trust and a trusted root authority
issued the certificate, the client will be considered authenticated. However, the best
way of validating the client’s certificate is to use peer trust. With this approach, the
service administrator installs the certificates of all the clients allowed to interact with
the service in the Trusted People store on the service’s local machine. When the service
receives the client’s certificate, it verifies that the certificate is in the trusted store, and
if so, the client is considered authenticated. I recommend using peer trust in the
business-to-business scenario.

The ServiceCredentials class offers the ClientCertificate property of the type
X509CertificateInitiatorServiceCredential:

public class ServiceCredentials : ...,IServiceBehavior
{
 public X509CertificateInitiatorServiceCredential ClientCertificate
 {get;}
 //More members
}

X509CertificateInitiatorServiceCredential provides the Authentication property of
the type X509ClientCertificateAuthentication, which lets you configure the certificate
validation mode:

public sealed class X509CertificateInitiatorServiceCredential
{
 public X509ClientCertificateAuthentication Authentication
 {get;}
 //More members
}
public class X509ClientCertificateAuthentication
{
 public X509CertificateValidationMode CertificateValidationMode
 {get;set;} //More members
}

586 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Example 10-16 demonstrates the settings required in the host config file for the busi-
ness-to-business scenario. Note in Example 10-16 that the host still needs to provide
its own certificate for Message security.

Example 10-16. Configuring the host for business-to-business security

<services>
 <service name = "MyService" behaviorConfiguration = "BusinessToBusiness">
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior name = "BusinessToBusiness">
 <serviceCredentials>
 <serviceCertificate
 ...
 />
 <clientCertificate>
 <authentication certificateValidationMode = "PeerTrust"/>
 </clientCertificate>
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>

The client needs to reference the certificate to use by including its location, name, and
lookup method. This is done by accessing the ClientCredentials property of the proxy,
which offers the ClientCertificate property of the type X509CertificateInitiator
ClientCredential:

public class ClientCredentials : ...,IEndpointBehavior
{
 public X509CertificateInitiatorClientCredential ClientCertificate
 {get;}
 //More members
}
public sealed class X509CertificateInitiatorClientCredential
{
 public void SetCertificate(StoreLocation storeLocation,
 StoreName storeName,
 X509FindType findType,
 object findValue);
 //More members
}

However, the client will typically set these values in its config file, as shown in
Example 10-17.

Example 10-17. Setting the client’s certificate

<client>
 <endpoint behaviorConfiguration = "BusinessToBusiness"
 ...

Business-to-Business Application Scenario | 587

Download from Library of Wow! eBook <www.wowebook.com>

 />
</client>
 ...
<behaviors>
 <endpointBehaviors>
 <behavior name = "BusinessToBusiness">
 <clientCredentials>
 <clientCertificate
 findValue = "MyClientCert"
 storeLocation = "LocalMachine"
 storeName = "My"
 x509FindType = "FindBySubjectName"
 />
 ...
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
</behaviors>

The config file must also indicate the service certificate validation mode. When using
the BasicHttpBinding, since that binding cannot negotiate the service certificate, the
client’s config file needs to contain in the service certificate section of the endpoint
behavior the location of the service certificate to use. Note that when using a service
test certificate, as with the Internet scenario, the client’s config file must still include
the information regarding the endpoint’s identity.

If the client is required to always provide the same certificate, the client developer can
encapsulate setting the certificate in the proxy constructors:

class MyContractClient: ClientBase<...>,...
{
 public MyContractClient()
 {
 SetCertificate();
 }
 /* More constructors */

 void SetCertificate()
 {
 ClientCredentials.ClientCertificate.SetCertificate(
 StoreLocation.LocalMachine,
 StoreName.My,
 X509FindType.FindBySubjectName,
 "MyClientCert");
 }
 //Rest of the proxy
}

Once the client certificate is configured, there is no need to do anything special with
the proxy class:

MyContractClient proxy = new MyContractClient();
proxy.MyMethod();
proxy.Close();

588 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Authorization
By default, the service cannot employ principal-based, role-based security. The reason
is that the credentials provided—namely, the client’s certificate—do not map to either
Windows or ASP.NET user accounts. Because business-to-business endpoints and serv-
ices are often dedicated to a small set of clients or even a particular client, this lack of
authorization support may not pose a problem. If that is indeed your case, you should
set the PrincipalPermissionMode property to PrincipalPermissionMode.None, so that
WCF will attach a generic principal with a blank identity as opposed to a
WindowsIdentity instance with a blank identity.

If, on the other hand, you would still like to authorize the clients, you can actually
achieve just that. In essence, all you need to do is deploy some credentials store, add
each client’s certificate name—that is, its common name and its thumbprint—to that
repository, and then perform access checks against that store as needed.

In fact, nothing prevents you from taking advantage of the ASP.NET role provider for
authorization, even if you didn’t use the membership provider for authentication. This
ability to use the providers separately was a core design goal for the ASP.NET provider
model.

First, you need to enable the role provider in the host config file and configure the
application name as in Example 10-14 (or provide the application name
programmatically).

Next, add the client certificate and thumbprint to the membership store as a user, and
assign roles to it. For example, when using a certificate whose common name is My-
ClientCert, you need to add a user by that name (such as “CN=MyClientCert;
12A06153D25E94902F50971F68D86DCDE2A00756”) to the membership store, and
provide a password. The password, of course, is irrelevant and will not be used. Once
you have created the user, assign it to the appropriate roles in the application.

Most importantly, set the PrincipalPermissionMode property to PrincipalPermission
Mode.UseAspNetRoles. Example 10-18 lists the required settings in the host config file.

Example 10-18. ASP.NET role-based security for the business-to-business scenario

<system.web>
 <roleManager enabled = "true" defaultProvider = "...">
 ...
 </roleManager>
</system.web>

<system.serviceModel>
 <services>
 <service name = "MyService" behaviorConfiguration = "BusinessToBusiness">
 ...
 </service>
 </services>
 <behaviors>

Business-to-Business Application Scenario | 589

Download from Library of Wow! eBook <www.wowebook.com>

 <serviceBehaviors>
 <behavior name = "BusinessToBusiness">
 <serviceCredentials>
 <serviceCertificate
 ...
 />
 <clientCertificate>
 <authentication certificateValidationMode = "PeerTrust"/>
 </clientCertificate>
 </serviceCredentials>
 <serviceAuthorization principalPermissionMode = "UseAspNetRoles"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <bindings>
 ...
 </bindings>
</system.serviceModel>

Now you can use role-based security, just as in Example 10-15.

Identity Management
If the PrincipalPermissionMode property is set to PrincipalPermissionMode.None, then
the principal identity will be a GenericIdentity with a blank username. The security
call context’s primary identity will be of the type X509Identity and will contain the
client certificate’s common name and its thumbprint. The security call context’s Win-
dows identity will have a blank username, since no valid Windows credentials were
provided. If the PrincipalPermissionMode property is set to PrincipalPermission
Mode.UseAspNetRoles, then both the principal identity and the security call context’s
primary identity will be set to an instance of X509Identity containing the client certif-
icate and thumbprint. The security call context’s Windows identity will have a blank
username, as before. Table 10-6 details this setup.

Table 10-6. Identity management in the business-to-business scenario with role providers

Identity Type Value Authenticated

Thread principal X509Identity Client cert name Yes

Security context primary X509Identity Client cert name Yes

Security context Windows WindowsIdentity - No

Impersonation

Since no valid Windows credentials are provided, the service cannot impersonate any
of its clients.

590 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Host Security Configuration
While Figure 10-7 is not specific to the business-to-business scenario, having covered
this scenario, this is the first point in this chapter where I can show all the pieces of the
service host pertaining to security.

Figure 10-7. The security elements of ServiceHostBase

Anonymous Application Scenario
In the anonymous scenario, the clients access the service without presenting any cre-
dentials—they are anonymous. Nevertheless, the clients and the service do require
secure message transfer, impervious to tampering and sniffing. Both Internet-facing
and intranet-based applications may need to provide for anonymous yet end-to-end
secure access. The anonymous scenario can have any number of clients, small or large.
The clients may connect over HTTP, TCP, or MSMQ.

Securing the Anonymous Bindings
The need to secure the message and the fact that the clients may be calling over the
Internet with multiple intermediaries mean that in the anonymous scenario you should
use Message security. With Message security, you can easily satisfy both requirements
by setting the ClientCredentialType property to MessageCredentialType.None. The
service needs to be configured with a certificate to secure the message itself. For the

Anonymous Application Scenario | 591

Download from Library of Wow! eBook <www.wowebook.com>

anonymous scenario, you can use only the WSHttpBinding, NetTcpBinding, and NetMsmq
Binding—a mixture of both Internet and intranet bindings, as is required in this sce-
nario. You cannot use the NetNamedPipeBinding or the BasicHttpBinding, as the former
does not support Message security and the latter does not support having no credentials
in the message (see Table 10-1 and Table 10-3).

Configuring the allowed bindings is done similarly to the previous scenarios. The no-
ticeable difference is in configuring for no client credentials. For example, here’s how
to configure the WSHttpBinding:

WSHttpBinding binding = new WSHttpBinding();
binding.Security.Message.ClientCredentialType = MessageCredentialType.None;

You can also do this using a config file:

<bindings>
 <wsHttpBinding>
 <binding name = "WSAnonymous">
 <security>
 <message clientCredentialType = "None"/>
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

Authentication
No client authentication is done in the anonymous scenario, of course, and the client
need not provide any credentials to the proxy. For the purposes of service authentica-
tion to the client and message protection, the service needs to provide its certificate, as
in Example 10-8.

Authorization
Since the clients are anonymous (and unauthenticated), authorization and role-based
security are precluded. The service host should set the PrincipalPermissionMode prop-
erty to PrincipalPermissionMode.None to have WCF install a generic principal with a
blank identity, instead of a Windows principal with a blank identity.

Identity Management
Assuming the use of PrincipalPermissionMode.None, the identity associated with the
principal object is a GenericIdentity with a blank username. That identity is considered
unauthenticated. The security call context’s primary identity will match the principal
identity. The Windows identity, on the other hand, will be set to a Windows identity
with a blank username—that is, it will be unauthenticated. Table 10-7 shows the iden-
tities in this scenario.

592 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Table 10-7. Identity management in the anonymous scenario

Identity Type Value Authenticated

Thread principal GenericIdentity - No

Security context primary GenericIdentity - No

Security context Windows WindowsIdentity - No

Impersonation

Since the clients are anonymous, the service cannot impersonate any of its clients.

Callbacks
While the call from the client to the service is anonymous, the service does reveal its
identity to the client. The primary identity of the security call context will be set to an
instance of the X509Identity class, with the name set to the common name of the service
host certificate suffixed by the certificate’s thumbprint. The rest of the information is
masked out. The principal identity will be set to a Windows identity with a blank
username, which will preclude authorization and role-based security, as it is considered
anonymous. The security call context’s Windows identity will be set to a
WindowsIdentity instance with a blank identity, which will preclude impersonation.
Avoid sensitive work in the callback, since you cannot use role-based security.

No Security Scenario
In this last scenario, your application turns off security completely. The service does
not rely on any transfer security, and it does not authenticate or authorize its callers.
Obviously, such a service is completely exposed, and you generally need a very good
business justification for relinquishing security. Both Internet and intranet services can
be configured for no security, and they can accept any number of clients.

Unsecuring the Bindings
To turn off security, you need to set the transfer security mode to None. This will also
avoid storing any client credentials in the message. All bindings support no transfer
security (see Table 10-1).

Configuring the allowed bindings is done similarly to the previous scenarios, except
the transfer security mode is set to None. For example, here’s how to configure the
NetTcpBinding programmatically:

NetTcpBinding binding = new NetTcpBinding(SecurityMode.None);

No Security Scenario | 593

Download from Library of Wow! eBook <www.wowebook.com>

And here’s how to do this using a config file:

<bindings>
 <netTcpBinding>
 <binding name = "NoSecurity">
 <security mode = "None"/>
 </binding>
 </netTcpBinding>
</bindings>

Authentication
No client authentication is done in this scenario, and the client does not need to provide
any credentials to the proxy. Nor does the client ever authenticate the service.

Authorization
Since the clients are anonymous (and unauthenticated), authorization and role-based
security are precluded. WCF will automatically set the PrincipalPermissionMode prop-
erty to PrincipalPermissionMode.None to install a generic principal with a blank identity.

Identity Management
The identity associated with the principal object is a GenericIdentity with a blank
username. That identity is considered unauthenticated. Unlike all the previous scenar-
ios, in the no security scenario, the operation has no security call context, and the
ServiceSecurityContext.Current returns null. Table 10-8 shows the identities in this
scenario.

Table 10-8. Identity management in the no security scenario

Identity Type Value Authenticated

Thread principal GenericIdentity - No

Security context primary - - -

Security context Windows - - -

Impersonation

Because the clients are anonymous, the service cannot impersonate any of its clients.

Callbacks
Unlike the intranet or the anonymous scenarios, in the absence of transfer security,
callbacks come in under the client’s own identity. The principal identity will be set to
an instance of WindowsIdentity with the client’s username. The callback will be au-
thenticated, but there is no point in either impersonation or using role-based security

594 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

since the client will only be authorizing itself. In addition, the security call context of
the callback will be set to null.

Scenarios Summary
Now that you have seen the making of the five key scenarios, Table 10-9 and Ta-
ble 10-10 serve as a summary of their key elements. Table 10-9 lists the bindings used
in each scenario. Note again that while technically you could use other bindings in
almost all of the scenarios, my binding selections are aligned with the contexts in which
the scenarios are used.

Table 10-9. Bindings and security scenarios

Binding Intranet Internet B2B Anonymous None

BasicHttpBinding No No Yes No Yes

NetTcpBinding Yes Yes No Yes Yes

NetNamedPipeBinding Yes No No No Yes

WSHttpBinding No Yes Yes Yes Yes

NetMsmqBinding Yes No No Yes Yes

Table 10-10 shows how each of the security aspects defined at the beginning of this
chapter (transfer security, service and client authentication, authorization, and imper-
sonation) relates to each scenario.

Table 10-10. The security aspects of the various scenarios

Aspect Intranet Internet B2B Anonymous None

Transport security Yes No No No No

Message security No Yes Yes Yes No

Service authentication Windows Certificate Certificate Certificate No

Client authentication Windows ASP.NET Certificate No No

Authorization Windows ASP.NET No/ASP.NET No No

Impersonation Yes No No No No

Declarative Security Framework
WCF security is truly a vast topic. The number of details to master is daunting, and
intricate relationships exist between the various aspects. The programming model is
very complex, and at first you’re likely to have an inescapable feeling of navigating a
maze. To make things even worse, getting it wrong has severe implications both at the
application and the business level. To simplify things, I came up with a declarative
security framework for WCF. For the service, I have provided a security attribute (with

Declarative Security Framework | 595

Download from Library of Wow! eBook <www.wowebook.com>

matching support for the host), and for the client I have provided a few helper classes
and secure proxy classes. My declarative framework grossly simplifies WCF security
configuration, placing it on a par with other aspects of WCF configuration such as
transactions and synchronization. My goal was to provide a declarative model that
would be simple to use and would minimize the need to understand the many details
of security. As a developer, all you need to do is select the correct scenario (out of the
five common scenarios discussed in this chapter), and my framework will automate the
configuration. Not only that, but my framework mandates the correct options and
enforces my recommendations. At the same time, my model maintains granularity and
allows developers to control the underlying configuration if the need arises.

The SecurityBehaviorAttribute
Example 10-19 lists the definition of the SecurityBehaviorAttribute and the Service
Security enum. ServiceSecurity defines the five scenarios supported by my framework.

Example 10-19. The SecurityBehaviorAttribute

public enum ServiceSecurity
{
 None,
 Anonymous,
 BusinessToBusiness,
 Internet,
 Intranet
}
[AttributeUsage(AttributeTargets.Class)]
public class SecurityBehaviorAttribute : Attribute,IServiceBehavior
{
 public SecurityBehaviorAttribute(ServiceSecurity mode);
 public SecurityBehaviorAttribute(ServiceSecurity mode,
 string serviceCertificateName);
 public SecurityBehaviorAttribute(ServiceSecurity mode,
 StoreLocation storeLocation,
 StoreName storeName,
 X509FindType findType,
 string serviceCertificateName);
 public bool ImpersonateAll
 {get;set;}
 public string ApplicationName
 {get;set;}
 public bool UseAspNetProviders
 {get;set;}
}

When applying the SecurityBehavior attribute, you need to provide it with the target
scenario in the form of a ServiceSecurity value. You can use just the constructors of
the SecurityBehavior attribute, or you can set the properties. Unset, the properties all
default to reasonable values in the context of the target scenario. When selecting a
scenario, the configured behavior follows to the letter my previous descriptions of the

596 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

individual scenarios. The SecurityBehavior attribute yields a composable security
model, allowing quite a few permutations and sub-scenarios. When using the attribute,
you can even have a security-free host config file, or you can combine settings from the
config file with values driven by the attribute. Similarly, your hosting code can be free
of security, or you can combine programmatic host security with the attribute.

Configuring an intranet service

To configure a service for the intranet security scenario, apply SecurityBehavior with
ServiceSecurity.Intranet:

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
[SecurityBehavior(ServiceSecurity.Intranet)]
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

Even though the service contract used may not constrain the protection level, the at-
tribute programmatically adds that demand to enforce message protection. You can
use Windows NT groups for role-based security:

[SecurityBehavior(ServiceSecurity.Intranet)]
class MyService : IMyContract
{
 [PrincipalPermission(SecurityAction.Demand,Role = "Customer")]
 public void MyMethod()
 {...}
}

The service can programmatically impersonate the callers, or use the operation behav-
ior attribute for individual method impersonation. You can also configure the service
to automatically impersonate all callers in all methods via the ImpersonateAll property.
ImpersonateAll defaults to false, but when it’s set to true the attribute will impersonate
all callers in all operations without your needing to apply any operation behavior at-
tributes or do any host configuration:

[SecurityBehavior(ServiceSecurity.Intranet,ImpersonateAll = true)]
class MyService : IMyContract
{...}

Configuring an Internet service

With the Internet scenario, you need to both configure the service for this scenario and
select the service certificate to use. Note in Example 10-19 that the ServiceBehavior

Declarative Security Framework | 597

Download from Library of Wow! eBook <www.wowebook.com>

attribute constructor may take the service certificate name. If it’s unspecified, the serv-
ice certificate is loaded from the host config file as with Example 10-8:

[SecurityBehavior(ServiceSecurity.Internet)]
class MyService : IMyContract
{...}

You can also specify the service certificate name, in which case the specified certificate
is loaded from the LocalMachine store from the My folder by name:

[SecurityBehavior(ServiceSecurity.Internet,"MyServiceCert")]
class MyService : IMyContract
{...}

If the certificate name is set to an empty string, the SecurityBehavior attribute will infer
the certificate name by using the hosting machine name (or domain) for the certificate
name and load such a certificate from the LocalMachine store from the My folder by
name:

[SecurityBehavior(ServiceSecurity.Internet,"")]
class MyService : IMyContract
{...}

Finally, the attribute lets you explicitly specify the store location, the store name, and
the lookup method:

[SecurityBehavior(ServiceSecurity.Internet,
 StoreLocation.LocalMachine,StoreName.My,
 X509FindType.FindBySubjectName,"MyServiceCert")]
class MyService : IMyContract
{...}

Note that you can combine an explicit location with an inferred certificate name:

[SecurityBehavior(ServiceSecurity.Internet,
 StoreLocation.LocalMachine,StoreName.My,
 X509FindType.FindBySubjectName,"")]
class MyService : IMyContract
{...}

Which credentials store to authenticate the client against is indicated by the UseAspNet
Providers property. UseAspNetProviders defaults to false, meaning that the default is
to authenticate the client’s username and password as Windows credentials (as in
Example 10-11). Because of that, when UseAspNetProviders is false you can by default
use Windows NT groups for authorization and even impersonate all callers:

[SecurityBehavior(ServiceSecurity.Internet,"MyServiceCert",ImpersonateAll = true)]
class MyService : IMyContract
{...}

If UseAspNetProviders is set to true, instead of Windows credentials the
SecurityBehavior attribute will use the ASP.NET membership and role providers, as
prescribed for the Internet scenario:

[SecurityBehavior(ServiceSecurity.Internet,"MyServiceCert",
 UseAspNetProviders = true)]

598 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

class MyService : IMyContract
{
 [PrincipalPermission(SecurityAction.Demand,Role = "Manager")]
 public void MyMethod()
 {...}
}

The attribute will programmatically enable the role manager section in
the config file.

The SecurityBehavior attribute allows the use of the NetTcpBinding with
ServiceSecurity.Internet along with ASP.NET providers to allow intranet applica-
tions to avoid using Windows accounts and groups, as explained previously.

Next is the issue of supplying the application name for the ASP.NET providers. That
is governed by the ApplicationName property. If no value is assigned, the
SecurityBehavior attribute will look up the application name from the config file, as in
Example 10-13 and Example 10-14. If no value is found in the host config file, the
attribute will not default to using the meaningless / from machine.config; instead, it will
by default use the host assembly name for the application name. If the Application
Name property is assigned a value, that value will override whatever application name
is present in the host config file:

[SecurityBehavior(ServiceSecurity.Internet,"MyServiceCert",
 UseAspNetProviders = true,ApplicationName = "MyApplication")]
class MyService : IMyContract
{...}

Configuring a business-to-business service

To configure a service for the business-to-business scenario, you must set
ServiceSecurity to ServiceSecurity.BusinessToBusiness. The SecurityBehavior at-
tribute will use peer trust for validating the client’s certificate. Configuring the service
certificate is done just as with ServiceSecurity.Internet. For example:

[SecurityBehavior(ServiceSecurity.BusinessToBusiness)]
class MyService : IMyContract
{...}

[SecurityBehavior(ServiceSecurity.BusinessToBusiness,"")]
class MyService : IMyContract
{...}

[SecurityBehavior(ServiceSecurity.BusinessToBusiness,"MyServiceCert")]
class MyService : IMyContract
{...}

By default, with ServiceSecurity.BusinessToBusiness, the attribute will set the
PrincipalPermissionMode property of the host to PrincipalPermissionMode.None, and

Declarative Security Framework | 599

Download from Library of Wow! eBook <www.wowebook.com>

the service will not be able to authorize its callers. However, setting the UseAsp
NetProviders property to true will enable use of the ASP.NET role providers, as in
Example 10-18:

[SecurityBehavior(ServiceSecurity.BusinessToBusiness,UseAspNetProviders = true)]
class MyService : IMyContract
{...}

When using the ASP.NET role providers, the application name is looked up and decided
upon just as with ServiceSecurity.Internet:

[SecurityBehavior(ServiceSecurity.BusinessToBusiness,"MyServiceCert",
 UseAspNetProviders = true,ApplicationName = "MyApplication")]
class MyService : IMyContract
{...}

Configuring an anonymous service

To allow anonymous callers, you need to configure the attribute with
ServiceSecurity.Anonymous. Configuring the service certificate is done just as with
ServiceSecurity.Internet. For example:

[SecurityBehavior(ServiceSecurity.Anonymous)]
class MyService : IMyContract
{...}

[SecurityBehavior(ServiceSecurity.Anonymous,"")]
class MyService : IMyContract
{...}

[SecurityBehavior(ServiceSecurity.Anonymous,"MyServiceCert")]
class MyService : IMyContract
{...}

Configuring a no-security service

To turn off security completely, provide the attribute with ServiceSecurity.None:

[SecurityBehavior(ServiceSecurity.None)]
class MyService : IMyContract
{...}

Implementing the SecurityBehavior attribute

Example 10-20 is a partial listing of the implementation of SecurityBehaviorAttribute.

Example 10-20. Implementing SecurityBehaviorAttribute

[AttributeUsage(AttributeTargets.Class)]
class SecurityBehaviorAttribute : Attribute,IServiceBehavior
{
 SecurityBehavior m_SecurityBehavior;

 public bool ImpersonateAll
 {get;set;}

600 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 public string ApplicationName
 {get;set;}
 public bool UseAspNetProviders
 {get;set;}

 public SecurityBehaviorAttribute(ServiceSecurity mode)
 {
 m_SecurityBehavior = new SecurityBehavior(mode);
 }
 public SecurityBehaviorAttribute(ServiceSecurity mode,
 string serviceCertificateName)
 {
 m_SecurityBehavior = new SecurityBehavior(mode,serviceCertificateName);
 }

 void IServiceBehavior.AddBindingParameters(ServiceDescription description,
 ServiceHostBase serviceHostBase,
 Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection parameters)
 {
 m_SecurityBehavior.AddBindingParameters(description,serviceHostBase,
 endpoints,parameters);
 }
 void IServiceBehavior.Validate(ServiceDescription description,
 ServiceHostBase serviceHostBase)
 {
 m_SecurityBehavior.UseAspNetProviders = UseAspNetProviders;
 m_SecurityBehavior.ApplicationName = ApplicationName;
 m_SecurityBehavior.ImpersonateAll = ImpersonateAll;
 m_SecurityBehavior.Validate(description,serviceHostBase);
 }
 //Rest of the implementation
}

The SecurityBehavior attribute is a service behavior attribute, so you can apply it
directly on the service class. When the AddBindingParameters() method of
IServiceBehavior is called, the SecurityBehavior attribute enforces the binding con-
figuration that matches the requested scenario. The Validate() method of ISer
viceBehavior is where the SecurityBehavior attribute configures the host. Other than
that, all the attribute really does is sequence the overall order of configuration. The
actual configuration is accomplished using a helper class called SecurityBehavior. Re-
call from other examples that it is always best to separate the attribute from its behavior,
so you can reuse the behavior elsewhere. The SecurityBehavior attribute constructs an
instance of SecurityBehavior, providing it with the scenario (the mode parameter) as
well as the certificate name in the matching constructor. SecurityBehavior provides
systematic, meticulous setting of all security scenarios using programmatic calls, en-
capsulating all the explicit steps described previously for each scenario. Secur
ityBehavior is a service behavior in its own right, and it is designed to even be used
standalone, independent of the attribute. Example 10-21 contains a partial listing of
SecurityBehavior, demonstrating how it operates.

Declarative Security Framework | 601

Download from Library of Wow! eBook <www.wowebook.com>

Example 10-21. Implementing SecurityBehavior (partial)

class SecurityBehavior : IServiceBehavior
{
 ServiceSecurity m_Mode;
 StoreLocation m_StoreLocation;
 StoreName m_StoreName;
 X509FindType m_FindType;
 string m_SubjectName;

 public bool ImpersonateAll
 {get;set;}
 public bool UseAspNetProviders
 {get;set;}
 public string ApplicationName
 {get;set;}

 public SecurityBehavior(ServiceSecurity mode) :
 this(mode,StoreLocation.LocalMachine,X509FindType.FindBySubjectName,null)
 {}
 public SecurityBehavior(ServiceSecurity mode,StoreLocation storeLocation,
 StoreName storeName,X509FindType findType,
 string subjectName)
 {...} //Sets the corresponding members

 public void Validate(ServiceDescription description,
 ServiceHostBase serviceHostBase)
 {
 if(m_SubjectName != null)
 {
 switch(m_Mode)
 {
 case ServiceSecurity.Anonymous:
 case ServiceSecurity.BusinessToBusiness:
 case ServiceSecurity.Internet:
 {
 string subjectName;
 if(m_SubjectName != String.Empty)
 {
 subjectName = m_SubjectName;
 }
 else
 {
 subjectName = description.Endpoints[0].Address.Uri.Host;
 }
 serviceHostBase.Credentials.ServiceCertificate.
 SetCertificate(m_StoreLocation,m_StoreName,m_FindType,subjectName);
 break;
 }
 }
 }
 .
 .
 .
 }

602 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 public void AddBindingParameters(ServiceDescription description,
 ServiceHostBase serviceHostBase,
 Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection parameters)
 {
 .
 .
 .
 switch(m_Mode)
 {
 case ServiceSecurity.Intranet:
 {
 ConfigureIntranet(endpoints);
 break;
 }
 case ServiceSecurity.Internet:
 {
 ConfigureInternet(endpoints,UseAspNetProviders);
 break;
 }
 .
 .
 .
 }
 }
 internal static void ConfigureInternet(IEnumerable<ServiceEndpoint> endpoints)
 {
 foreach(ServiceEndpoint endpoint in endpoints)
 {
 Binding binding = endpoint.Binding;
 if(binding is WSHttpBinding)
 {

 WSHttpBinding wsBinding = (WSHttpBinding)binding;
 wsBinding.Security.Mode = SecurityMode.Message;
 wsBinding.Security.Message.ClientCredentialType =
 MessageCredentialType.UserName;
 continue;
 }
 .
 .
 .
 throw new InvalidOperationException(binding.GetType() +
 " is unsupported with ServiceSecurity.Internet");
 }
 }
 //Rest of the implementation
}

The constructors of SecurityBehavior store in member variables the construction pa-
rameters, such as the security mode and the details of the certificate. The Validate()
method is a decision tree that configures the host according to the scenario and the
provided information, supporting the behavior of the SecurityBehavior attribute. Add
BindingParameters() calls a dedicated helper method for each scenario to configure

Declarative Security Framework | 603

Download from Library of Wow! eBook <www.wowebook.com>

the collection of endpoints the host exposes. Each helper method (such as
ConfigureInternet()) iterates over the collection of service endpoints. For each end-
point, it verifies whether the binding used matches the scenario and then configures
the binding according to the scenario.

Host-Side Declarative Security
While configuring declarative security via the SecurityBehavior attribute is easy and
handy, often it is up to the host to configure security, and the service just focuses on
the business logic. In addition, you may be required to host services you do not develop,
and those services may not happen to use my declarative security framework. The
natural next step is to add declarative security support to the service host class as a set
of SetSecurityBehavior() extension methods:

public static class SecurityHelper
{
 public static void SetSecurityBehavior(this ServiceHost host,
 ServiceSecurity mode,
 bool useAspNetProviders,
 string applicationName,
 bool impersonateAll = false);

 public static void SetSecurityBehavior(this ServiceHost host,
 ServiceSecurity mode,
 string serviceCertificateName,
 bool useAspNetProviders,
 string applicationName,
 bool impersonateAll = false);

 public static void SetSecurityBehavior(this ServiceHost host,
 ServiceSecurity mode,
 StoreLocation storeLocation,
 StoreName storeName,
 X509FindType findType,
 string serviceCertificateName,
 bool useAspNetProviders,
 string applicationName,
 bool impersonateAll = false);
 //More members
}

Using declarative security via the host follows the same consistent guidelines as with
the SecurityBehavior attribute. For example, here is how to configure the host (and the
service) for Internet security with ASP.NET providers:

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.SetSecurityBehavior(ServiceSecurity.Internet,
 "MyServiceCert",true,"MyApplication");
host.Open();

Example 10-22 shows a partial listing of the declarative security support in the exten-
sion methods for the host.

604 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Example 10-22. Adding declarative security extensions for the host

public static class SecurityHelper
{
 public static void SetSecurityBehavior(this ServiceHost host,
 ServiceSecurity mode,
 StoreLocation storeLocation,
 StoreName storeName,
 X509FindType findType,
 string serviceCertificateName,
 bool useAspNetProviders,
 string applicationName,
 bool impersonateAll = false)
 {
 if(host.State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Host is already opened");
 }
 SecurityBehavior securityBehavior = new SecurityBehavior(mode,storeLocation,
 storeName,findType,
 serviceCertificateName);
 securityBehavior.UseAspNetProviders = useAspNetProviders;
 securityBehavior.ApplicationName = applicationName;
 securityBehavior.ImpersonateAll = impersonateAll;

 host.Description.Behaviors.Add(securityBehavior);
 }
 //More members
}

The implementation of SetSecurityBehavior() relies on the fact that the Security
Behavior class supports IServiceBehavior. SetSecurityBehavior() initializes an in-
stance of SecurityBehavior with the supplied parameters and then adds it to the col-
lection of behaviors in the service description, as if the service were decorated with the
SecurityBehavior attribute.

Client-Side Declarative Security
WCF does not allow attributes to be applied on the proxy class, and while a contract-
level attribute is possible, the client may need to provide its credentials and other set-
tings at runtime. The first step in supporting declarative security on the client side is
my SecurityHelper static helper class with its set of extension methods for the proxy,
defined in Example 10-23.

Example 10-23. Adding declarative security extensions for the proxy

public static class SecurityHelper
{
 public static void UnsecuredProxy<T>(this ClientBase<T> proxy) where T : class;
 public static void AnonymousProxy<T>(this ClientBase<T> proxy) where T : class;
 public static void SecureProxy<T>(this ClientBase<T> proxy,
 string userName,string password) where T : class;

Declarative Security Framework | 605

Download from Library of Wow! eBook <www.wowebook.com>

 public static void SecureProxy<T>(this ClientBase<T> proxy,
 string domain,string userName,string password) where T : class;
 public static void SecureProxy<T>(this ClientBase<T> proxy,string domain,
 string userName,string password,TokenImpersonationLevel impersonationLevel)
 where T : class;
 public static void SecureProxy<T>(this ClientBase<T> proxy,
 string clientCertificateName) where T : class;
 public static void SecureProxy<T>(this ClientBase<T> proxy,
 StoreLocation storeLocation,StoreName storeName,
 X509FindType findType,string clientCertificateName) where T : class;
 //More members
}

You can use SecurityHelper to configure a plain proxy according to the desired security
scenario and behavior, using the dedicated static extension methods SecurityHelper
offers. You can configure the proxy only before opening it. There is no need for any
security settings in the client’s config file or elsewhere in the client’s code.

SecurityHelper is smart, and it will select the correct security behavior based on pro-
vided parameters and the method invoked. There is no need to explicitly use the
ServiceSecurity enum.

For example, here is how to secure a proxy for the intranet scenario and provide it with
the client’s Windows credentials:

MyContractClient proxy = new MyContractClient();
proxy.SecureProxy("MyDomain","MyUsername","MyPassword");
proxy.MyMethod();
proxy.Close();

For the Internet scenario, the client only needs to provide the username and the pass-
word (remember that the decision as to whether those are Windows or ASP.NET provider
credentials is a service-side decision):

MyContractClient proxy = new MyContractClient();
proxy.SecureProxy("MyUsername","MyPassword");
proxy.MyMethod();
proxy.Close();

For the business-to-business scenario, the client can specify a null or an empty string
for the client certificate name if it wants to use the certificate in its config file, or it can
list the certificate name explicitly:

MyContractClient proxy = new MyContractClient();
proxy.SecureProxy("MyClientCert");
proxy.MyMethod();
proxy.Close();

SecurityHelper will load the certificate from the client’s LocalMachine store from the
My folder by name. The client can also specify all the information required to find and
load the certificate. To keep the design of SecurityHelper simple, when using the
BasicHttpBinding in the business-to-business scenario the client must explicitly specify
the service certificate location, either in the config file or programmatically.

606 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

For an anonymous client, use the AnonymousProxy() method:

MyContractClient proxy = new MyContractClient();
proxy.AnonymousProxy();
proxy.MyMethod();
proxy.Close();

and for no security at all, use the UnsecuredProxy() method:

MyContractClient proxy = new MyContractClient();
proxy.UnsecuredProxy();
proxy.MyMethod();
proxy.Close();

Implementing SecurityHelper

Internally, SecurityHelper uses SecurityBehavior to configure the proxy’s endpoint
and set the credentials, as shown in Example 10-24.

Example 10-24. Implementing SecurityHelper (partial)

public static class SecurityHelper
{
 public static void SecureProxy<T>(this ClientBase<T> proxy,
 string userName,string password) where T : class
 {
 if(proxy.State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Proxy channel is already opened");
 }

 ServiceEndpoint[] endpoints = {factory.Endpoint};

 SecurityBehavior.ConfigureInternet(endpoints,true);

 proxy.ClientCredentials.UserName.UserName = userName;
 proxy.ClientCredentials.UserName.Password = password;
 proxy.ClientCredentials.ServiceCertificate.Authentication.
 CertificateValidationMode = X509CertificateValidationMode.PeerTrust;
 }
 //Rest of the implementation
}

The SecureClientBase<T> class

The advantage of using the SecurityHelper extensions is that they can operate on any
proxy—even a proxy the client developer is not responsible for creating. The disad-
vantage is that it is an extra step the client has to take. If you are responsible for gen-
erating the proxy, you can take advantage of my SecureClientBase<T> class, defined in
Example 10-25.

Declarative Security Framework | 607

Download from Library of Wow! eBook <www.wowebook.com>

Example 10-25. The SecureClientBase<T> class

public abstract class SecureClientBase<T> : ClientBase<T> where T : class
{
 //These constructors target the default endpoint
 protected SecureClientBase();
 protected SecureClientBase(ServiceSecurity mode);
 protected SecureClientBase(string userName,string password);
 protected SecureClientBase(string domain,string userName,string password,
 TokenImpersonationLevel impersonationLevel);
 protected SecureClientBase(string domain,string userName,string password);
 protected SecureClientBase(string clientCertificateName);
 protected SecureClientBase(StoreLocation storeLocation,StoreName storeName,
 X509FindType findType,string clientCertificateName);
 //More constructors for other types of endpoints
}

SecureClientBase<T> derives from the conventional ClientBase<T> and adds declarative
security support. You need to derive your proxy from SecureClientBase<T> instead of
ClientBase<T>, provide constructors that match your security scenario, and call the
base constructors of SecureClientBase<T> with the supplied credentials and endpoint
information:

class MyContractClient : SecureClientBase<IMyContract>,IMyContract
{
 public MyContractClient(ServiceSecurity mode) : base(mode)
 {}
 public MyContractClient(string userName,string password) :
 base(userName,password)
 {}

 /* More constructors */

 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

Using the derived proxy is straightforward. For example, for the Internet scenario:

MyContractClient proxy = new MyContractClient("MyUsername","MyPassword");
proxy.MyMethod();
proxy.Close();

or for the Anonymous scenario:

MyContractClient proxy = new MyContractClient(ServiceSecurity.Anonymous);
proxy.MyMethod();
proxy.Close();

The implementation of SecureClientBase<T> simply uses the extensions of Security
Helper (as shown in Example 10-26), so SecureClientBase<T> follows the same behav-
iors regarding, for example, the client certificate.

608 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

Example 10-26. Implementing SecureClientBase<T> (partial)

public class SecureClientBase<T> : ClientBase<T> where T : class
{
 protected SecureClientBase(ServiceSecurity mode)
 {
 switch(mode)
 {
 case ServiceSecurity.None:
 {
 this.UnsecuredProxy();
 break;
 }
 case ServiceSecurity.Anonymous:
 {
 this.AnonymousProxy();
 break;
 }
 ...
 }
 }
 protected SecureClientBase(string userName,string password)
 {
 this.SecureProxy(userName,password);
 }
 //More constructors
}

Secure channel factory

If you are not using a proxy at all, SecurityHelper and SecureClientBase<T> will be of
little use to you. For that case, I added to SecurityHelper a set of extension methods to
the ChannelFactory<T> class, defined in Example 10-27.

Example 10-27. Adding declarative security extensions for ChannelFactory<T>

public static class SecurityHelper
{
 public static void SetSecurityMode<T>(this ChannelFactory<T> factory,
 ServiceSecurity mode);
 public static void SetCredentials<T>(this ChannelFactory<T> factory,
 string userName,string password);
 public static void SetCredentials<T>(this ChannelFactory<T> factory,
 string domain,string userName,string password);
 public static void SetCredentials<T>(this ChannelFactory<T> factory,
 string clientCertificateName);
 //More members
}

You need to call the SetSecurityMode() method or one of the SetCredentials() methods
that fits your target scenario before opening the channel. For example, with a proxy to
an Internet security-based service:

ChannelFactory<IMyContract> factory = new ChannelFactory<IMyContract>(. . .);
factory.SetCredentials("MyUsername","MyPassword");

Declarative Security Framework | 609

Download from Library of Wow! eBook <www.wowebook.com>

IMyContract proxy = factory.CreateChannel();

using(proxy as IDisposable)
{
 proxy.MyMethod();
}

Implementing the ChannelFactory<T> extensions was very similar to implementing the
extensions for ClientBase<T>, so I have omitted that code.

Duplex clients and declarative security

I also provide the SecureDuplexClientBase<T,C> class (similar to SecureClient
Base<T>), which is defined in Example 10-28.

Example 10-28. The SecureDuplexClientBase<T,C> class

public abstract class SecureDuplexClientBase<T,C> : DuplexClientBase<T,C>
 where T : class
{
 protected SecureDuplexClientBase(C callback);
 protected SecureDuplexClientBase(ServiceSecurity mode,C callback);
 protected SecureDuplexClientBase(string userName,string password,C callback);
 protected SecureDuplexClientBase(string domain,string userName,string password,
 TokenImpersonationLevel impersonationLevel,C callback);
 protected SecureDuplexClientBase(string domain,string userName,string password,
 C callback);
 protected SecureDuplexClientBase(string clientCertificateName,C callback);
 protected SecureDuplexClientBase(StoreLocation storeLocation,
 StoreName storeName,X509FindType findType,
 string clientCertificateName,C callback);

 /* More constructors with InstanceContext<C> and constructors that
 target the configured endpoint and a programmatic endpoint */
}

SecureDuplexClientBase<T,C> derives from my type-safe DuplexClientBase<T,C> class,
presented in Chapter 5, and it adds declarative scenario-based security support. As
when using the DuplexClientBase<T,C> class, you need to derive your proxy class from
it and take advantage of either the callback parameter or the type-safe context
InstanceContext<C>. For example, given this service contract and callback contract
definition:

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
interface IMyContractCallback
{
 [OperationContract]

610 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 void OnCallback();
}

your derived proxy class will look like this:

class MyContractClient :
 SecureDuplexClientBase<IMyContract,IMyContractCallback>,IMyContract
{
 public MyContractClient(IMyContractCallback callback) : base(callback)
 {}
 public MyContractClient(ServiceSecurity mode,IMyContractCallback callback) :
 base(mode,callback)
 {}
 /* More constructors */

 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

When using SecureDuplexClientBase<T,C>, provide the security scenario or credentials,
the callback object, and the endpoint information. For example, when targeting the
anonymous scenario:

class MyClient : IMyContractCallback
{...}

IMyContractCallback callback = new MyClient();

MyContractClient proxy = new MyContractClient(ServiceSecurity.Anonymous,callback);
proxy.MyMethod();

proxy.Close();

The implementation of SecureDuplexClientBase<T,C> is almost identical to that of
SecureClientBase<T>, with the main difference being a different base class. Note that
there was no point in defining declarative extensions for DuplexClientBase<T>, since
you should not use it in the first place due to its lack of type safety.

Extensions for the duplex factory

When you’re not using a SecureDuplexClientBase<T,C>-derived proxy to set up the
bidirectional communication, you can use my declarative extensions for the Duplex
ChannelFactory<T,C> channel factory, defined in Example 10-29.

Example 10-29. Adding declarative security extensions for DuplexChannelFactory<T,C>

public static class SecurityHelper
{
 public static void SetSecurityMode<T,C>(this DuplexChannelFactory<T,C> factory,
 ServiceSecurity mode);
 public static void SetCredentials<T,C>(this DuplexChannelFactory<T,C> factory,
 string userName,string password);

Declarative Security Framework | 611

Download from Library of Wow! eBook <www.wowebook.com>

 public static void SetCredentials<T,C>(this DuplexChannelFactory<T,C> factory,
 string domain,string userName,string password);
 public static void SetCredentials<T,C>(this DuplexChannelFactory<T,C> factory,
 string clientCertificateName);
 //More members
}

You need to call the SetSecurityMode() method or one of the SetCredentials() methods
that fits your target scenario before opening the channel. For example, when targeting
the Internet scenario:

class MyClient : IMyContractCallback
{...}

IMyContractCallback callback = new MyClient();

DuplexChannelFactory<IMyContract,IMyContractCallback> factory =
 new DuplexChannelFactory<IMyContract,IMyContractCallback>(callback,"");
factory.SetCredentials("MyUsername","MyPassword");

IMyContract proxy = factory.CreateChannel();
using(proxy as IDisposable)
{
 proxy.MyMethod();
}

Implementing the extensions for DuplexChannelFactory<T,C> was very similar to im-
plementing those for ChannelFactory<T>.

Security Auditing
I will end this chapter by presenting a useful feature WCF supports called security
audits. As its name implies, a security audit is a logbook of the security-related events
in your services. WCF can log authentication and authorization attempts, their times
and locations, and the calling clients’ identities. The class
ServiceSecurityAuditBehavior governs auditing; it is listed in Example 10-30 along
with its supporting enumerations.

Example 10-30. The ServiceSecurityAuditBehavior class

public enum AuditLogLocation
{
 Default, //Decided by the operating system
 Application,
 Security
}
public enum AuditLevel
{
 None,
 Success,
 Failure,
 SuccessOrFailure

612 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

}
public sealed class ServiceSecurityAuditBehavior : IServiceBehavior
{
 public AuditLogLocation AuditLogLocation
 {get;set;}
 public AuditLevel MessageAuthenticationAuditLevel
 {get;set;}
 public AuditLevel ServiceAuthorizationAuditLevel
 {get;set;}
 //More members
}

ServiceSecurityAuditBehavior is a service behavior. The AuditLogLocation property
specifies where to store the log entries: in the application log or in the security
log, both of which are in the event log on the host computer. The
MessageAuthenticationAuditLevel property governs the authentication audit verbosity.
Its default value is AuditLevel.None. For performance’s sake, you may want to audit
only failures. For diagnostic purposes, you can also audit successful authentications.
Similarly, you use the ServiceAuthorizationAuditLevel property to control authoriza-
tion audit verbosity. It is also disabled by default.

Configuring Security Audits
The typical way of enabling a security audit is in the host config file, by adding a custom
behavior section and referencing it in the service declaration, as shown in
Example 10-31.

Example 10-31. Configuring a security audit administratively

<system.serviceModel>
 <services>
 <service name = "MyService" behaviorConfiguration = "MySecurityAudit">
 ...
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name = "MySecurityAudit">
 <serviceSecurityAudit
 auditLogLocation = "Default"
 serviceAuthorizationAuditLevel = "SuccessOrFailure"
 messageAuthenticationAuditLevel = "SuccessOrFailure"
 />
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

You can also configure security auditing programmatically, by adding the behavior to
the host at runtime before opening it. As you do when adding other behaviors

Security Auditing | 613

Download from Library of Wow! eBook <www.wowebook.com>

programmatically, you can check that the host does not already have an audit behavior
to avoid overriding the config file, as shown in Example 10-32.

Example 10-32. Enabling a security audit programmatically

ServiceHost host = new ServiceHost(typeof(MyService));

ServiceSecurityAuditBehavior securityAudit =
 host.Description.Behaviors.Find<ServiceSecurityAuditBehavior>();
if(securityAudit == null)
{
 securityAudit = new ServiceSecurityAuditBehavior();

 securityAudit.MessageAuthenticationAuditLevel = AuditLevel.SuccessOrFailure;
 securityAudit.ServiceAuthorizationAuditLevel = AuditLevel.SuccessOrFailure;
 host.Description.Behaviors.Add(securityAudit);
}
host.Open();

You can streamline the code in Example 10-32 by adding the SecurityAuditEnabled
Boolean property to ServiceHost<T>:

public class ServiceHost<T> : ServiceHost
{
 public bool SecurityAuditEnabled
 {get;set;}
 //More members
}

Using ServiceHost<T>, Example 10-32 is reduced to:

ServiceHost<MyService> host = new ServiceHost<MyService>();
host.SecurityAuditEnabled = true;
host.Open();

Example 10-33 shows the implementation of the SecurityAuditEnabled property.

Example 10-33. Implementing the SecurityAuditEnabled property

public class ServiceHost<T> : ServiceHost
{
 public bool SecurityAuditEnabled
 {
 get
 {
 ServiceSecurityAuditBehavior securityAudit =
 Description.Behaviors.Find<ServiceSecurityAuditBehavior>();
 if(securityAudit != null)
 {
 return securityAudit.MessageAuthenticationAuditLevel ==
 AuditLevel.SuccessOrFailure
 &&
 securityAudit.ServiceAuthorizationAuditLevel ==
 AuditLevel.SuccessOrFailure;
 }
 else

614 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

 {
 return false;
 }
 }
 set
 {
 if(State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Host is already opened");
 }
 ServiceSecurityAuditBehavior securityAudit =
 Description.Behaviors.Find<ServiceSecurityAuditBehavior>();
 if(securityAudit == null && value == true)
 {
 securityAudit = new ServiceSecurityAuditBehavior();
 securityAudit.MessageAuthenticationAuditLevel =
 AuditLevel.SuccessOrFailure;
 securityAudit.ServiceAuthorizationAuditLevel =
 AuditLevel.SuccessOrFailure;
 Description.Behaviors.Add(securityAudit);
 }
 }
 }
 //More members
}

In the get accessor, the SecurityAuditEnabled property accesses the description of the
service and looks for an instance of ServiceSecurityAuditBehavior. If one is found,
and if both the authentication and the authorization audits are set to
AuditLevel.SuccessOrFailure, SecurityAuditEnabled returns true; otherwise, it returns
false. In the set accessor, the property enables the security audit only if the description
does not contain a previous value (because the config file does not contain the audit
behavior). If no prior behavior is found, SecurityAuditEnabled sets both the authenti-
cation and authorization audits to AuditLevel.SuccessOrFailure.

Declarative Security Auditing
You can also write an attribute that surfaces the security audit options at the service
level. I chose to add that support in the form of a single Boolean property of the
SecurityBehavior attribute called SecurityAuditEnabled:

[AttributeUsage(AttributeTargets.Class)]
public class SecurityBehaviorAttribute : Attribute,IServiceBehavior
{
 public bool SecurityAuditEnabled
 {get;set;}
 //More members
}

Security Auditing | 615

Download from Library of Wow! eBook <www.wowebook.com>

The default of SecurityAuditEnabled is false (i.e., no security audit). Using this prop-
erty complements the rest of the declarative security model. For example:

[SecurityBehavior(ServiceSecurity.Internet,UseAspNetProviders = true,
 SecurityAuditEnabled = true)]
class MyService : IMyContract
{...}

Example 10-34 shows how that support was added to the SecurityBehavior attribute.

Example 10-34. Implementing a declarative security audit

[AttributeUsage(AttributeTargets.Class)]
public class SecurityBehaviorAttribute : Attribute,IServiceBehavior
{
 public bool SecurityAuditEnabled
 {get;set;}

 void IServiceBehavior.Validate(ServiceDescription description,
 ServiceHostBase serviceHostBase)
 {
 if(SecurityAuditEnabled)
 {
 ServiceSecurityAuditBehavior securityAudit = serviceHostBase.Description.
 Behaviors.Find<ServiceSecurityAuditBehavior>();
 if(securityAudit == null)
 {
 securityAudit = new ServiceSecurityAuditBehavior();
 securityAudit.AuditLogLocation = AuditLogLocation.Application;
 securityAudit.MessageAuthenticationAuditLevel =
 AuditLevel.SuccessOrFailure;
 securityAudit.ServiceAuthorizationAuditLevel =
 AuditLevel.SuccessOrFailure;
 serviceHostBase.Description.Behaviors.Add(securityAudit);
 }
 //Rest same as Example 10-20
 }
 }
 //Rest of the implementation
}

The Validate() method of IServiceBehavior enables auditing using the same verbosity
level as ServiceHost<T>, again avoiding overriding the config file.

616 | Chapter 10: Security

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 11

The Service Bus

The Windows Azure AppFabric Service Bus (or just service bus for short) is arguably
the most accessible, powerful, and needed piece of the new Windows Azure Cloud
Computing initiative. In its first release, the service bus has several manifestations: as
a relay service, as an events hub, and as a message buffer. While the service bus is
designed to address some tough connectivity issues, it also provides an attractive sol-
ution for scalability, availability, and security issues by lowering the technology
entrance barrier and making what used to be an advanced communication scenario
mainstream and mundane. As a relay service, the service bus addresses the challenge
of Internet connectivity. Truth be told, Internet connectivity is difficult. Often, the
service is located behind firewalls (both software and hardware firewalls) and behind
a load balancer, and its address is dynamic and can be resolved only on the local network
and cannot be translated to outside addressing. Virtualization adds a new dimension
to connectivity along with maintaining transport sessions across machines. This situa-
tion is depicted in Figure 11-1.

Figure 11-1. Internet connectivity challenges

Moreover, since it is typically inadvisable to open the intranet to callers from the In-
ternet, businesses often resort to using DMZs, but in turn incur the increased com-
plexity of deployment, managing multiple sets of client credentials, and the unwanted
traffic of unauthorized calls. Commonplace solutions for Internet connectivity from

617

Download from Library of Wow! eBook <www.wowebook.com>

dynamic DNS to static IPs are often cumbersome, do not reflect changes in real time,
have severe scalability and throughout implications, and are potentially insecure unless
done by experts.

When it comes to having the service call back to the client, the problem is compounded
by all the connectivity issues surrounding the client, virtually a mirror image of Fig-
ure 11-1. And yet, callbacks, events, and peer-to-peer calls are often an integral part of
many applications, ranging from consumer machines such as non-real-time games,
interactive communication, and media sharing to roaming business machines using ad
hoc connections and full-fledged cross-intranet business-to-business applications.

What Is a Relay Service?
The solution for the Internet connectivity challenge is simple—since it is so difficult to
connect the client to the service directly, avoid doing that (at least initially) and instead
use a relay service. The relay service is a service residing in the cloud assisting in the
connectivity, relaying the client calls to the service. Such a relay approach does require
both the client and the service intranets to allow connecting to the cloud, but since the
cloud constitutes neutral territory for both the client and the service, most environ-
ments, from consumer home machines to small intranets and large businesses, do allow
calls out to the Internet, because that is perceived as an integral part of conducting
business. A cloud-based relay service (as you will see later) also provides other benefits
in terms of scalability, security, and administration.

Figure 11-2 shows how the relay service operates.

Figure 11-2. The service bus as a relay service

First, both the service and the client must establish connection against the relay service
independently (steps 1 and 2 in Figure 11-2) and authenticate against the relay service.

618 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

At this point, the relay also records where the service is and how to best call back to it.
When the client calls the relay service (step 3), the relay service forwards the call (the
client message) to the service (step 4).

The Windows Azure AppFabric Service Bus
While the sequence of Figure 11-2 sounds straightforward, in practice it involves a
considerable amount of intricate network programming, messaging and standards
know-how, and security expertise, as well as administration, IT operations, dedicated
connectivity, and infrastructure. Such a solution is simply out of reach for the vast
majority of applications. This is exactly the gap the Microsoft Windows Azure App-
Fabric Service Bus is designed to fill when acting as a ready-made relay service, hosted
and managed at a Microsoft data center. The service bus acts as a DMZ in the cloud,
allowing only authenticated services (and potentially clients) to connect and relay mes-
sages. The service bus provides a single place to manage the client and service creden-
tials. The service bus is the front end of the service, encapsulating and isolating the
services from malicious callers lurking on the Internet. The service bus is the one
repelling various attacks, from DOS to replay attacks, while the identity and location
of the actual service is completely hidden. The service bus can offload from the service
the need to manage and interact with the client credentials. In addition to relaying
messages and providing security management, the Windows Azure AppFabric Service
Bus offers additional services such as a services registry and access control.

The main difference between connecting to a regular WCF service and using the relay
service is in hosting. In the case of a relay service, the service must connect to the service
bus, authenticate itself, and listen to calls from the relay service before the client sends
its requests. This means you must use self-hosting and either launch the host explicitly
or use an NT Service as a host. When using the WAS, you must deploy your service on
a machine running Application Server AppFabric and configure the service for
auto-start.

Steps 2 and 3 in Figure 11-2 may be combined into a single call. The
reason I broke it into two logical steps is that authenticating both the
service and the client is done against another facility of Windows Azure
AppFabric, called the Access Control Service (ACS). Presently, you can
use the ACS to authenticate the client or the service applications (as
discussed later in the chapter). You can also use the ACS for authoriza-
tion and even to build a kind of two-tier authentication system where
user claims are converted to ACS tokens for application authentication.
Presently, this requires a great deal of understanding of ACS and related
topics such as federated and claims-based security, which are outside
the scope of this chapter.

What Is a Relay Service? | 619

Download from Library of Wow! eBook <www.wowebook.com>

Programming the Service Bus
The service bus supports a WCF-friendly programming model by offering a set of dedi-
cated bindings and behaviors. By and large, except for a few slight twists to the pro-
gramming model, working with the relay service is no different from any other WCF
service.

The service bus supports the core WCF features of reliable messaging, Message security
and Transport security. Presently, it does not support propagation of transactions from
the client to the service across the relay service.

The service bus features are available in the Microsoft.ServiceBus.dll assembly, mostly
under the Microsoft.ServiceBus namespace.

The service bus requires a separate download of the Windows Azure
SDK, and will work on machines running .NET 3.5 and .NET 4.0.

Relay Service Address
After opening an account with the Windows Azure AppFabric Service Bus, you need
to use the Windows Azure AppFabric Service Bus administration website to create a
service namespace (see Figure 11-3) and to select a connection payment plan.

It may be obvious, yet it is best to state that the service bus use is not
free and, at the time of this writing, users (both clients and services) pay
based on the maximum number of active concurrent connections per
unit of time they maintain against the service bus.

A service namespace is the equivalent of a machine or domain name in regular network
addressing, and any available (not already taken) URI-compliant string will do.

Like any other WCF service, every relayed service must have a unique address. The
format of the address is always a base address followed by any number of optional URIs:

[base address]/[optional URI]/.../[optional URI]

The format of the base address is always the transport scheme followed by the service
namespace and then the service bus address:

[scheme]://[service namespace].[service bus address]

For now, the service bus address is always:

servicebus.windows.net

620 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

The format of the scheme is either sb, http, or https. Example 11-1 shows a few possible
addresses.

Example 11-1. Possible service bus addresses

sb://MyNamespace.servicebus.windows.net/
sb://MyNamespace.servicebus.windows.net/MyService
sb://MyNamespace.servicebus.windows.net/MyService/MyEndpoint
sb://MyNamespace.servicebus.windows.net/AnythingYouLike

http://MyNamespace.servicebus.windows.net/
http://MyNamespace.servicebus.windows.net/MyService

https://MyNamespace.servicebus.windows.net/MyService/MyEndpoint
https://MyNamespace.servicebus.windows.net/AnythingYouLike

Once your service connects to the relay service and starts listening on its address, no
other service can listen on any other URI scoped under your service URI. Put differently,

Figure 11-3. Creating a service namespace

Programming the Service Bus | 621

Download from Library of Wow! eBook <www.wowebook.com>

two distinct services must have two addresses so that no address is the prefix of the
other. For example, here are two invalid addresses when used concurrently:

sb://MyNamespace.servicebus.windows.net/
sb://MyNamespace.servicebus.windows.net/MyService

The address of the service bus is available via the ServiceBusEnvironment static class:

public static class ServiceBusEnvironment
{
 public static Uri CreateServiceUri(string scheme,string serviceNamespace,
 string servicePath);
 public static string DefaultIdentityHostName
 {get;}

 //More members
}

string serviceBusAddress = ServiceBusEnvironment.DefaultIdentityHostName;
Debug.Assert(serviceBusAddress == "servicebus.windows.net");

Extracting the service namespace

When working with the service bus and a config file, you should avoid hard-coding the
service namespace either on the client or the service. Instead, you can extract the service
namespace from the config file using my ServiceBusHelper static helper class, shown
in Example 11-2.

Example 11-2. Extracting the service namespace from the config file

public static class ServiceBusHelper
{
 public static string ExtractNamespace(Uri address)
 {
 return address.Host.Split('.')[0];
 }

 public static string ExtractNamespace(string endpointName)
 {
 Configuration config =
 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);
 ServiceModelSectionGroup sectionGroup =
 ServiceModelSectionGroup.GetSectionGroup(config);

 foreach(ChannelEndpointElement endpointElement in
 sectionGroup.Client.Endpoints)
 {
 if(endpointElement.Name == endpointName)
 {
 return ExtractNamespace(endpointElement.Address);
 }
 }
 return null;
 }
 public static string ExtractNamespace(Type serviceType)

622 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 {
 Configuration config =
 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);
 ServiceModelSectionGroup sectionGroup =
 ServiceModelSectionGroup.GetSectionGroup(config);

 foreach(ServiceElement serviceElement in sectionGroup.Services.Services)
 {
 if(serviceElement.Name == serviceType.ToString())
 {
 return ExtractNamespace(serviceElement.Endpoints[0].Address);
 }
 }
 return null;
 }
}

The client can provide the endpoint name to the ExtractNamespace() method, and the
method will iterate over the client endpoints, parsing the service namespace out of the
matching endpoint address. The host can call the ExtractNamespace() method while
providing it the service type, in which case the method will parse the service namespace
out of the first endpoint the host uses. You will see usage of these helper methods later
in the chapter.

The Service Bus Registry
The service bus offers an ATOM feed of listening services on the service namespace
base address or on any one of its sub-URIs. You can view the feed by navigating to the
service namespace (or the nested URI) using a browser, as shown in Figure 11-4.

Figure 11-4. The service bus registry feed

Programming the Service Bus | 623

Download from Library of Wow! eBook <www.wowebook.com>

By default, your service will not be listed in the service bus registry. You control the
service registry publishing using the ServiceRegistrySettings endpoint behavior class,
defined as:

public enum DiscoveryType
{
 Public,
 Private
}
public class ServiceRegistrySettings : IEndpointBehavior
{
 public ServiceRegistrySettings();
 public ServiceRegistrySettings(DiscoveryType discoveryType);

 public DiscoveryType DiscoveryMode
 {get;set;}
 public string DisplayName
 {get;set;}
}

The host needs to add that behavior programmatically to every endpoint you wish to
publish to the registry (there is no matching configurable behavior). For example, use
the following to publish all endpoints to the registry:

IEndpointBehavior registryBehavior =
 new ServiceRegistrySettings(DiscoveryType.Public);

ServiceHost host = new ServiceHost(typeof(MyService));

foreach(ServiceEndpoint endpoint in host.Description.Endpoints)
{
 endpoint.Behaviors.Add(registryBehavior);
}

host.Open();

You can streamline this behavior with a dedicated host type, such as my Discoverable
ServiceHost:

public partial class DiscoverableServiceHost : ServiceHost,...
{
 public DiscoverableServiceHost(Type serviceType,params Uri[] baseAddresses)
 : base(serviceType,baseAddresses)
 {}

 //More constructors

 protected override void OnOpening()
 {
 IEndpointBehavior registryBehavior = new
 ServiceRegistrySettings(DiscoveryType.Public);

 foreach(ServiceEndpoint endpoint in Description.Endpoints)
 {
 endpoint.Behaviors.Add(registryBehavior);

624 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 }
 base.OnOpening();
 }
}

Appendix C uses DiscoverableServiceHost to add discovery-like
support for the service bus.

The Service Bus Explorer
To help visualize the service bus, I wrote the Service Bus Explorer shown in Figure 11-5.

Figure 11-5. The Service Bus Explorer

The tool accepts the service namespace to explore and after logging into the feed will
display the running services for you. All the explorer does is parse the ATOM feed and
place the items in the tree on the left. You can explore multiple service namespaces and
see your service bus administration pages in the right pane. The tool also shows the
available buffers (discussed later in the chapter); this information is very handy in ad-
ministering them.

Programming the Service Bus | 625

Download from Library of Wow! eBook <www.wowebook.com>

The Service Bus Bindings
The service bus offers multiple bindings for relaying messages, yet the three main bind-
ings this chapter focuses on are the NetTcpRelayBinding, NetOnewayRelayBinding, and
NetEventRelayBinding. A fourth binding, the WS2007HttpRelayBinding, is available as
well, yet the likelihood of using it is low, as it is reserved for the case of interoperable
messages to the service bus and it is inferior in performance to the NetTcpRelay
Binding (which can also use HTTP ports).

The TCP Relay Binding
The TCP relay binding is the binding of choice in the majority of cases involving relayed
Internet connectivity. It yields the best performance and throughput while minimizing
the overhead for both the service and the relay service. It supports request-reply oper-
ations, one-way operations, and even duplex callbacks, all through the relay service.
For scheme, the TCP relay always uses sb:

<endpoint
 address = "sb://MyNamespace.servicebus.windows.net/..."
 binding = "netTcpRelayBinding"
 contract = "..."
/>

The TCP relay binding offers unlimited message size (up to the configured message
size, as with the regular TCP binding). The TCP relay binding always maintains a
transport session, so with a session-full service, calls made on the same proxy channel
always end up reaching the same service instance. However, because this binding uses
the TCP binary encoding, it is not interoperable—it assumes the other side is also using
the TCP relay binding.

Adding default endpoints

You cannot rely on the AddDefaultEndpoints() method of ServiceHostBase. This is first
because presently the protocol mapping (presented in Chapter 1) does not recognize
the sb scheme. While you could easily add that mapping, the second problem is that
unlike regular WCF, where you can open multiple endpoints on the same base address,
with the service bus no endpoint address can be the prefix of another. To rectify that I
added default endpoint support with my AddServiceBusDefaultEndpoints() host ex-
tension method implemented as:

public static partial class ServiceBusHelper
{
 Type[] GetServiceContracts(Type serviceType)//Uses reflection
 {...}

 public static void AddServiceBusDefaultEndpoints(this ServiceHost host)
 {
 Type[] contracts = GetServiceContracts(host.Description.ServiceType);
 Binding binding = new NetTcpRelayBinding();

626 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 foreach(Uri baseAddress in host.BaseAddresses)
 {
 if(baseAddress.Scheme != "sb")
 {
 continue;
 }
 foreach(Type contract in contracts)
 {
 string address = baseAddress.AbsoluteUri + contract.Name;
 host.AddServiceEndpoint(contract,binding,address);
 }
 }
 }
}

For each host service bus base address, AddServiceBusDefaultEndpoints() adds per
contract an endpoint whose address is the base address suffixed with the contract name,
and whose binding is a plain instance of the NetTcpRelayBinding. For example, for this
service definition:

[ServiceContract]
interface IMyContract
{...}

[ServiceContract]
interface IMyOtherContract
{...}

class MyService : IMyContract,IMyOtherContract
{...}

This hosting code:

ServiceHost host = new ServiceHost(typeof(MyService),
 new Uri("sb://MyNamespace.servicebus.windows.net/"));
host.AddServiceBusDefaultEndpoints();
host.Open();

is equivalent to this configuration:

<service name = "MyService">
 <host>
 <baseAddresses>
 <add baseAddress = "sb://MyNamespace.servicebus.windows.net/"/>
 </baseAddresses>
 </host>
 <endpoint
 address = "IMyContract"
 binding = "netTcpRelayBinding"
 contract = "IMyContract"
 />
 <endpoint
 address = "IMyOtherContract"
 binding = "netTcpRelayBinding"
 contract = "IMyOtherContract"

The Service Bus Bindings | 627

Download from Library of Wow! eBook <www.wowebook.com>

 />
</service>

Connection modes

The TCP relay binding offers two connection modes, called relayed and hybrid. Con-
figure the connection mode using the TcpRelayConnectionMode enum and the
ConnectionMode property of NetTcpRelayBindingBase:

public enum TcpRelayConnectionMode
{
 Relayed,
 Hybrid
}

public abstract class NetTcpRelayBindingBase : Binding,...
{
 public TcpRelayConnectionMode ConnectionMode
 {get;set;}
 //More members
}
public class NetTcpRelayBinding : NetTcpRelayBindingBase
{...}

TCP relayed mode

When configured with TcpRelayConnectionMode.Relayed, all calls to the service always
go through the relay, as shown in Figure 11-6. Relayed connection is the default mode
of the TCP relay binding.

Figure 11-6. Relayed TCP connection

628 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

TCP hybrid mode

When configured with TcpRelayConnectionMode.Hybrid, the service first connects to the
relay service and authenticates itself (step 1 in Figure 11-7), and then the client connects
and authenticates itself (step 2 in Figure 11-7). However, at this point, the relay service
will promote the connection to a direct connection between the client and the service
by telling the client how to reach the service directly (step 3 in Figure 11-7). With that
in place, the client can continue to call the service directly (step 4 in Figure 11-7).

Figure 11-7. Hybrid TCP connection

The relay service will try to promote the connection to the most direct connection
possible; that is, if the client and the service are part of the same intranet, it will provide
the client with “better” coordinates, much the same way it will if they are on the same
network segment and even machine.

If a direct connection is impossible (typically if the relay service failed to correctly iden-
tify the service address), the connection stays relayed. Example 11-3 shows how to
configure the TCP binding for hybrid connection (both on the client and the service
side).

Example 11-3. Configuring the TCP relay binding for hybrid connection

 <endpoint
 address = "sb://MyNamespace.servicebus.windows.net/..."
 binding = "netTcpRelayBinding"
 bindingConfiguration = "Hybrid"
 contract = "..."
 />
...

The Service Bus Bindings | 629

Download from Library of Wow! eBook <www.wowebook.com>

<bindings>
 <netTcpRelayBinding>
 <binding name = "Hybrid"
 connectionMode = "Hybrid"
 ...
 />
 </netTcpRelayBinding>
 </bindings>

Hybrid mode is the preferred connection mode compared with TCP relay binding.
However, hybrid mode has one constraint: it requires the binding to use Message se-
curity. As you will see later in the chapter, Message security requires additional con-
figuration and setup—while the steps are simple, they do preclude hybrid as a viable
working option by default.

Duplex callbacks

As mentioned already and worth explicit highlight, the TCP relay binding supports
duplex callbacks through the relay, as shown in Figure 11-8. Duplex callbacks are
identical to the regular TCP binding in terms of setting up the duplex calls, accessing
the callback reference, and all the other details of the duplex callbacks. Presently, the
TCP relay binding is the only relay binding that supports duplex callbacks.

Figure 11-8. Duplex TCP relay callback

The WS 2007 Relay Binding
The WS relay binding sends and receives interoperable WCF messages over HTTP (or
HTTPS) with non-.NET services. Like the regular WS binding, it uses text encoding by
default, and when Message security or reliable messaging is employed, it will maintain
transport session over the relay. The scheme for the address is either http or https.

630 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

<endpoint
 address = "http://MyNamespace.servicebus.windows.net/..."
 binding = "ws2007HttpRelayBinding"
 contract = "..."
/>

As far as capabilities and use, the WS relay binding is just like the TCP relay binding,
except it only supports relayed connections. You should use this binding only when
you have an explicit need to interoperate; in all other cases, use the TCP relay binding.

The One-Way Relay Binding
The one-way relay binding allows the client to send its message to a buffer maintained
at the relay service, not to the service itself, and to later have the relay service try to
deliver the message to the service. To curtail the load on the service bus, messages are
limited to 64 KB. This includes the 4 KB or so WCF uses for message headers, so the
net size is roughly 60 KB. As with the TCP and WS relay bindings, the service must be
listening for incoming messages, otherwise the client gets EndpointNotFoundException.

It is impossible to get a reply from the service; in fact, the one-way relay binding verifies
that all operations on the endpoint’s contract are defined as one-way operations.

As with the TCP and the WS relay binding, there can be only one service monitoring
the relayed address, while there can be any number of clients calling that service. For
the scheme, the one-way relay always uses sb:

<endpoint
 address = "sb://MyNamespace.servicebus.windows.net/..."
 binding = "netOnewayrelayBinding"
 contract = "..."
/>

Fire-and-forget semantics

The one-way relay binding is intended to provide fire-and-forget unicast messaging
semantics, allowing (in theory) the client to send messages to the relay service regardless
of the service state and call outcome. The reality, however, is that the one-way relay
binding falls short of that objective. As mentioned, the service must be running when
the client sends the message to the relay service. This precludes clients that are inde-
pendent of the service state. Furthermore, the service bus will maintain a transport
session between the client and the relay service. Any communication error (including
the service not running) will terminate the transport session with an exception and
force the client to resort to a new proxy. While this is a best practice with regular calls,
when it comes to fire-and-forget calls, it would be much better if not having a service
running would not constitute an error toward the client. The only step toward fire-and-
forget call semantics is that the service bus will not maintain a transport session between
the relay service and the service itself, so service-side exceptions will not prevent the
client from issuing subsequent calls on the same proxy.

The Service Bus Bindings | 631

Download from Library of Wow! eBook <www.wowebook.com>

Note that you should only choose the one-way relay binding when the client does not
care about both service-side exceptions and the order of the calls.

The Event Relay Binding
The event relay binding is a light but crucial specialization of the one-way relay binding:

public class NetEventRelayBinding : NetOnewayRelayBinding
{...}

It allows any number of services to monitor the same URI in the relay service. Once a
client sends a message to the relay, all monitoring services receive it. Given the fact
there is no limitation on the number of clients, this, in effect, provides for N:M com-
munication, where both N and M can be any natural number. Since the specialization
is on the service side, the client can use either the one-way relay binding or the event
relay binding, while the services must use the event relay binding. In addition, unlike
any other relay binding, you can also have services listening concurrently on nested
URIs. As with the one-way relay binding, there is no guarantee of message order or of
successful processing on the services side.

Events publishing

The canonical case for using the events relay binding is event publishing and subscrip-
tion, as shown in Figure 11-9. In this case, you view the service bus as an events hub,
not merely a relay service. The clients, called publishers, call the events hub, delivering
the events to any number of services, called subscribers.

Figure 11-9. The service bus as an events hub

632 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

However, there is much more to event publishing than an event hub, especially if you
are after a full publish-subscribe pattern. Appendix D describes several options for a
publish-subscribe solution, including using the NetEventRelayBinding.

WCF also offers the BasicHttpRelayBinding and WebHttpRelayBinding.
As their names imply, these bindings are the relayed equivalent of the
regular WCF bindings.

Relay Binding and Ports
All the relay bindings can work either in TCP or in HTTP connectivity modes. The
bindings use ports in the range of 9350–9353 for TCP connectivity and ports 80 or 443
for HTTP or HTTPS connectivity. The bindings will default to using the TCP ports and
if they are blocked, they will revert to the HTTP ports.

Normally there is no need to deal with ports unless these ports are blocked, which is
somewhat rare. If the ports are blocked and you need to open just the required ports
for your target scenario, it helps to know which binding uses which port and when, as
shown in Table 11-1. In the hybrid scenario, the TCP relay binding will use port 9353
as well.

Table 11-1. Ports used as a product of binding and connectivity mode

Binding Connectivity Mode Port

TCP Relay TCP 9350,9351,9352

TCP Relay HTTP 80

WSHttp2007Binding TCP 80,443,9351,9352

WSHttp2007Binding HTTP 80,443

NetOnewayRelayBinding TCP 80,443,9350,9351,9352

NetOnewayRelayBinding HTTP 80

Cloud as Interceptor
The service bus was initially developed to address the acute connectivity issues of calls
across the Web. However, it has the potential for much more. Compare Figure 11-2 to
Figure 1-19 (page 68) describing the WCF architecture. In both cases, the client does
not interact directly with the service; instead, the calls are intercepted by a middleware.
In the case of regular WCF, the middleware is the proxy and the interpretation chain
leading to the service, as shown in Figure 11-10.

Cloud as Interceptor | 633

Download from Library of Wow! eBook <www.wowebook.com>

Figure 11-10. Intercepting regular WCF calls

In the case of the service bus, the middleware comprises WCF on both sides and the
service bus itself, as shown in Figure 11-11.

Figure 11-11. The cloud as interceptor

From an architecture standpoint, it is the same design—intercept the calls to provide
additional value. In the current release of the service bus, that additional value is the
capability to install buffers. Future releases of the service bus will add queues and rout-
ers and, likely further down the road, logging and various instrumentation. In fact, I
believe the service bus has great potential for powerful interceptors and, no doubt,
additional aspects will become available over time.

Service Bus Buffers
In the service bus, every URI in the service namespace is actually an addressable mes-
saging junction. The client can send a message to that junction, and the junction can
relay it to the services. However, each junction can also function as a buffer (see
Figure 11-12).

Unlike the buffers used with the one-way relay binding, the messages are stored in the
buffer for a configurable period of time, even when no service is monitoring the buffer.

634 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

Note that multiple services can monitor the buffer, but only one of them will be able
to retrieve the message.

The client is decoupled from the services behind the buffer, and the client or the service
need not be running at the same time. Since the client interacts with a buffer and not
with an actual service endpoint, all the messages are sent one-way, and there is no way
(out of the box) to obtain the results of the message invocation or any errors.

Buffers Versus Queues
The service bus buffers should not be equated with queues (such as MSMQ queues,
discussed in Chapter 9), as there are a number of crucial differences:

• The service bus buffers are not durable and the messages are stored in memory.
This implies the risk of losing messages in the (somewhat unlikely) event of a cata-
strophic failure of the service bus itself.

• The service bus buffers are not transactional and both sending and retrieving mes-
sages cannot be part of a transaction.

• The buffers cannot handle long-lasting messages. The service must retrieve the
message from the buffer within 10 minutes (at the most) or the message is discar-
ded. While the MSMQ-based messages discussed in Chapter 9 also feature a time-
to-live, that timeout is much longer, defaulting to one day. This enables a far
broader range of truly disjointed operations and disconnected applications.

• The buffers are limited in size; they cannot hold more than 50 messages at the most.

• The buffered messages are capped in size, presently at 64 KB each. While MSMQ
also imposes its own maximum message size, it is substantially larger (4 MB per
message).

The result of these differences is that the buffers do not provide true queued calls over
the cloud, but rather, they provide for elasticity in the connection, where the calls are
somewhere between queued calls and fire-and-forget asynchronous calls.

Figure 11-12. Buffers in the service bus

Service Bus Buffers | 635

Download from Library of Wow! eBook <www.wowebook.com>

There are two scenarios in which buffers are useful. The first is an application where
the client and the service are interacting over a somewhat shaky connection, and drop-
ping the connection and picking it up again is tolerated as long as the messages are
buffered during the short offline period. The second (and more pervasive) scenario is
a client issuing asynchronous one-way calls while utilizing a response buffer (described
later in the chapter) to handle the result of the call. Figuratively speaking, such inter-
action is akin to viewing the network connection more as a bungee cord than a rigid
network wire that has no storage capacity.

Working with Buffers
The buffer address must be unique; that is, you can only have a single buffer associated
with that address, and the address cannot already be in use by a buffer or a service.
However, multiple parties can retrieve messages from the same buffer. In addition, the
buffer address must use either HTTP or HTTPS for the transport scheme. To send and
retrieve messages from the buffer, the service bus offers an API similar to that of
System.Messaging, requiring you to interact with raw messages. The service bus ad-
ministrator manages the buffers independently of services or clients. Each buffer must
have a policy governing its behavior and lifetime. The service bus administrator must
perform programmatic calls out of the box to create and manage buffers.

The buffer policy

Each buffer policy is expressed via an instance of MessageBufferPolicy, defined as:

[DataContract]
public class MessageBufferPolicy : ...
{
 public MessageBufferPolicy();
 public MessageBufferPolicy(MessageBufferPolicy policyToCopy);

 public DiscoverabilityPolicy Discoverability
 {get;set;}

 public TimeSpan ExpiresAfter
 {get;set;}

 public int MaxMessageCount
 {get;set;}

 public OverflowPolicy OverflowPolicy
 {get;set;}

 public AuthorizationPolicy Authorization
 {get;set;}

 public TransportProtectionPolicy TransportProtection
 {get;set;}
}

636 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

The Discoverability policy property is an enum of the type DiscoverabilityPolicy,
controlling whether or not the buffer is included in the ATOM feed of the service
namespace:

public enum DiscoverabilityPolicy
{
 Managers,
 ManagersListeners,
 ManagersListenersSenders,
 Public
}

Discoverability defaults to DiscoverabilityPolicy.Managers, meaning it requires a
managed authorization claim. Setting it to DiscoverabilityPolicy.Public publishes it
to the feed without any authorization.

The ExpiresAfter property controls the lifetime of messages in the buffer. The default
is 5 minutes, the minimum value is 1 minute, and the maximum value is 10 minutes.
Attempts to configure a longer expiration result in a value of 10 minutes. Every time a
service tries to retrieve a message off the buffer, it resets the countdown timeout.

The MaxMessageCount property caps the buffer size. The policy defaults to 10 messages
and the minimum value is, of course, set to 1. As mentioned, the maximum allowed
buffer size is 50 and attempts to configure a larger size will result in a buffer size of 50
messages.

The OverflowPolicy property is an enum with a single value defined as:

public enum OverflowPolicy
{
 RejectIncomingMessage
}

OverflowPolicy controls what to do with the message once the buffer is maxed out, that
is, full to capacity (defined by MaxMessageCount). The only possible option is to reject
the message (send it back with an error to the sender).

The single-value enum serves as a placeholder for future options, such as discarding
the message without informing the sender or discarding previous messages from the
buffer and accepting the new message.

The final two properties are responsible for security configuration. The Authorization
Policy property instructs the service bus whether or not to authorize the client’s token:

public enum AuthorizationPolicy
{
 NotRequired,
 RequiredToSend,
 RequiredToReceive,
 Required
}

Service Bus Buffers | 637

Download from Library of Wow! eBook <www.wowebook.com>

The default value of AuthorizationPolicy.Required is to require authorizing both send-
ing and receiving clients.

Finally, the TransportProtection property stipulates the minimum level of transfer
security of the message to the buffer using an enum of the type TransportProtection
Policy:

public enum TransportProtectionPolicy
{
 None,
 AllPaths
}

Transport security via TransportProtectionPolicy.AllPaths is the default of all buffer
policies, which, in turn, mandates the use of an HTTPS address.

Administering the buffer

You use the MessageBufferClient class to administer your buffer:

public sealed class MessageBufferClient
{
 public Uri MessageBufferUri
 {get;}

 public static MessageBufferClient CreateMessageBuffer(
 TransportClientEndpointBehavior credential,
 Uri messageBufferUri,MessageBufferPolicy policy);

 public static MessageBufferClient GetMessageBuffer(
 TransportClientEndpointBehavior credential,
 Uri messageBufferUri);
 public MessageBufferPolicy GetPolicy();
 public void DeleteMessageBuffer();

 //More members
}

You use the static methods of MessageBufferClient to obtain an authenticated instance
of MessageBufferClient by providing the static methods with the service bus credentials
(of the type TransportClientEndpointBehavior). I will discuss service bus security (and
TransportClientEndpointBehavior in particular) at length later in this chapter. When
you use MessageBufferClient, you typically need to check whether the buffer already
exists in the service bus by calling the GetMessageBuffer() method. If there is no buffer,
GetMessageBuffer() throws an exception.

Example 11-4 demonstrates creating a buffer programmatically.

Example 11-4. Creating a buffer programmatically

Uri bufferAddress =
 new Uri("https://MyNamespace.servicebus.windows.net/MyBuffer/");

TransportClientEndpointBehavior credential = ...

638 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

MessageBufferPolicy bufferPolicy = new MessageBufferPolicy();

bufferPolicy.MaxMessageCount = 12;
bufferPolicy.ExpiresAfter = TimeSpan.FromMinutes(3);
bufferPolicy.Discoverability = DiscoverabilityPolicy.Public;

MessageBufferClient.CreateMessageBuffer(credential,bufferAddress,bufferPolicy);

The example instantiates a buffer policy object and sets the policy to some desired
values. All it takes to install the buffer is to call the CreateMessageBuffer() method of
MessageBufferClient with the policy and some valid credentials.

As an alternative to programmatic calls, you can use my Service Bus Explorer to both
view and modify buffers. Figure 11-13 shows how to create a new buffer by specifying
its address and various policy properties. You can also delete all buffers in the service
namespace.

Figure 11-13. Creating a buffer using the Service Bus Explorer

You can also review and modify the policies of existing buffers, purge messages from
the buffer, and even delete a buffer by selecting the buffer in the service namespace tree
and interacting with the buffer properties in the right pane, as shown in Figure 11-14.

Service Bus Buffers | 639

Download from Library of Wow! eBook <www.wowebook.com>

Streamlining administration

When creating buffers, it is best to maximize both the buffer size and its expiration to
enable more decoupled interaction on the time axis—this allows for a less fleeting
window of opportunity for the clients and services to interact. In addition, it is a good
idea to make the buffer discoverable so that you can view it on the service bus registry.
When it comes to using the buffer, both the client and the service should verify the
buffer already exists and, if not, proceed to create it.

To automate these steps, I added a number of methods to ServiceBusHelper:

public static partial class ServiceBusHelper
{
 public static void CreateBuffer(string bufferAddress,string secret);
 public static void CreateBuffer(string bufferAddress,string issuer,
 string secret);

 public static void VerifyBuffer(string bufferAddress,string secret);
 public static void VerifyBuffer(string bufferAddress,string issuer,
 string secret);
 public static void PurgeBuffer(Uri bufferAddress,
 TransportClientEndpointBehavior credential);
 public static void DeleteBuffer(Uri bufferAddress,
 TransportClientEndpointBehavior credential);
}

Figure 11-14. A buffer in the Service Bus Explorer

640 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

The CreateBuffer() method creates a new discoverable buffer with a maximized
capacity of 50 messages and expiration of 10 minutes. If the buffer already exists,
CreateBuffer() deletes the old buffer. The VerifyBuffer() method verifies a buffer ex-
ists and will create a new buffer otherwise. PurgeBuffer() is useful in purging all buf-
fered messages during diagnostics or debugging. DeleteBuffer() simply deletes the
buffer.

Example 11-5 shows partial listing of the implementation of these methods.

Example 11-5. Partial listing of the buffer helper methods

public static partial class ServiceBusHelper
{
 public static void CreateBuffer(string bufferAddress,string issuer,
 string secret)
 {
 TransportClientEndpointBehavior credentials = ...;
 CreateBuffer(bufferAddress,credentials);
 }
 static void CreateBuffer(string bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 MessageBufferPolicy policy = CreateBufferPolicy();
 CreateBuffer(bufferAddress,policy,credentials);
 }
 static internal MessageBufferPolicy CreateBufferPolicy()
 {
 MessageBufferPolicy policy = new MessageBufferPolicy();
 policy.Discoverability = DiscoverabilityPolicy.Public;
 policy.ExpiresAfter = TimeSpan.FromMinutes(10);
 policy.MaxMessageCount = 50;

 return policy;
 }
 public static void PurgeBuffer(Uri bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 Debug.Assert(BufferExists(bufferAddress,credentials));
 MessageBufferClient client = MessageBufferClient.
 GetMessageBuffer(credentials,bufferAddress);
 MessageBufferPolicy policy = client.GetPolicy();
 client.DeleteMessageBuffer();
 MessageBufferClient.CreateMessageBuffer(credentials,bufferAddress,policy);
 }
 public static void VerifyBuffer(string bufferAddress,string issuer,
 string secret)
 {
 TransportClientEndpointBehavior credentials = ...;
 VerifyBuffer(bufferAddress,credentials);
 }
 internal static void VerifyBuffer(string bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 if(BufferExists(bufferAddress,credentials))

Service Bus Buffers | 641

Download from Library of Wow! eBook <www.wowebook.com>

 {
 return;
 }
 CreateBuffer(bufferAddress,credentials);
 }
 internal static bool BufferExists(Uri bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 try
 {
 MessageBufferClient client = MessageBufferClient.
 GetMessageBuffer(credentials,bufferAddress);
 client.GetPolicy();
 return true;
 }
 catch(FaultException)
 {}

 return false;
 }
 static void CreateBuffer(string bufferAddress,
 MessageBufferPolicy policy,TransportClientEndpointBehavior credentials)
 {
 Uri address = new Uri(bufferAddress);
 if(BufferExists(address,credentials))
 {
 MessageBufferClient client = MessageBufferClient.
 GetMessageBuffer(credentials,address);
 client.DeleteMessageBuffer();
 }
 MessageBufferClient.CreateMessageBuffer(credentials,address,policy);
 }

}

The BufferExists() method uses the GetPolicy() method of MessageBufferClient to
determine if a buffer exists, and it interprets an error as an indication that the buffer
does not exist. The PurgeBuffer() method first copies the buffer policy, then deletes
the buffer, and creates a new buffer (with the same address) with the old policy.

Sending and Retrieving Messages
As mentioned already, the service bus buffers require interactions with raw WCF mes-
sages. Do this with the Send() and Retrieve() methods of MessageBufferClient
(obtained when creating or getting a buffer):

public sealed class MessageBufferClient
{
 public void Send(Message message);
 public void Send(Message message,TimeSpan timeout);

 public Message Retrieve();
 public Message Retrieve(TimeSpan timeout);

642 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

Both methods are subject to a timeout, which defaults to one minute for the parame-
terless versions. For the sender, the timeout specifies how long to wait if the buffer is
full. For the retriever, the timeout specifies how long to wait if the buffer is empty.

Example 11-6 shows the sender-side code.

Example 11-6. Sending raw messages to the buffer

TransportClientEndpointBehavior credential = ...;
Uri bufferUri = new Uri("sb://MyNamespace.servicebus.windows.net/MyBuffer/");

MessageBufferClient client =
 MessageBufferClient.GetMessageBuffer(credential,bufferUri);

Message message = Message.CreateMessage(MessageVersion.Default,"Hello");

client.Send(message,TimeSpan.MaxValue);

The sender first creates a credentials object and uses it to obtain an instance of
MessageBufferClient. The sender then creates a WCF message and sends it to the buffer.
Example 11-7 shows the retrieving-side code.

Example 11-7. Retrieving raw messages from the buffer

TransportClientEndpointBehavior credential = ...;
Uri bufferUri = new Uri("sb://MyNamespace.servicebus.windows.net/MyBuffer/");

MessageBufferClient client =
 MessageBufferClient.GetMessageBuffer(credential,bufferUri);
Message message = client.Retrieve();

Debug.Assert(message.Headers.Action == "Hello");

When securely posting or retrieving raw WCF messages to the messag-
ing junctions, you are restricted to using only Transport security.

Buffered Services
Using raw WCF messages, as in Example 11-6 and Example 11-7 is what the service
bus has to offer. And yet, such a programming model leaves much to be desired. It is
cumbersome and tedious, and it is not structured, nor type-safe. It is a throwback to
the days before WCF itself with explicit programming against MSMQ with the API of
System.Messaging; you need to parse the message content and switch on its elements.
Fortunately, you can improve on this basic offering. Instead of interacting with raw
messages, you should elevate the interaction to structured calls between clients and

Service Bus Buffers | 643

Download from Library of Wow! eBook <www.wowebook.com>

services. While this requires a considerable degree of low-level advanced work, I was
able to encapsulate it with a small set of helper classes.

Buffered service host

To provide for structured buffered calls on the service side, I wrote BufferedService
BusHost<T>, defined as:

public class BufferedServiceBusHost<T> : ServiceHost<T>,...
{
 public BufferedServiceBusHost(params Uri[] bufferAddresses);
 public BufferedServiceBusHost(T singleton,params Uri[] bufferAddresses);

 /* Additional constructors */
}

I modeled BufferedServiceBusHost<T> after using WCF with the MSMQ binding. You
need to provide its constructor with the address or addresses of the buffers from which
to retrieve messages. The rest is just as with a regular WCF service host:

Uri address = new Uri("https://MyNamespace.servicebus.windows.net/MyBuffer");
ServiceHost host = new BufferedServiceBusHost<MyService>(address);
host.Open();

Note that you can provide the constructors with multiple buffer addresses to monitor,
just as a WCF service host can open multiple endpoints with different queues. There
is no need (or a way) to provide any of these buffer addresses in the service endpoint
section in the config file (although the buffer addresses can come from the app settings
section if you so design). While the actual communication with the service bus buffer
is done with raw WCF messages, that work is encapsulated. BufferedServiceBus
Host<T> will verify that the buffers provided actually exist and, if they do not, will create
them using the buffer policy of ServiceBusHelper.VerifyBuffer() shown in Exam-
ple 11-5. BufferedServiceBusHost<T> will use the default transfer security of securing
all paths. BufferedServiceBusHost<T> will verify that all the contracts of the provided
service generic type parameter T are all one-way, that is, they all have only one-way
operations (just as the one-way relay binding does). One last feature is when closing
the host, in debug builds only, BufferedServiceBusHost<T> will purge all its buffers to
ensure a smooth start for the next debug session. Recall that I provided a similar feature
for ServiceHost<T> with MSMQ-based queued calls.

BufferedServiceBusHost<T> operates by hosting the specified service locally. For each
service contract on the type parameter T, BufferedServiceBusHost<T> adds an endpoint
over IPC. The IPC binding to those endpoints is configured to never time out.

While IPC always has a transport session, to mimic the MSMQ behavior, even per-
session services are treated as per-call services. Each dequeued WCF message is played
to a new instance of the service, potentially concurrently with previous messages, just
as with the MSMQ binding. If the provided service type is a singleton,

644 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

BufferedServiceBusHost<T> will send all messages across all buffers and endpoints to
the same service instance, just as with the MSMQ binding.

To throttle the buffered service, use the throttling extension methods
described in Chapter 4.

BufferedServiceBusHost<T> monitors each specified buffer on the separate background
worker thread. When a message is deposited in the buffer, BufferedServiceBus
Host<T> retrieves it and converts the raw WCF message into a call to the appropriate
endpoint over IPC.

Example 11-8 provides a partial listing of BufferedServiceBusHost<T>, with most of the
error handling and security removed.

Example 11-8. Partial listing of BufferedServiceBusHost<T>

public class BufferedServiceBusHost<T> : ServiceHost<T>,IServiceBusProperties
{
 Uri[] m_BufferAddresses;
 List<Thread> m_RetrievingThreads;
 IChannelFactory<IDuplexSessionChannel> m_Factory;
 Dictionary<string,IDuplexSessionChannel> m_Proxies;

 const string CloseAction = "BufferedServiceBusHost.CloseThread";

 public BufferedServiceBusHost(params Uri[] bufferAddresses)
 {
 m_BufferAddresses = bufferAddresses;
 Binding binding = new NetNamedPipeBinding();
 binding.SendTimeout = TimeSpan.MaxValue;

 Type[] interfaces = typeof(T).GetInterfaces();

 foreach(Type interfaceType in interfaces)
 {
 VerifyOneway(interfaceType);

 string address = "net.pipe://localhost/" + Guid.NewGuid();
 AddServiceEndpoint(interfaceType,binding,address);
 }
 m_Factory = binding.BuildChannelFactory<IDuplexSessionChannel>();
 m_Factory.Open();
 }
 protected override void OnOpening()
 {
 ConfigureServiceBehavior();
 base.OnOpening();
 }
 protected override void OnOpened()
 {

Service Bus Buffers | 645

Download from Library of Wow! eBook <www.wowebook.com>

 CreateProxies();
 CreateListeners();
 base.OnOpened();
 }
 protected override void OnClosing()
 {
 CloseListeners();

 foreach(IDuplexSessionChannel proxy in m_Proxies.Values)
 {
 proxy.Close();
 }

 m_Factory.Close();

 PurgeBuffers();

 base.OnClosing();
 }

 //Verify all operations are one-way
 static void VerifyOneway(Type interfaceType)
 {...}

 void ConfigureServiceBehavior()
 {
 ServiceBehaviorAttribute behavior =
 Description.Behaviors.Find<ServiceBehaviorAttribute>();
 if(behavior.InstanceContextMode != InstanceContextMode.Single)
 {
 behavior.InstanceContextMode = InstanceContextMode.PerCall;
 behavior.ConcurrencyMode = ConcurrencyMode.Multiple;

 foreach(ServiceEndpoint endpoint in Description.Endpoints)
 {
 foreach(OperationDescription operation in endpoint.Contract.Operations)
 {
 OperationBehaviorAttribute attribute =
 operation.Behaviors.Find<OperationBehaviorAttribute>();
 if(attribute.TransactionScopeRequired == true)
 {
 behavior.ReleaseServiceInstanceOnTransactionComplete = false;
 return;
 }
 }
 }
 }
 }
 void CreateProxies()
 {
 m_Proxies = new Dictionary<string,IDuplexSessionChannel>();

 foreach(ServiceEndpoint endpoint in Description.Endpoints)
 {
 IDuplexSessionChannel channel = m_Factory.CreateChannel(endpoint.Address);

646 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 channel.Open();
 m_Proxies[endpoint.Contract.Name] = channel;
 }
 }

 void CreateListeners()
 {
 m_RetrievingThreads = new List<Thread>();

 foreach(Uri bufferAddress in m_BufferAddresses)
 {
 ServiceBusHelper.VerifyBuffer(bufferAddress.AbsoluteUri,...);

 Thread thread = new Thread(Dequeue);

 m_RetrievingThreads.Add(thread);
 thread.IsBackground = true;
 thread.Start(bufferAddress);
 }
 }

 void Dequeue(object arg)
 {
 Uri bufferAddress = arg as Uri;

 MessageBufferClient bufferClient =
 MessageBufferClient.GetMessageBuffer(...,bufferAddress);
 while(true)
 {
 Message message = bufferClient.Retrieve(TimeSpan.MaxValue);
 if(message.Headers.Action == CloseAction)
 {
 return;
 }
 else
 {
 Dispatch(message);
 }
 }
 }

 void Dispatch(Message message)
 {
 string contract = ExtractContract(message);
 m_Proxies[contract].Send(message);
 }

 static string ExtractContract(Message message)
 {
 string[] elements = message.Headers.Action.Split('/');
 return elements[elements.Length-2];
 }

 void SendCloseMessages()
 {

Service Bus Buffers | 647

Download from Library of Wow! eBook <www.wowebook.com>

 foreach(Uri bufferAddress in m_BufferAddresses)
 {
 MessageBufferClient bufferClient =
 MessageBufferClient.GetMessageBuffer(...,bufferAddress);
 Message message =
 Message.CreateMessage(MessageVersion.Default,CloseAction);
 bufferClient.Send(message);
 }
 }

 void CloseListeners()
 {
 SendCloseMessages();

 foreach(Thread thread in m_RetrievingThreads)
 {
 thread.Join();
 }
 }

 [Conditional("DEBUG")]
 void PurgeBuffers()
 {
 foreach(Uri bufferAddress in m_BufferAddresses)
 {
 ServiceBusHelper.PurgeBuffer(bufferAddress,...);
 }
 }
}

BufferedServiceBusHost<T> stores the proxies to the locally-hosted IPC endpoints in a
dictionary called m_Proxies:

Dictionary<string,IDuplexSessionChannel> m_Proxies;

The key into the dictionary is the endpoints’ contract type name.

The constructors store the provided buffer addresses and use reflection to obtain a
collection of all the service contracts on the service type. For each service contract,
BufferedServiceBusHost<T> verifies it has only one-way operations, then calls the base
AddServiceEndpoint() to add an endpoint for that contract type. The address is an IPC
address using a GUID for the pipe’s name. The constructors use the IPC binding to
build a channel factory of the type IChannelFactory<IDuplexSessionChannel>. IChannel
Factory<T> is used to create a non-strongly-typed channel over the binding:

public interface IChannelFactory<T> : IChannelFactory
{
 T CreateChannel(EndpointAddress to);
 //More members
}

The OnOpening() method BufferedServiceBusHost<T> configures the behavior of the
service. It will convert a per-session service into a per-call service and will configure
both per-call and per-session services to use concurrent calls. This is required because

648 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

there is no way to turn off the transport session with IPC, and with a transport session
in place, even with per-call, the calls will be played out one at a time. With a transac-
tional per-call service configured with concurrent access, OnOpening() must avoid re-
leasing the instance in every transactional operation, as explained in Chapter 8. After
opening the internal host with all its IPC endpoints, the OnOpened() method creates the
internal proxies to those endpoints and creates the buffered listeners. These two steps
are the heart of BufferedServiceBusHost<T>. To create the proxies, it iterates over the
collection of endpoints. From each endpoint, it obtains its address and uses the
IChannelFactory<IDuplexSessionChannel> to create a channel against that address. That
channel (or proxy) is then stored in the dictionary. The CreateListeners() method
iterates over the specified buffer addresses. For each address, it verifies the buffer and
creates a worker thread to dequeue its messages.

The Dequeue() method uses a MessageBufferClient to retrieve the messages in an infinite
loop and dispatch them using the Dispatch() method. Dispatch() extracts the target
contract name from the message and uses it to look up the IDuplexChannel from the
proxies dictionary and send the message over IPC. IDuplexChannel is supported by the
underlying IPC channel and provides a way to send raw messages:

public interface IOutputChannel : ...
{
 void Send(Message message,TimeSpan timeout);
 //More members
}
public interface IDuplexSessionChannel : IOutputChannel,...
{}

If an error occurs during the IPC call, BufferedServiceBusHost<T> will recreate the
channel it manages against that endpoint (not shown in Example 11-8). When you
close the host, you need to close the proxies thus gracefully waiting for the calls in
progress to complete. The problem is how to gracefully close all the retrieving threads,
since MessageBufferClient.Retrieve() is a blocking operation and there is no built-in
way to abort it. The solution is to post to each monitored buffer a special private mes-
sage whose action will signal the retrieving thread to exit. This is what the SendClose
Messages() method does. The CloseListeners() method posts that private message to
the buffers and waits for all the listening threads to terminate by joining them. Closing
the listening threads stops feeding messages to the internal proxies, and once the prox-
ies are closed (when all current calls in progress have returned), the host is ready to
shut down. BufferedServiceBusHost<T> also supports an ungraceful Abort() method,
which just aborts all threads (not shown in Example 11-8).

Finally, note that BufferedServiceBusHost<T> supports the IServiceBusProperties in-
terface, which I defined as:

public interface IServiceBusProperties
{
 TransportClientEndpointBehavior Credential
 {get;set;}

Service Bus Buffers | 649

Download from Library of Wow! eBook <www.wowebook.com>

 Uri[] Addresses
 {get;}
}

In the interest of decoupling, I needed such an interface in a few places, especially in
streamlining buffering.

For completeness sake, all my nonstatic service bus helper classes support this simple
interface, so you can use it for your needs.

Buffered client base

For the client, I wrote the class BufferedServiceBusClient<T>, defined as:

public abstract class BufferedServiceBusClient<T> :
 HeaderClientBase<T,ResponseContext>,IServiceBusProperties
{
 //Buffer address from config
 public BufferedServiceBusClient()
 {}
 //No need for config file
 public BufferedServiceBusClient(Uri bufferAddress);

 /* Additional constructors with different credentials */
 protected virtual void Enqueue(Action action);
}

BufferedServiceBusClient<T> derives from my HeaderClientBase<T,H> (mentioned in
previous chapters and detailed in Appendix B). The purpose of that base class is to
support a response service, as discussed in the following section. For a plain client of
a buffered service, that derivation is immaterial.

You can use BufferedServiceBusClient<T> with or without a client config file. The
constructors that accept the buffer address do not require a config file. The parame-
terless constructor or the constructors that accept the endpoint name expect the config
file to contain an endpoint matching the contract type with the one-way relay binding
(although BufferedServiceBusClient<T> completely ignores that binding).

When deriving your proxy from BufferedServiceBusClient<T>, you will need to use the
protected Enqueue() method instead of using the Channel property directly:

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod(int number);
}

650 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

class MyContractClient : BufferedServiceBusClient<IMyContract>,IMyContract
{
 public void MyMethod(int number)
 {
 Enqueue(()=>Channel.MyMethod(number));
 }
}

Enqueue() accepts a delegate (or a Lambda expression) that wraps the use of the
Channel property. The result is still type-safe. Example 11-9 shows a partial listing of
the BufferedServiceBusClient<T> class.

Example 11-9. Partial listing of BufferedServiceBusClient<T>

public abstract class BufferedServiceBusClient<T> :
 HeaderClientBase<T,ResponseContext>,
 IServiceBusProperties
 where T : class
{
 MessageBufferClient m_BufferClient;

 public BufferedServiceBusClient(Uri bufferAddress) :
 base(new NetOnewayRelayBinding(),
 new EndpointAddress(bufferAddress))
 {}

 protected virtual void Enqueue(Action action)
 {
 try
 {
 action();
 }
 catch(InvalidOperationException exception)
 {
 Debug.Assert(exception.Message == "This message cannot support the
 operation because it has been written.");
 }
 }
 protected override T CreateChannel()
 {
 ServiceBusHelper.VerifyBuffer(Endpoint.Address.Uri.AbsoluteUri,Credential);

 m_BufferClient =
 MessageBufferClient.GetMessageBuffer(Credential,
 Endpoint.Address.Uri.AbsoluteUri);

 return base.CreateChannel();
 }
 protected override void PreInvoke(ref Message request)
 {
 base.PreInvoke(ref request);

 m_BufferClient.Send(request);
 }
 protected TransportClientEndpointBehavior Credential

Service Bus Buffers | 651

Download from Library of Wow! eBook <www.wowebook.com>

 {
 get
 {...}
 set
 {...}
 }
}

The constructors of BufferedServiceBusClient<T> supply its base constructor with the
buffer address and the binding (always a one-way relay binding to enforce the one-way
operations validation). The CreateChannel() method verifies the target buffer exists and
obtains a MessageBufferClient representing it. The heart of BufferedServiceBus
Client<T> is the PreInvoke() method. PreInvoke() is a virtual method provided by
InterceptorClientBase<T>, the base class of HeaderClientBase<T,H>:

public abstract class InterceptorClientBase<T> : ClientBase<T> where T : class
{
 protected virtual void PreInvoke(ref Message request);
 //Rest of the implementation
}

public abstract class HeaderClientBase<T,H> : InterceptorClientBase<T>
 where T : class
{...}

InterceptorClientBase<T> is described in Appendix E. Briefly, it is part of a generic
interception framework I implemented that allows you to easily process the WCF mes-
sages before and after the client dispatches them. BufferedServiceBusClient<T> over-
rides PreInvoke() and uses the buffer client to send the message to the buffer. This way,
the client maintains a structured programming model and BufferedServiceBus
Client<T> encapsulates the interaction with the WCF message. The downside is that
the message can only be sent once, and when the root class of ClientBase tries to send
it, it throws an InvalidOperationException. This is where Enqueue() comes in handy by
snuffing out that exception.

Response Service
As discussed in Chapter 9, the only way to receive the result (or errors) of a queued call
is to use a queued response service. The same design pattern holds true when dealing
with buffers. The client needs to provide a dedicated response buffer for the service to
buffer the response to. The client also needs to pass the response address and the
method ID in the message headers, just as with the MSMQ-based calls, and you can
use many of the supporting types from Chapter 9. The main difference between the
MSMQ-based response service and the service bus is that the response buffer must also
reside in the service bus, as shown in Figure 11-15.

652 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

Figure 11-15. Service bus buffered response service

Client side

To streamline the client side, I wrote the class ClientBufferResponseBase<T>, defined as:

public abstract class ClientBufferResponseBase<T> :
 BufferedServiceBusClient<T> where T : class
{
 public readonly Uri ResponseAddress;

 public ClientBufferResponseBase(Uri responseAddress);

 /* Additional constructors with different credentials and parameters */

 protected virtual string GenerateMethodId();
}

ClientBufferResponseBase<T> is a specialized subclass of BufferedServiceBus
Client<T> and it adds the response context to the message headers (this is why I made
BufferedServiceBusClient<T> derive from HeaderClientBase<T,H> and not merely from
InterceptorClientBase<T>). You will need to derive your specific proxies from Client
BufferResponseBase<T> and use the Enqueue() method, for example:

[ServiceContract]
interface ICalculator
{
 [OperationContract(IsOneWay = true)]
 void Add(int number1,int number2);
}

class CalculatorClient : ClientBufferResponseBase<ICalculator>,ICalculator
{
 public CalculatorClient(Uri responseAddress) : base(responseAddress)
 {}

 public void Add(int number1,int number2)
 {
 Enqueue(()=>Channel.Add(number1,number2));
 }
}

Service Bus Buffers | 653

Download from Library of Wow! eBook <www.wowebook.com>

Using the subclass of ClientBufferResponseBase<T> is straightforward:

Uri resposeAddress =
 new Uri("sb://MyNamespace.servicebus.windows.net/MyResponseBuffer/");

CalculatorClient proxy = new CalculatorClient(responseAddress);
proxy.Add(2,3);
proxy.Close();

As with ClientResponseBase<T>, something that is very handy when managing the re-
sponses on the client side to have the invoking client obtain the method ID used to
dispatch the call. You can do this easily with the Header property:

CalculatorClient proxy = new CalculatorClient(responseAddress);
proxy.Add(2,3);
string methodId = proxy.Header.MethodId;
proxy.Close();

Example 11-10 lists the implementation of ClientBufferResponseBase<T>.

Example 11-10. Implementing ClientBufferResponseBase <T>

public abstract class ClientBufferResponseBase<T> :
 BufferedServiceBusClient<T> where T : class
{
 protected readonly Uri ResponseAddress;

 public ClientBufferResponseBase(Uri responseAddress)
 {
 ResponseAddress = responseAddress;
 }

 /* More Constructors */

 protected override void PreInvoke(ref Message request)
 {
 string methodId = GenerateMethodId();
 Header = new ResponseContext(ResponseAddress.AbsoluteUri,methodId);
 base.PreInvoke(ref request);
 }
 protected virtual string GenerateMethodId()
 {
 return Guid.NewGuid().ToString();
 }

 //Rest of the implementation
}

ClientBufferResponseBase<T> overrides the PreInvoke() method of HeaderClient
Base<T,H> so that it can generate a new method ID for each call and set it into the
headers, just like ClientResponseBase<T> of Example 9-23.

654 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

Service side

Mimicking again the concepts and solutions of the MSMQ-based calls, to streamline
the work required by the buffered service to call the response service, I wrote the class
ServiceBufferResponseBase<T>, shown in Example 11-11.

Example 11-11. The ServiceBufferResponseBase<T> class

public abstract class ServiceBufferResponseBase<T> : BufferedServiceBusClient<T>
 where T : class
{
 public ServiceBufferResponseBase() :
 base(new Uri(ResponseContext.Current.ResponseAddress))
 {
 Header = ResponseContext.Current;

 //Grab the credentials the host was using
 IServiceBusProperties properties =
 OperationContext.Current.Host as IServiceBusProperties;
 Credential = properties.Credential;
 }
}

While the service can use a plain BufferedServiceBusClient<T> to enqueue the re-
sponse, you will need to extract the response buffer address out of the headers and
somehow obtain the credentials to log into the service bus buffer. You will also need
to provide the headers of the outgoing call with the response context. You can stream-
line all of these steps with ServiceBufferResponseBase<T>. ServiceBufferResponse
Base<T> provides its base constructor with the address out of the response context, and
it also sets that context into the outgoing headers. Another simplifying assumption
ServiceBufferResponseBase<T> makes is that the responding service can use the same
credentials its host used (to retrieve messages from its own buffer) to send messages to
the response buffer. To that end, ServiceBufferResponseBase<T> obtains a reference to
its own host from the operation context and reads the credentials using the IService
BusProperties implementation of the host. ServiceBufferResponseBase<T> copies those
credentials for its own use (done inside BufferedServiceBusClient<T>). This, of course,
mandates the use of BufferedServiceBusHost<T> to host the service in the first place.

Your service needs to derive a proxy class from ServiceBufferResponseBase<T> and use
it to respond. For example, given this response contract:

[ServiceContract]
interface ICalculatorResponse
{
 [OperationContract(IsOneWay = true)]
 void OnAddCompleted(int result,ExceptionDetail error);
}

The definition of the proxy to the response service will be:

class CalculatorResponseClient :
 ServiceBufferResponseBase<ICalculatorResponse>,ICalculatorResponse

Service Bus Buffers | 655

Download from Library of Wow! eBook <www.wowebook.com>

{
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 Enqueue(()=>Channel.OnAddCompleted(result,error));
 }
}

Example 11-12 shows a simple buffered service responding to its client.

Example 11-12. Using ServiceBufferResponseBase<T>

class MyCalculator : ICalculator
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void Add(int number1,int number2)
 {
 int result = 0;
 ExceptionDetail error = null;
 try
 {
 result = number1 + number2;
 }
 //Don't rethrow
 catch(Exception exception)
 {
 error = new ExceptionDetail(exception);
 }
 finally
 {
 CalculatorResponseClient proxy = new CalculatorResponseClient();
 proxy.OnAddCompleted(result,error);
 proxy.Close();
 }
 }
}

Compare Example 11-12 to Example 9-25—they are virtually identical.

Response service

All the response service needs is to access the method ID from the message headers as
shown in Example 11-13.

Example 11-13. Implementing a response service

class MyCalculatorResponse : ICalculatorResponse
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 string methodId = ResponseContext.Current.MethodId;
 ...
 }
}

656 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

Example 11-13 is identical to Example 9-27.

Service Bus Authentication
If anyone were allowed to relay messages to your service, or if any service could receive
your client calls, the service bus would be a dangerous proposition. The service bus
mandates that the service must always authenticate itself in order to connect to the
service bus and receive relayed messages. Clients, on the other hand, may or may not
authenticate themselves. Typically (and by default), the clients do authenticate against
the service bus, but the relayed service may decide to waive the client’s service bus
authentication. Note that this kind of authentication is application authentication,
rather than individual user authentication.

As mentioned previously, the service bus utilizes the ACS of the Windows Azure App-
Fabric platform. The client and the service need to present a security token issued by
the ACS. Using the service namespace portal pages, the service namespace adminis-
trator creates and assigns such tokens in the form of keys (see Figure 11-16).

Figure 11-16. Configuring secret keys

Service Bus Authentication | 657

Download from Library of Wow! eBook <www.wowebook.com>

Each of the keys is a string of 47 characters long representing the shared secret.

These keys (and their issuer) must be known to the client and the service when au-
thenticating against the service bus. The keys can be used to both authenticate and
authorize sending messages and receiving messages, as well as managing the service
namespace. In addition, the service and client may not use the same key. Presently,
using the ACS raw keys is the default form of authentication available. This may change
in future release, allowing you to map other credentials such as passwords or certificates
to ACS roles, claims and tokens. In addition, the ACS allowed for integrating ADFS
(Active Directory Federated Solution) for authenticating and authorizing the clients.

Configuring Authentication
The enum TransportClientCredentialType represents the type of credentials used:

public enum TransportClientCredentialType
{
 SharedSecret,
 SimpleWebToken,
 Saml,
 Unauthenticated
}

The word Client in TransportClientCredentialType refers to a client of the service bus;
that is, both the client and the relayed service.

You can configure the desired authentication mechanism and even the credentials
themselves using an endpoint behavior called TransportClientEndpointBehavior, de-
fined in Example 11-14, along with the TransportClientCredentials class to provide
the credentials themselves.

Example 11-14. The TransportClientEndpointBehavior

public sealed class TransportClientEndpointBehavior : IEndpointBehavior
{
 public TransportClientCredentials Credentials
 {get;}
 public TransportClientCredentialType CredentialType
 {get;set;}
}
public class TransportClientCredentials
{
 public SharedSecretCredential SharedSecret
 {get;}
 //More members
}

Using an endpoint behavior (as opposed to a service behavior) provides two advantages.
First, a service host can choose a different authentication mechanism for each endpoint.
This may become relevant in future releases with other types of credentials. Second, it

658 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

offers a unified programming model for both the client and the service, since there are
only endpoint behaviors on the client side.

Shared Secret Authentication
The simplest form of credentials is to use the key assigned to the service namespace as
a shared secret. All the samples in this chapter use this form of credentials:

public class SharedSecretCredential : TransportClientCredentialBase
{
 public string IssuerName
 {get;set;}

 public string IssuerSecret
 {get;set;}

 //More members
}

You need to programmatically provide the issuer of the secret and the secret itself to
the TransportClientEndpointBehavior. The host and the client follow similar steps in
providing the credentials.

Providing the credentials on the host side

It is important to note that TransportClientEndpointBehavior defaults Credential
Type to TransportClientCredentialType.Unauthenticated. Consequently, all calls will
fail by default, so you must configure a different value for the host. When using a shared
secret, you first need to instantiate a new TransportClientEndpointBehavior object and
set the CredentialType property to TransportClientCredentialType.SharedSecret. The
credentials themselves are provided to the Credentials property. You then add this
behavior to every endpoint of the host which uses the relay service, as shown in
Example 11-15.

Example 11-15. Providing the host with shared secret credentials

string issuer = "owner";
string secret = "QV3...9M8=";

TransportClientEndpointBehavior credentials =
 new TransportClientEndpointBehavior();

credentials.CredentialType = TransportClientCredentialType.SharedSecret;
credentials.Credentials.SharedSecret.IssuerName = issuer;
credentials.Credentials.SharedSecret.IssuerSecret = secret;

ServiceHost host = new ServiceHost(typeof(MyService));

foreach(ServiceEndpoint endpoint in host.Description.Endpoints)
{
 endpoint.Behaviors.Add(credentials);

Service Bus Authentication | 659

Download from Library of Wow! eBook <www.wowebook.com>

}
host.Open();

You can encapsulate and automate the steps in Example 11-15 using extension meth-
ods, such as my SetServiceBusCredentials() methods of the ServiceBusHelper static
class:

public static class ServiceBusHelper
{
 public static void SetServiceBusCredentials(this ServiceHost host,
 string secret);
 public static void SetServiceBusCredentials(this ServiceHost host,
 string issuer,string secret);
}

Unspecified, SetServiceBusCredentials() defaults the issuer to owner.

Using SetServiceBusCredentials(), Example 11-15 is reduced to:

ServiceHost host = new ServiceHost(typeof(MyService));
host.SetServiceBusCredentials("QV3...9M8=");
host.Open();

Example 11-16 shows the implementation of the SetServiceBusCredentials() methods
without error handling.

Example 11-16. Implementing SetServiceBusCredentials ()

//Error handling removed for brevity
public static class ServiceBusHelper
{
 internal const string DefaultIssuer = "owner";

 public static void SetServiceBusCredentials(this ServiceHost host,
 string secret)
 {
 SetServiceBusCredentials(host.Description.Endpoints,DefaultIssuer,secret);
 }

 public static void SetServiceBusCredentials(this ServiceHost host,
 string issuer,string secret)
 {
 SetServiceBusCredentials(host.Description.Endpoints,issuer,secret);
 }

 static void SetServiceBusCredentials(IEnumerable<ServiceEndpoint> endpoints,
 string issuer,string secret)
 {
 TransportClientEndpointBehavior behavior =
 new TransportClientEndpointBehavior();
 behavior.CredentialType = TransportClientCredentialType.SharedSecret;
 behavior.Credentials.SharedSecret.IssuerName = issuer;
 behavior.Credentials.SharedSecret.IssuerSecret = secret;
 SetBehavior(endpoints,behavior);
 }

660 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 static void SetBehavior(IEnumerable<ServiceEndpoint> endpoints,
 TransportClientEndpointBehavior credential)
 {
 foreach(ServiceEndpoint endpoint in endpoints)
 {
 endpoint.Behaviors.Add(credential);
 }
 }
}

ServiceBusHelper defines the helper private method SetBehavior(), which accepts a
collection of endpoints, and assigns a provided TransportClientEndpointBehavior ob-
ject to all endpoints in the collection. The private SetServiceBusCredentials() helper
methods accept a collection of endpoints, and the credentials it uses to create a
TransportClientEndpointBehavior used to call SetBehavior().

Providing the credentials on the client side

The client needs to follow similar steps as the host, except there is only one endpoint
to configure—the one the proxy is using, as shown in Example 11-17.

Example 11-17. Setting the credentials on the proxy

string issuer = "owner";
string secret = "QV3...9M8=";

TransportClientEndpointBehavior credentials =
 new TransportClientEndpointBehavior();

credentials.CredentialType = TransportClientCredentialType.SharedSecret;
credentials.Credentials.SharedSecret.IssuerName = issuer;
credentials.Credentials.SharedSecret.IssuerSecret = secret;

MyContractClient proxy = new MyContractClient();
proxy.Endpoint.Behaviors.Add(credentials);

proxy.MyMethod();

proxy.Close();

Again, you should encapsulate this repetitive code with extension methods, and offer
similar support for working with class factories:

public static partial class ServiceBusHelper
{
 public static void SetServiceBusCredentials<T>(this ClientBase<T> proxy,
 string secret) where T : class;
 public static void SetServiceBusCredentials<T>(this ClientBase<T> proxy,
 string issuer,string secret) where T : class;

 public static void SetServiceBusCredentials<T>(this ChannelFactory<T> factory,
 string secret) where T : class;
 public static void SetServiceBusCredentials<T>(this ChannelFactory<T> factory,

Service Bus Authentication | 661

Download from Library of Wow! eBook <www.wowebook.com>

 string issuer,string secret) where T : class;
}

Using these extensions, Example 11-17 is reduced to:

MyContractClient proxy = new MyContractClient();
proxy.SetServiceBusCredentials("QV3...9M8=");
proxy.MyMethod();
proxy.Close();

Example 11-18 shows the implementation of two of the client-side SetServiceBusCre
dentials<T>() extensions. Notice the use of the private SetServiceBusCredentials()
helper method by wrapping the single endpoint the proxy has with an array of
endpoints.

Example 11-18. Implementing SetServiceBusCredentials<T>()

public static class ServiceBusHelper
{
 public static void SetServiceBusCredentials<T>(this ClientBase<T> proxy,
 string secret) where T : class
 {
 if(proxy.State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Proxy is already opened");
 }
 proxy.ChannelFactory.SetServiceBusCredentials(secret);
 }
 public static void SetServiceBusCredentials<T>(this ChannelFactory<T> factory,
 string issuer,string secret) where T : class
 {
 if(factory.State == CommunicationState.Opened)
 {
 throw new InvalidOperationException("Factory is already opened");
 }

 ServiceEndpoint[] endpoints = {factory.Endpoint};
 SetServiceBusCredentials(endpoints,issuer,secret);
 }
 //More members
}

Providing credentials in config file

Since TransportClientEndpointBehavior is just another endpoint behavior, you can also
configure it the config file, as shown in Example 11-19.

Example 11-19. Setting the service namespace password in the config file

 <endpoint behaviorConfiguration = "SharedSecret"
 ...
 />
...
<behaviors>
 <endpointBehaviors>

662 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 <behavior name = "SharedSecret">
 <transportClientEndpointBehavior>
 <clientCredentials>
 <sharedSecret
 issuerName = "owner"
 issuerSecret = "QVMh...9M8="
 />
 </clientCredentials>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
</behaviors>

Storing the secret as in Example 11-19 in a text config file is highly in-
advisable for user machines. For user machines, you should prompt the
user for some kind of a login dialog box, authenticate the user using the
user credentials against some local credentials store, and then obtain
the secret from a secured location using DAPI. You may also want to
call the ACS after authenticating the user, obtaining the secret, and then
calling the service.

No Authentication
While the service must always authenticate against the service bus, you may decide to
exempt the client and allow it unauthenticated access to the service bus. In that case,
the client must set TransportClientEndpointBehavior to TransportClientCredential
Type.Unauthenticated. When the clients are unauthenticated by the service bus, in the
interest of security, it is now up to the relayed service to authenticate the clients. The
downside is that in this case, the service is not as shielded as when the service bus was
authenticating the clients. In addition, you must use Message security (or Mixed) to
transfer the client credentials (as discussed later). To enable unauthenticated access by
the client, you must explicitly allow it on both the service and the client by configuring
the relay binding to not authenticate, using the enum RelayClientAuthenticationType:

public enum RelayClientAuthenticationType
{
 RelayAccessToken, //Default
 None
}

Assign that enum via the Security property. For example, in the case of the TCP relay
binding:

public class NetTcpRelayBinding : NetTcpRelayBindingBase
{...}
public abstract class NetTcpRelayBindingBase : Binding,...
{
 public NetTcpRelaySecurity Security
 {get;}
 //More members
}

Service Bus Authentication | 663

Download from Library of Wow! eBook <www.wowebook.com>

public sealed class NetTcpRelaySecurity
{
 public RelayClientAuthenticationType RelayClientAuthenticationType
 {get;set;}
 //More members
}

Example 11-20 shows how to configure the host to allow unauthenticated clients access
to the relay service, and Example 11-21 shows the required client-side configuration.

Example 11-20. Configuring the host to allow unauthenticated clients

<services>
 <service ...>
 <endpoint
 binding = "netTcpRelayBinding"
 bindingConfiguration = "NoServiceBusAuthentication"
 ...
 />
 </service>
</services>
<bindings>
 <netTcpRelayBinding>
 <binding name = "NoServiceBusAuthentication">
 <security relayClientAuthenticationType = "None"/>
 </binding>
 </netTcpRelayBinding>
</bindings>

Example 11-21. Configuring the client for unauthenticated access

<client>
 <endpoint behaviorConfiguration = "NoServiceBusCreds"
 binding = "netTcpRelayBinding"
 bindingConfiguration = "NoServiceBusAuthentication"
 ...
 />
</client>
<bindings>
 <netTcpRelayBinding>
 <binding name = "NoServiceBusAuthentication">
 <security relayClientAuthenticationType = "None"/>
 </binding>
 </netTcpRelayBinding>
</bindings>
<behaviors>
 <endpointBehaviors>
 <behavior name = "NoServiceBusCreds">
 <transportClientEndpointBehavior credentialType = "Unauthenticated"/>
 </behavior>
 </endpointBehaviors>
</behaviors>

664 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

Metadata over the Service Bus
Services that rely on the service bus can expose metadata endpoints. Unlike the meta-
data endpoints described in Chapter 1 for config files, there is no dedicated metadata
binding tag, and the MetadataExchangeBindings class does not offer an option for the
service bus. Instead, you need to use the regular service bus bindings. For example, to
configure a metadata exchange endpoint over TCP:

<endpoint
 address = "sb://MyNamespace.servicebus.windows.net/MEX1"
 binding = "netTcpRelayBinding"
 contract = "IMetadataExchange"
/>
<endpoint
 kind = "mexEndpoint"
 address = "sb://MyNamespace.servicebus.windows.net/MEX2"
 binding = "netTcpRelayBinding"
/>

And, of course, you can add the metadata exchange endpoint programmatically (before
setting the service bus credential):

ServiceHost host = new ServiceHost(typeof(MyService));

host.AddServiceEndpoint(typeof(IMetadataExchange),
 new NetTcpRelayBinding(),
 "sb://IDesign.servicebus.windows.net/MEX3");

ServiceEndpoint endpoint = new ServiceMetadataEndpoint(new NetTcpRelayBinding(),
 new EndpointAddress("sb://IDesign.servicebus.windows.net/MEX4"));

host.AddServiceEndpoint(endpoint);

host.SetServiceBusCredentials("QV3...9M8=");
host.Open();

Client-side metadata processing

To obtain the metadata, the client must authenticate itself first against the service bus.
However, Visual Studio 2010 does not include an option for providing the credentials
when adding a service reference. You can use the SvcUtil.exe command-line utility if
you provide the credentials as a default endpoint behavior (similar to Example 11-9)
in the SvcUtil.exe.config file, yet that is probably insecure and tedious. The client’s best
option is to retrieve the metadata programmatically, as shown in Chapter 2. The prob-
lem now is that the WCF-provided helper classes (such as MetadataExchangeClient and
MetadataResolver) do not expose the endpoint they interact with, so you have no simple
way of setting the service bus credentials. The solution is to use reflection to set the
private factory field of the MetadataExchangeClient class:

public class MetadataExchangeClient
{
 ChannelFactory<IMetadataExchange> factory;

Service Bus Authentication | 665

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}

To that end, I added the versions of the extension method SetServiceBus
Credentials() to ServiceBusHelper, shown in Example 11-22.

Example 11-22. Setting metadata client credentials

public static class ServiceBusHelper
{
 public static void SetServiceBusCredentials(
 this MetadataExchangeClient mexClient,
 string secret)

 {...}
 public static void SetServiceBusCredentials(
 this MetadataExchangeClient mexClient,
 string issuer,string secret)
 {
 Type type = mexClient.GetType();
 FieldInfo info = type.GetField(
 "factory",BindingFlags.Instance|BindingFlags.NonPublic);
 ChannelFactory<IMetadataExchange> factory =
 info.GetValue(mexClient) as ChannelFactory<IMetadataExchange>;
 factory.SetServiceBusCredentials(issuer,secret);
 }
 //More members
}

Next, I wrote the ServiceBusMetadataHelper class shown in Example 11-23. I modeled
it after MetadataHelper from Chapter 2 and it offers comparable metadata queries.

Example 11-23. The ServiceBusMetadataHelper class

public static class ServiceBusMetadataHelper
{
 public static ServiceEndpoint[] GetEndpoints(string mexAddress,string secret);

 public static ServiceEndpoint[] GetEndpoints(string mexAddress,
 Type contractType,
 string secret);

 public static bool QueryContract(string mexAddress,
 Type contractType,string secret);

 public static ContractDescription[] GetContracts(string mexAddress,
 string secret);

 public static ContractDescription[] GetContracts(Type bindingType,
 string mexAddress,string secret);

 public static string[] GetAddresses(string mexAddress,Type contractType,
 string secret);

 public static string[] GetAddresses(Type bindingType,string mexAddress,

666 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 Type contractType,string secret);

 public static string[] GetOperations(string mexAddress,Type contractType,
 string secret);

 //More overloaded methods that accept an issuer as well
}

My Metadata Explorer tool (presented in Chapter 1) supports exploring
service bus metadata exchange endpoints. After specifying the service
bus address of the metadata exchange endpoint, the Metadata Explorer
will prompt you for the service bus credentials. The tool caches the cre-
dentials of the service namespace, and will require them only once per
service namespace. You can also log in explicitly by selecting Service
Bus→Log in... in the menu. See Figure C-6 (page 773).

Transfer Security
The next crucial aspect of security is how to transfer the message through the service
bus to the service securely. The service bus refers to transfer security as end-to-end
security. On top of message transfer, an important design consideration is which client
credentials (if any at all) the message should contain. Transfer security is independent
of how the client and the service authenticate themselves against the service bus.

The service bus offers four options for transfer security, represented by the enum End
ToEndSecurityMode, defined as:

public enum EndToEndSecurityMode
{
 None,
 Transport,
 Message,
 TransportWithMessageCredential //Mixed
}

The four options are None, Transport, Message, and Mixed. None means just that—
the message is not secured at all. Transport uses either SSL or HTTPS to secure the
message transfer. Message security encrypts the body of the message so it can be sent
over non-secured transports. Mixed uses Message security to contain the client’s cre-
dentials, but transfers the message over a secured transport.

You configure transfer security in the binding. While the relay bindings all default to
Transport security, all the relay bindings offer at least one constructor that takes End
ToEndSecurityMode as a construction parameter. You can also configure transfer security
post construction by accessing the Security property and its Mode property, such as in
the following example of a TCP relay binding:

public class NetTcpRelayBinding : NetTcpRelayBindingBase
{
 public NetTcpRelayBinding(EndToEndSecurityMode securityMode,...);

Transfer Security | 667

Download from Library of Wow! eBook <www.wowebook.com>

 //More members
}
public abstract class NetTcpRelayBindingBase : Binding,...
{
 public NetTcpRelaySecurity Security
 {get;}
 //More members
}
public sealed class NetTcpRelaySecurity
{
 public EndToEndSecurityMode Mode
 {get;set;}
 //More members
}

Transport Security
When it comes to transfer security, Transport security is the simplest to set up and
configure. When using Transport security, client calls are always anonymous—the
client messages do not contain any client credentials. While Transport security is the
easiest to use, it has a downside. It does not provide end-to-end security. It secures
the transfer of the message only to and from the service bus. The journey inside the
service bus is not secured, as shown in Figure 11-17.

Figure 11-17. Transport security

This means that, in theory, the service bus can eavesdrop on the communication be-
tween the client and the service, and even tamper with the messages. However, I believe
that in practice, this is impractical given the volume of traffic to the service bus. Simply
put, this kind of subversion cannot be done as a covert aside, and would require dedi-
cated resources, planning, staff, and technology.

668 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

Message Security
Message security encrypts the body of the message using a service-provided certificate.
Because the message itself is protected rather than the transport, not only is the message
transfer secured, the journey inside the service bus is protected as well. The service bus
cannot eavesdrop on the communication or tamper with the messages that go through.
The downside to Message security is that it requires additional setup, such as installing
the service certificates on the client side in the trusted people folder, modifying the
address the client uses to include an identity tag, and even modifying the client config
file to list the service certificate in case certificate negotiation is not supported.

While I do think that Transport security is good enough in practice, it is also vital to
assure customers and users of the presence of end-to-end privacy and integrity and to
guard against even theoretical-only compromises. I therefore recommend always rely-
ing on Message security for all service bus communication. This will also provide ad-
ditional benefits, such as direct connection in hybrid mode and the availability of
security call context to the service.

Message security and credentials

Unlike Transport security, with Message security, the message may contain the client’s
credentials. The primary use for the client credentials by the service is for local author-
ization of the call in order to establish some role-based security policy. Whenever the
message contains credentials, the service must also authenticate them (even if all it
wants is to authorize the client). Note that such authentication is in addition to the
authentication the service bus has already done. If the service bus has already authen-
ticated the client, then authenticating the call again by the service does not add much
in the way of security, yet it burdens the service with managing the client’s credentials.
If the service bus is not authenticating the client, the service will be subjected to all the
unwanted traffic of unauthenticated clients, which may have severe IT operations
implications.

I find that the best practice is to rely on the service bus to authenticate the client and
to avoid having the service do it again. The client should not place its credentials in the
message, and you should design your service so that it has no need for the client’s
credentials. Your service should be designed to handle what are in effect anonymous
calls to the service. Such a design is also aligned with the chain-of-trust design pattern,
which works well in a layered architecture.

That said, presently, in most, if not all applications, the service does need the client
identity for authorization, as well as for local use (for example, personalization, audit-
ing, and proprietary integration with legacy systems).

Transfer Security | 669

Download from Library of Wow! eBook <www.wowebook.com>

In the future, I expect it will be more common to use the ACS for au-
thorizing the calls (not just to authenticate the calls), especially once
configuration tools are available. This will enable most applications to
avoid local authorization and identity propagation.

TCP Relay Binding and Transfer Security
When you use the TCP relay binding, it defaults to Transport security and no special
configuration steps are required. Note that when using Transport security, you can
only use the TCP relay binding connection mode of TcpRelayConnectionMode.Relayed.

Because the call is anonymous, on the service side, WCF will attach a generic principal
with a blank identity to the thread executing the call, and the ServiceSecurity
Context will be null, similar to turning off transfer security with the regular TCP
binding.

As with regular TCP binding, when using Transport security, you can configure
the protection level for the messages via the ProtectionLevel property of
TcpRelayTransportSecurity:

public sealed class TcpRelayTransportSecurity
{
 public ProtectionLevel ProtectionLevel
 {get;set;}
}
public sealed class NetTcpRelaySecurity
{
 public TcpRelayTransportSecurity Transport
 {get;}
 //More members
}

public abstract class NetTcpRelayBindingBase : ...
{
 public NetTcpRelaySecurity Security
 {get;}

 //More members
}

The default (as with regular TCP) is ProtectionLevel.EncryptAndSign.

Anonymous Message security

To protect the transfer of the message, you must configure the service host with a
certificate. By default, the client will negotiate the certificate (obtain its public key), so
there is no need to explicitly list the certificate in the client’s config file. However, the
client still needs to validate the negotiated certificate. As with regular WCF and Message
security, the best practice is to validate the certificate using peer-trust, which involves
installing the certificate beforehand in the client’s Trusted People folder. Besides

670 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

providing true end-to-end transfer security over the service bus, using Message security
also enables the use of the TcpRelayConnectionMode.Hybrid connection modes.

As discussed previously, the message may or may not contain the client credentials. If
you decide to follow my recommendation and avoid sending the credentials in the
message, WCF will attach a Windows principal with a blank identity to the thread
executing the call, which does not make much sense. When using Message security
without credentials, you should also set the host PrincipalPermissionMode to None to
get the same principal as with Transport security. To configure the binding for Message
security with anonymous calls, use MessageCredentialType.None and assign that value
to the ClientCredentialType property of MessageSecurityOverRelayConnection, availa-
ble in the Message property of NetTcpRelaySecurity:

public sealed class NetTcpRelaySecurity
{
 public EndToEndSecurityMode Mode
 {get;set;}
 public MessageSecurityOverRelayConnection Message
 {get;}
 //More members
}
public sealed class MessageSecurityOverRelayConnection
{
 public MessageCredentialType ClientCredentialType
 {get;set;}
 //More members
}
public enum MessageCredentialType
{
 None,
 Windows,
 UserName,
 Certificate,
 IssuedToken
}

Example 11-24 shows the required host-side config file.

Example 11-24. Configuring the host for Message security

 <service name = "..." behaviorConfiguration = "MessageSecurity">
 <endpoint
 ...
 binding = "netTcpRelayBinding"
 bindingConfiguration = "MessageSecurity"
 />
 </service>
 ...
 <serviceBehaviors>
 <behavior name = "MessageSecurity">
 <serviceCredentials>
 <serviceCertificate
 findValue = "MyServiceCert"
 storeLocation = "LocalMachine"

Transfer Security | 671

Download from Library of Wow! eBook <www.wowebook.com>

 storeName = "My"
 x509FindType = "FindBySubjectName"
 />
 </serviceCredentials>
 <serviceAuthorization principalPermissionMode ="None"/>
 </behavior>
 </serviceBehaviors>
 <bindings>
 <netTcpRelayBinding>
 <binding name = "MessageSecurity">
 <security mode = "Message">
 <message clientCredentialType = "None"/>
 </security>
 </binding>
 </netTcpRelayBinding>
 </bindings>

Example 11-24 shows how to list the service certificate as a behavior, setting the prin-
cipal permission mode as part of that behavior, and configuring the binding for Message
security without credentials. Since the call is anonymous, both the principal identity
and the security call context primary identity will have blank identities on the service
side.

On the client side, you must include the service certificate name in the address identity
of the endpoint, since that name does not match the service bus domain. Exam-
ple 11-25 shows the required config file.

Example 11-25. Configuring the client for Message security

<client>
 <endpoint behaviorConfiguration = "ServiceCertificate"
 binding = "netTcpRelayBinding"
 bindingConfiguration = "MessageSecurity"
 <identity>
 <dns value = "MyServiceCert"/>
 </identity>
 ...
 </endpoint>
</client>
<bindings>
 <netTcpRelayBinding>
 <binding name = "MessageSecurity">
 <security mode = "Message">
 <message clientCredentialType = "None"/>
 </security>
 </binding>
 </netTcpRelayBinding>
</bindings>
<behaviors>
 <endpointBehaviors>
 <behavior name = "ServiceCertificate">
 <clientCredentials>
 <serviceCertificate>
 <authentication certificateValidationMode = "PeerTrust"/>

672 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
</behaviors>

Note in Example 11-25 the endpoint identity, the configuration of the binding for
Message security without credentials, and the use of peer-trust for service certificate
validation.

Message security with credentials

If you want to include the client credentials in the message (primarily for server-side
authorization), the service must also authenticate those credentials, using the same
setting as with regular TCP calls. In this case, the service principal and primary identity
will both have an identity matching those credentials. The credential can be a username
and password, a certificate, or an issued token. You must indicate which credential
types you expect to both the host and the client in the binding. For example, for user-
name credentials:

<bindings>
 <netTcpRelayBinding>
 <binding name = "MessageSecurity">
 <security mode = "Message">
 <message clientCredentialType = "UserName"/>
 </security>
 </binding>
 </netTcpRelayBinding>
</bindings>

On the host side, if the credentials are username and password, you must also configure
the service credentials’ behavior and instruct the host how to authenticate and author-
ize the credentials. The default will be to authenticate as Windows credentials, but the
more common choice is to use a credentials store, such as the ASP.NET providers:

<service name = "..." behaviorConfiguration = "CustomCreds">
 ...
</service>
...
<serviceBehaviors>
 <behavior name = "CustomCreds">
 <serviceCredentials>
 <userNameAuthentication
 userNamePasswordValidationMode = "MembershipProvider"
 />
 </serviceCredentials>
 <serviceAuthorization principalPermissionMode = "UseAspNetRoles"/>
 </behavior>
</serviceBehaviors>

Transfer Security | 673

Download from Library of Wow! eBook <www.wowebook.com>

The client has to populate the proxy with the credentials. When using a username and
password, the client code would be:

MyContractClient proxy = new MyContractClient();

proxy.ClientCredentials.UserName.UserName = "MyUserName";
proxy.ClientCredentials.UserName.Password = "MyPassword";

proxy.MyMethod();

proxy.Close();

Note the client has no way of knowing if the credentials it provides are authenticated
on the service side as Windows or custom credentials.

When using Message security, the NetTcpRelayBinding will still use SSL
on the connections to the relay service in order to protect the ACS au-
thentication token (the shared secret).

Mixed security

Mixed transfer security is the only way to avoid anonymous calls over Transport se-
curity. Since Transport security cannot pass credentials, you pass the credentials using
Message security, hence the term mixed. When using Mixed transfer security over
the TCP relay binding, you are restricted to only use the TcpRelayConnectionMode.Rel
ayed connection mode, since you still rely on Transport security to protect the message.

Example 11-26 shows how to configure either the service or the client for Mixed
security.

Example 11-26. Configuring for Mixed security

 <endpoint
 binding = "netTcpRelayBinding"
 bindingConfiguration = "MixedSecurity"
 ...
 />
...
<bindings>
 <netTcpRelayBinding>
 <binding name = "MixedSecurity">
 <security mode = "TransportWithMessageCredential"/>
 </binding>
 </netTcpRelayBinding>
</bindings>

When the service receives the messages, the host must authenticate the calls as with
regular TCP. Once authenticated, the service call will have a principal object matching
the credentials provided and a security call context.

674 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

By default, when using Mixed transfer security, the TCP relay binding will use Windows
credentials. The client needs not interact with the proxy, and the proxy will automat-
ically send the Windows credentials of the interactive identity using it.

When using Mixed with Windows credentials, you may have to elabo-
rate in the client’s endpoint section the service principal (the service
machine or domain name):

<client>
 <endpoint
 ...
 >
 <identity>
 <servicePrincipalName value = "..."/>
 </identity>
 </endpoint>
</client>

This is required because true Windows negotiation of these details is
not taking place through the service bus.

If you like to use username and password credentials, simply configure the binding
accordingly:

<bindings>
 <netTcpRelayBinding>
 <binding name = "MixedSecurity">
 <security mode = "TransportWithMessageCredential">
 <message clientCredentialType = "UserName"/>
 </security>
 </binding>
 </netTcpRelayBinding>
</bindings>

In which case the client must explicitly set the credentials on the proxy:

MyContractClient proxy = new MyContractClient();

proxy.ClientCredentials.UserName.UserName = "MyUserName";
proxy.ClientCredentials.UserName.Password = "MyPassword";

proxy.MyMethod();

proxy.Close();

Such client code is required with both custom credentials and alternative Windows
credentials.

As with Message security, it is up to the service host to treat the username and password
as Windows credentials (the default) or as custom credentials:

 <service name = "..." behaviorConfiguration = "MixedCustomCreds">
 ...
</service>
...

Transfer Security | 675

Download from Library of Wow! eBook <www.wowebook.com>

<serviceBehaviors>
 <behavior name = "MixedCustomCreds">
 <serviceCredentials>
 <userNameAuthentication
 userNamePasswordValidationMode = "MembershipProvider"
 />
 </serviceCredentials>
 <serviceAuthorization principalPermissionMode = "UseAspNetRoles"/>
 </behavior>
</serviceBehaviors>

WS Relay Binding and Transfer Security
Combining the WS binding with Transport security is as easy as changing the address
schema from http to https, since the binding already defaults to Transport security:

<endpoint
 address = "https://MyNamespace.servicebus.windows.net/..."
 binding = "ws2007HttpRelayBinding"
 ...
/>

As with the TCP relay binding, with Transport security the calls are always anonymous.
On the service side, WCF uses a generic principal with blank identity and the Service
SecurityContext is null. Specific to the WS relay binding, since there is no transport
session, you cannot have the service contract use SessionMode.Required.

Both the client and the service must use HTTPS for transport, or all calls
will fail.

Message security and Mixed security

Configuring the WS relay binding to use Message security is identical to configuring
the TCP relay binding. Configuring the WS relay binding for Mixed security is also
identical to the TCP relay binding. The only difference with the endpoint configuration
is that you must explicitly set the address scheme to HTTPS to protect the ACS security
token. This explicit step is not required by the TCP relay binding, because it is always
done implicitly, without any change to the address transport scheme.

One-Way Relay Binding and Transfer Security
The one-way relay binding (and its subclasses) defaults to Transport security and, like
the TCP and the WS relay binding, requires no special steps. The one-way relay binding
defaults to the ProtectionLevel.EncryptAndSign protection level.

676 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

However, unlike the TCP and the WS relay binding, the one-way relay binding does
not support Mixed transfer security.

Configuring the one-way relay binding to use Message security is mostly the same with
one important difference—the one-way relay binding cannot negotiate the service cer-
tificate, since there may not even be a service and no direct interaction with the service
takes place. When using Message security on the client, you must explicitly specify the
service certificate to use, as shown in Example 11-27.

Example 11-27. One-way relay binding with Message security

<client>
 <endpoint behaviorConfiguration = "ServiceCertificate"
 ...
 </endpoint>
</client>

<behaviors>
 <endpointBehaviors>
 <behavior name = "ServiceCertificate">
 <clientCredentials>
 <serviceCertificate>
 <scopedCertificates>
 <add targetUri = "sb://MyNamespace.servicebus.windows.net/..."
 findValue = "MyServiceCert"
 storeLocation = "LocalMachine"
 storeName = "My"
 x509FindType = "FindBySubjectName"
 />
 </scopedCertificates>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
</behaviors>

Anonymous calls

Another important distinction between the one-way relay binding and the other relay
bindings is that if the call is anonymous, with both Transport and Message security,
the call does have a security call context whose primary identity is service bus certificate
CN=servicebus.windows.net.

Bindings and Transfer Modes
To summarize available options, Table 11-2 shows how the relay binding supports the
various transfer security modes and their default values.

Transfer Security | 677

Download from Library of Wow! eBook <www.wowebook.com>

Table 11-2. Binding and transfer security

Binding None Transport Message Mixed

TCP (relayed) Yes Yes (default) Yes Yes

TCP (hybrid) Yes No Yes No

WS Yes Yes (default) Yes Yes

One-way Yes Yes (default) Yes No

Streamlining Transfer Security
As with regular WCF, while transfer security offers a barrage of details and intricate
options, you can and should streamline and automate most of these security configu-
ration decisions. To encapsulate it on the host side, use my ServiceBusHost class, de-
fined as:

public class ServiceBusHost : DiscoverableServiceHost
{
 public ServiceBusHost(object singletonInstance,params Uri[] baseAddresses);
 public ServiceBusHost(Type serviceType,params Uri[] baseAddresses);

 public void ConfigureAnonymousMessageSecurity(string serviceCert);
 public void ConfigureAnonymousMessageSecurity(string serviceCert,
 StoreLocation location,StoreName storeName);
 public void ConfigureAnonymousMessageSecurity(StoreLocation location,
 StoreName storeName,X509FindType findType,object findValue);

 //More members
}

When using ServiceBusHost, no other setting in the config file or in the code is required.
Per my recommendation, you can use the ConfigureAnonymousMessageSecurity()
method to enable anonymous calls over Message security. All you need to provide it
with is the certificate name to use:

ServiceBusHost host = new ServiceBusHost(typeof(MyService));
host.ConfigureAnonymousMessageSecurity("MyServiceCert");
host.Open();

ConfigureAnonymousMessageSecurity() will default the certificate location to the local
machine and the certificate store to the My storage, and look up the certificate by its
common name. If you do not call ConfigureAnonymousMessageSecurity(),
ServiceBusHost will default to use anonymous Message security with the service name-
space for the certificate name:

ServiceBusHost host = new ServiceBusHost(typeof(MyService));
host.Open();

You can also use the overloaded versions, which let you specify some or all of the
certificate details explicitly.

678 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

Example 11-28 lists the implementation of some of the Config
ureAnonymousMessageSecurity() methods by ServiceBusHost.

Example 11-28. Implementing ConfigureAnonymousMessageSecurity()

public class DiscoverableServiceHost : ServiceHost,IServiceBusProperties
{...}

public class ServiceBusHost : DiscoverableServiceHost
{
 public void ConfigureAnonymousMessageSecurity(StoreLocation location,
 StoreName storeName,X509FindType findType,object findValue)
 {
 Credentials.ServiceCertificate.SetCertificate(location,storeName,findType,
 findValue);
 Authorization.PrincipalPermissionMode = PrincipalPermissionMode.None;
 foreach(ServiceEndpoint endpoint in Description.Endpoints)
 {
 ServiceBusHelper.ConfigureBinding(endpoint.Binding);
 }
 }
 protected void ConfigureAnonymousMessageSecurity()
 {
 ConfigureAnonymousMessageSecurity(String.Empty,
 StoreLocation.LocalMachine,StoreName.My);
 }
 public void ConfigureAnonymousMessageSecurity(string serviceCert,
 StoreLocation location,StoreName storeName)
 {
 if(String.IsNullOrWhitespace(serviceCert))
 {
 serviceCert =
 ServiceBusHelper.ExtractNamespace(Description.Endpoints[0].Address.Uri);
 }
 ConfigureAnonymousMessageSecurity(location,
 storeName,X509FindType.FindBySubjectName,serviceCert);
 }
 protected override void OnOpening()
 {
 if(Credentials.ServiceCertificate.Certificate == null)
 {
 ConfigureAnonymousMessageSecurity();
 }
 base.OnOpening();
 }
 //Rest of the implementation
}
public static class ServiceBusHelper
{
 internal static void ConfigureBinding(Binding binding,bool anonymous = true)
 {
 if(binding is NetTcpRelayBinding)
 {
 NetTcpRelayBinding tcpBinding = (NetTcpRelayBinding)binding;
 tcpBinding.Security.Mode = EndToEndSecurityMode.Message;

Transfer Security | 679

Download from Library of Wow! eBook <www.wowebook.com>

 if(anonymous)
 {
 tcpBinding.Security.Message.ClientCredentialType =
 MessageCredentialType.None;
 }
 else
 {
 tcpBinding.Security.Message.ClientCredentialType =
 MessageCredentialType.UserName;
 }
 tcpBinding.ConnectionMode = TcpRelayConnectionMode.Hybrid;
 tcpBinding.ReliableSession.Enabled = true;
 return;
 }
 //More relay bindings
 }
 //Rest of the implementation
}

ServiceBusHost makes use of the ConfigureBinding() method of ServiceBusHelper.
ConfigureBinding() defaults to anonymous calls. If the calls are to have credentials,
ConfigureBinding() always makes use of username credentials. With the TCP relay
binding, ConfigureBinding() uses the hybrid connection mode. ConfigureBind
ing()also always enables reliable messages.

ServiceBusHost also supports Message security with credentials via the Configure
MessageSecurity() methods:

public class ServiceBusHost : DiscoverableServiceHost
{
 public void ConfigureMessageSecurity();
 public void ConfigureMessageSecurity(string serviceCert);
 public void ConfigureMessageSecurity(string serviceCert,
 string applicationName);
 public void ConfigureMessageSecurity(string serviceCert,bool useProviders,
 string applicationName);
 //More members
}

ConfigureMessageSecurity() defaults to using the ASP.NET membership providers, but
you can instruct it to use Windows accounts as well. The implementation of
ConfigureMessageSecurity() is similar to that of ConfigureAnonymousMes
sageSecurity().

Declarative service security

Instead of relying on the host to streamline transfer security on the service side, you
can extend the declarative security framework presented in Chapter 10. First, add the
ServiceBus value to the enum ServiceSecurity:

public enum ServiceSecurity
{
 None,

680 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

 Anonymous,
 BusinessToBusiness,
 Internet,
 Intranet,
 ServiceBus
}

Then, in SecurityBehavior, use ServiceBusHelper.ConfigureBinding() to configure the
binding. As a result, when you use the SecurityBehavior attribute as follows, the service
is constrained to using only the TCP or the one-way relay bindings (or their derivations):

[SecurityBehavior(ServiceSecurity.ServiceBus)]
class MyService : IMyContract
{...}

ServiceHost host = new ServiceHost(typeof(MyService));
host.Open();

The binding is configured for anonymous Message security and the service certificate
name defaults to the service namespace. You can also specify the service certificate
name and location (or take the default).

Irrespective of the use of SecurityBehavior attribute, you still must provide the cre-
dentials to log into the service bus.

Streamlining the client

You can easily configure the clients with Message security using my ServiceBusClient
Base<T>, defined as:

public abstract class ServiceBusClientBase<T> : ClientBase<T> where T : class
{
 public ServiceBusClientBase();
 public ServiceBusClientBase(string endpointName);
 public ServiceBusClientBase(Binding binding,EndpointAddress remoteAddress);
 public ServiceBusClientBase(string username,string password);

 public ServiceBusClientBase(string endpointName,
 string username,string password);
 public ServiceBusClientBase(Binding binding,EndpointAddress address,
 string username,string password);

 protected virtual void ConfigureForServiceBus();
 protected virtual void ConfigureForServiceBus(string username,string password);
}

ServiceBusClientBase<T> offers two sets of constructors. The constructors that merely
take the endpoint parameters all default to using Message security with anonymous
calls. You can also use the constructors, which accept the username and password
credentials. ServiceBusClientBase<T> will use the endpoint identity provided to it in
the config file or at construction. If you do not provide an endpoint address identity,
ServiceBusClientBase<T> will default to the service namespace.

You use ServiceBusClientBase<T> like the WCF-provided ClientBase<T>:

Transfer Security | 681

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}

class MyContractClient : ServiceBusClientBase<IMyContract>,IMyContract
{
 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

Example 11-29 shows the implementation of ServiceBusClientBase<T>.

Example 11-29. Implementing ServiceBusClientBase<T>

public abstract class ServiceBusClientBase<T> : ClientBase<T> where T : class
{
 public ServiceBusClientBase()
 {
 ConfigureForServiceBus();
 }
 public ServiceBusClientBase(string username,string password)
 {
 ConfigureForServiceBus(username,password);
 }
 protected virtual void ConfigureForServiceBus()
 {
 ClientCredentials.ServiceCertificate.Authentication.
 CertificateValidationMode = X509CertificateValidationMode.PeerTrust;
 ServiceBusHelper.ConfigureBinding(Endpoint.Binding);
 }
 protected virtual void ConfigureForServiceBus(string username,string password)
 {
 ClientCredentials.UserName.UserName = username;
 ClientCredentials.UserName.Password = password;
 ClientCredentials.ServiceCertificate.Authentication.
 CertificateValidationMode = X509CertificateValidationMode.PeerTrust;
 ServiceBusHelper.ConfigureBinding(Endpoint.Binding,false);
 }
 protected override T CreateChannel()
 {
 if(Endpoint.Address.Identity == null)
 {
 string serviceNamespace = ServiceBusHelper.
 ExtractNamespace(Endpoint.Address.Uri);
 Uri address = Endpoint.Address.Uri;
 EndpointIdentity identity = new DnsEndpointIdentity(serviceNamespace);
 Endpoint.Address = new EndpointAddress(address,identity);
 }
 return base.CreateChannel();
 }
}

682 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

ServiceBusClientBase<T> uses peer-trust to validate the service certificate. The bulk of
the work is done by passing the endpoint binding to ServiceBusHelper.Configure
Binding(), shown in Example 11-28.

In the case of duplex callback over the TCP relay binding, I also defined the class
ServiceBusDualClientBase<T,C>:

public abstract class ServiceBusDuplexClientBase<T,C> : DuplexClientBase<T,C>
 where T : class
{
 public ServiceBusDualClientBase(C callback);
 public ServiceBusDualClientBase(C callback,string endpointName);
 public ServiceBusDualClientBase(C callback,
 NetTcpRelayBinding binding,EndpointAddress remoteAddress);

 //Additional constructors for username creds

 protected virtual void ConfigureForServiceBus();
 protected virtual void ConfigureForServiceBus(string username,string password);
}

The one remaining sore point is the one-way relay binding with its lack of certificate
negotiation. To alleviate that I wrote OneWayClientBase<T>:

public abstract class OneWayClientBase<T> : ServiceBusClientBase<T>
 where T : class
{
 //Same constructors as ServiceBusClientBase<T>

 public void SetServiceCertificate(string serviceCert);
 public void SetServiceCertificate(string serviceCert,
 StoreLocation location,StoreName storeName);
 public void SetServiceCertificate(object findValue,
 StoreLocation location,StoreName storeName,X509FindType findType);
}

OneWayClientBase<T> derives from ServiceBusClientBase<T> and adds the SetService
Certificate() methods. If you never call SetServiceCertificate(), OneWay
ClientBase<T> simply looks up the service certificate from the config file.
SetServiceCertificate() offers a simple programmatic way of avoiding the config file
altogether. It even sets the identity tag of the endpoint address.
SetServiceCertificate() uses the same defaults as ServiceBusHost, including using the
service namespace for the certificate name if no certificate is provided.

Transfer Security | 683

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Using OneWayClientBase<T> is straightforward:

class MyContractClient : OneWayClientBase<IMyContract>,IMyContract
{
 public MyContractClient()
 {}
 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

MyContractClient proxy = new MyContractClient();

//If certificate name not the same as service namespace:
proxy.SetServiceCertificate("MyServiceCert");

proxy.MyMethod();

proxy.Close();

684 | Chapter 11: The Service Bus

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX A

Introduction to Service Orientation

This book is all about designing and developing service-oriented applications using
WCF, yet there is considerable confusion and hype concerning what service orientation
is and what it means. To make matters worse, most of the vendors in this space equate
their definition of service orientation with their products and services. The vendors
(Microsoft included) add to the confusion by equating service orientation with high-
end Enterprise applications, where handling high scalability and throughput is a must
(mostly because they all contend for that market, where the business margins are made).

This appendix presents my understanding of what service orientation is all about and
attempts to put it in a concrete context. My take is different from that of the large
vendors, but I believe it is more down-to-earth, rooted as it is in trends and the natural
evolution of our industry. As you will see, I believe that service orientation is not a
breakthrough or a quantum leap of thought, but rather the next gradual step (and
probably not the last step) in a long journey that spans decades.

To understand where the software industry is heading with service orientation, you
should first appreciate where it came from. After a brief discussion of the history of
software engineering and its overarching trend, this appendix defines service-oriented
applications (as opposed to mere architecture), explains what services themselves are,
and examines the benefits of the methodology. It then presents the main principles of
service orientation and augments the abstract tenets with a few more practical and
concrete points to which most applications should adhere. Finally, the appendix con-
cludes with a look to the future.

A Brief History of Software Engineering
The first modern computer was an electromechanical, typewriter-sized device devel-
oped in Poland in the late 1920s for enciphering messages. The device was later sold
to the German Commerce Ministry, and in the 1930s the German military adopted it
for enciphering all wireless communication. Today we know it as the Enigma.

685

Download from Library of Wow! eBook <www.wowebook.com>

Enigma used mechanical rotors to change the route of electrical current flow to a light
board in response to a letter key being pressed, resulting in a different letter being output
(the ciphered letter). Enigma was not a general-purpose computer: it could only do
enciphering and deciphering (which today we call encryption and decryption when
done automatically using a mathematical instead of a manual mechanical algorithm).
If the operator wanted to change the encryption algorithm, he had to physically alter
the mechanical structure of the machine by changing the rotors, their order, their initial
positions, and the wired plugs that connected the keyboard to the light board. The
“program” was therefore coupled in the extreme to the problem it was designed to solve
(encryption), and to the mechanical design of the computer.

The late 1940s and the 1950s saw the introduction of the first general-purpose elec-
tronic computers for defense purposes. These machines could run code that addressed
any problem, not just a single predetermined task. The downside was that the code
executed on these computers was in a machine-specific “language” with the program
coupled to the hardware itself. Code developed for one machine could not run on
another. In fact, at the time there was no distinction between the software and the
hardware (indeed, the word “software” was coined only in 1958). Initially this was not
a cause for concern, since there were only a handful of computers in the world anyway.
As machines became more prolific, this did turn into a problem. In the early 1960s, the
emergence of assembly language decoupled the code from specific machines, enabling
it to run on multiple computers. That code, however, was now coupled to the machine
architecture: code written for an 8-bit machine could not run on a 16-bit machine, let
alone withstand differences in the registers or available memory and memory layout.
As a result, the cost of owning and maintaining a program began to escalate. This
coincided more or less with the widespread adoption of computers in the civilian and
government sectors, where the more limited resources and budgets necessitated a better
solution.

In the 1960s, higher-level languages such as COBOL and FORTRAN introduced the
notion of a compiler: the developer would write in an abstraction of machine program-
ming (the language), and the compiler would translate that into actual assembly code.
Compilers for the first time decoupled the code from the hardware and its architecture.
The problem with those first-generation languages was that the code resulted in non-
structured programming, where the code was internally coupled to its own structure
via the use of jump or go-to statements. Minute changes to the code structure often
had devastating effects in multiple places in the program.

The 1970s saw the emergence of structured programming via languages such as C and
Pascal, which decoupled the code from its internal layout and structure using functions
and structures. The 1970s was also the first time developers and researchers started to
examine software as an engineered entity. To drive down the cost of ownership, com-
panies had to start thinking about reuse—that is, what would make a piece of code
able to be reused in other contexts. With languages like C, the basic unit of reuse is the
function. But the problem with function-based reuse is that the function is coupled to

686 | Appendix A: Introduction to Service Orientation

Download from Library of Wow! eBook <www.wowebook.com>

the data it manipulates, and if the data is global, a change to benefit one function in
one reuse context is likely to damage another function used somewhere else.

Object Orientation
The solution to these problems that emerged in the 1980s, with languages such as
Smalltalk and later C++, was object orientation. With object orientation, the functions
and the data they manipulated were packaged together in an object. The functions (now
called methods) encapsulated the logic, and the object encapsulated the data. Object
orientation enabled domain modeling in the form of a class hierarchy. The mechanism
of reuse was class-based, enabling both direct reuse and specialization via inheritance.
But object orientation was not without its own acute problems. First, the generated
application (or code artifact) was a single, monolithic application. Languages like
C++ have nothing to say about the binary representation of the generated code. De-
velopers had to deploy huge code bases every time they needed to make a change,
however minute, and this had a detrimental effect on the development process and on
application quality, time to market, and cost. While the basic unit of reuse was a class,
it was a class in source format. Consequently, the application was coupled to the lan-
guage used—you could not have a Smalltalk client consuming a C++ class or deriving
from it. Language-based reuse implied uniformity of skill (all developers in the organ-
ization had to be skilled enough to use C++), which led to staffing problems. Language-
based reuse also inhibited economy of scale, because if the organization was using
multiple languages it necessitated duplication of investments in framework and
common utilities. Finally, having to access the source files in order to reuse an object
coupled developers to each other, complicated source control, and coupled teams to-
gether, since it made independent builds difficult. Moreover, inheritance turned out to
be a poor mechanism for reuse, often harboring more harm than good because the
developer of the derived class needed to be intimately aware of the implementation of
the base class (which introduced vertical coupling across the class hierarchy).

Object orientation was oblivious to real-life challenges, such as deployment and ver-
sioning issues. Serialization and persistence posed yet another set of problems. Most
applications did not start by plucking objects out of thin air; they had some persistent
state that needed to be hydrated into objects. However, there was no way of enforcing
compatibility between the persisted state and the potentially new object code. Object
orientation assumed the entire application was always in one big process. This pre-
vented fault isolation between the client and the object, and if the object blew up, it
took the client (and all other objects in the process) with it. Having a single process
implies a single uniform identity for the clients and the objects, without any security
isolation. This makes it impossible to authenticate and authorize clients, since they
have the same identity as the object. A single process also impedes scalability, availa-
bility, responsiveness, throughput, and robustness. Developers could manually place
objects in separate processes, yet if the objects were distributed across multiple pro-
cesses or machines there was no way of using raw C++ for the invocations, since C++

A Brief History of Software Engineering | 687

Download from Library of Wow! eBook <www.wowebook.com>

required direct memory references and did not support distribution. Developers had
to write host processes and use some remote call technology (such as TCP sockets) to
remote the calls, but such invocations looked nothing like native C++ calls and did not
benefit from object orientation.

Component Orientation
The solution for the problems of object orientation evolved over time, involving tech-
nologies such as the static library (.lib) and the dynamic library (.dll), culminating in
1994 with the first component-oriented technology, called COM (Component Object
Model). Component orientation provided interchangeable, interoperable binary com-
ponents. With this approach, instead of sharing source files, the client and the server
agree on a binary type system (such as IDL) and a way of representing the metadata
inside the opaque binary components. The components are discovered and loaded at
runtime, enabling scenarios such as dropping a control on a form and having that
control be automatically loaded at runtime on the client’s machine. The client only
programs against an abstraction of the service: a contract called the interface. As long
as the interface is immutable, the service is free to evolve at will. A proxy can implement
the same interface and thus enable seamless remote calls by encapsulating the low-level
mechanics of the remote call. The availability of a common binary type system enables
cross-language interoperability, so a Visual Basic client can consume a C++ COM
component. The basic unit of reuse is the interface, not the component, and polymor-
phic implementations are interchangeable. Versioning is controlled by assigning a
unique identifier for every interface, COM object, and type library.

While COM was a fundamental breakthrough in modern software engineering, most
developers found it unpalatable. COM was unnecessarily ugly because it was bolted
on top of an operating system that was unaware of it, and the languages used for writing
COM components (such as C++ and Visual Basic) were at best object-oriented but not
component-oriented. This greatly complicated the programming model, requiring
frameworks such as ATL to partially bridge the two worlds. Recognizing these issues,
Microsoft released .NET 1.0 in 2002. .NET is (in the abstract) nothing more than
cleaned-up COM, MFC, C++, and Windows, all working seamlessly together under a
single new component-oriented runtime. .NET supports all the advantages of COM
and mandates and standardizes many of its ingredients, such as type metadata sharing,
dynamic component loading, serialization, and versioning.

While .NET is at least an order of magnitude easier to work with than COM, both
COM and .NET suffer from a similar set of problems:

Technology and platform
The application and the code are coupled to the technology and the platform. Both
COM and .NET predominantly target Windows. Both also expect the client and
the service to be either COM or .NET and cannot interoperate natively with other
technologies, be they Windows or not. While bridging technologies such as web

688 | Appendix A: Introduction to Service Orientation

Download from Library of Wow! eBook <www.wowebook.com>

services make interoperability possible, they force the developers to let go of almost
all of the benefits of working with the native framework, and they introduce their
own complexities and coupling with regard to the nature of the interoperability
mechanism. This, in turn, breaks economy of scale.

Concurrency management
When a vendor ships a component, it cannot assume that its clients will not access
it with multiple threads concurrently. In fact, the only safe assumption the vendor
can make is that the component will be accessed by multiple threads. As a result,
the components must be thread-safe and must be equipped with synchronization
locks. However, if an application developer is building an application by aggre-
gating multiple components from multiple vendors, the introduction of multiple
locks renders the application deadlock-prone. Avoiding the deadlocks couples the
application and the components.

Transactions
If multiple components are to participate in a single transaction, the application
that hosts them must coordinate the transaction and flow the transaction from one
component to the next, which is a serious programming endeavor. This also in-
troduces coupling between the application and the components regarding the
nature of the transaction coordination.

Communication protocols
If components are deployed across process or machine boundaries, they are cou-
pled to the details of the remote calls, the transport protocol used, and its impli-
cations for the programming model (e.g., in terms of reliability and security).

Communication patterns
The components may be invoked synchronously or asynchronously, and they may
be connected or disconnected. A component may or may not be able to be invoked
in either one of these modes, and the application must be aware of its exact pref-
erence. With COM and .NET, developing asynchronous or even queued solutions
was still the responsibility of the developer, and any such custom solutions were
not only difficult to implement but also introduced coupling between the solution
and the components.

Versioning
Applications may be written against one version of a component and yet encounter
another in production. Both COM and .NET bear the scars of DLL Hell (which
occurs when the client at runtime is trying to use a different, incompatible version
of the component than the one against which it was compiled), so both provide a
guarantee to the client: that the client would get at runtime exactly the same com-
ponent versions it was compiled against. This conservative approach stifled inno-
vation and the introduction of new components. Both COM and .NET provided
for custom version-resolution policies, but doing so risked DLL Hell-like symp-
toms. There was no built-in versioning tolerance, and dealing robustly with
versioning issues coupled the application to the components it used.

A Brief History of Software Engineering | 689

Download from Library of Wow! eBook <www.wowebook.com>

Security
Components may need to authenticate and authorize their callers, but how does
a component know which security authority it should use, or which user is a mem-
ber of which role? Not only that, but a component may want to ensure that the
communication from its clients is secure. That, of course, imposes certain restric-
tions on the clients and in turn couples them to the security needs of the
component.

Off-the-shelf plumbing

In the abstract, interoperability, concurrency, transactions, protocols, versioning, and
security are the glue—the plumbing—that holds any application together.

In a decent-sized application, the bulk of the development effort and debugging time
is spent on addressing such plumbing issues, as opposed to focusing on business logic
and features. To make things even worse, since the end customer (or the development
manager) rarely cares about plumbing (as opposed to features), the developers typically
are not given adequate time to develop robust plumbing. Instead, most handcrafted
plumbing solutions are proprietary (which hinders reuse, migration, and hiring) and
are of low quality, because most developers are not security or synchronization experts
and because they were not given the time and resources to develop the plumbing
properly.

The solution was to use ready-made plumbing that offered such services to compo-
nents. The first attempt at providing decent off-the-shelf plumbing was MTS (Microsoft
Transactions Server), released in 1996. MTS offered support for much more than
transactions, including security, hosting, activation, instance management, and syn-
chronization. MTS was followed by J2EE (1998), COM+ (2000), and .NET Enterprise
Services (2002). All of these application platforms provided adequate, decent plumbing
(albeit with varying degrees of ease of use), and applications that used them had a far
better ratio of business logic to plumbing. However, by and large these technologies
were not adopted on a large scale, due to what I term the boundary problem. Few
systems are an island; most have to interact and interoperate with other systems. If the
other system doesn’t use the same plumbing, you cannot interoperate smoothly. For
example, there is no way of propagating a COM+ transaction to a J2EE component.
As a result, when crossing the system boundary, a component (say, component A) had
to dumb down its interaction to the (not so large) common denominator between the
two platforms. But what about component B, next to component A? As far as B was
concerned, the component it interacted with (A) did not understand its variety of the
plumbing, so B also had to be dumbed down. As a result, system boundaries tended to
creep from the outside inward, preventing the ubiquitous use of off-the-shelf plumbing.
Technologies like Enterprise Services and J2EE were useful, but they were useful in
isolation.

690 | Appendix A: Introduction to Service Orientation

Download from Library of Wow! eBook <www.wowebook.com>

Service Orientation
If you examine the brief history of software engineering just outlined, you’ll notice a
pattern: every new methodology and technology incorporates the benefits of its pre-
ceding technology and improves on the deficiencies of the preceding technology. How-
ever, every new generation also introduces new challenges. Therefore, I say that modern
software engineering is the ongoing refinement of the ever-increasing degrees of
decoupling.

Put differently, coupling is bad, but coupling is unavoidable. An absolutely decoupled
application would be useless, because it would add no value. Developers can only add
value by coupling things together. Indeed, the very act of writing code is coupling one
thing to another. The real question is how to wisely choose what to be coupled to. I
believe there are two types of coupling, good and bad. Good coupling is business-level
coupling. Developers add value by implementing a system use case or a feature, by
coupling software functionality together. Bad coupling is anything to do with writing
plumbing. What was wrong with .NET and COM was not the concept; it was the fact
that developers could not rely on off-the-shelf plumbing and still had to write so much
of it themselves. The real solution is not just off-the-shelf plumbing, but rather stand-
ard off-the-shelf plumbing. If the plumbing is standard, the boundary problem goes
away, and applications can utilize ready-made plumbing. However, all technologies
(.NET, Java, etc.) use the client thread to jump into the object. How can you possibly
take a .NET thread and give it to a Java object? The solution is to avoid call-stack
invocation and instead to use message exchange. The technology vendors can stand-
ardize the format of the message and agree on ways to represent transactions, security
credentials, and so on. When the message is received by the other side, the implemen-
tation of the plumbing there will convert the message to a native call (on a .NET or a
Java thread) and proceed to call the object. Consequently, any attempt to standardize
the plumbing has to be message-based.

And so, recognizing the problems of the past, in the late 2000s the service-oriented
methodology has emerged as the answer to the shortcomings of component orienta-
tion. In a service-oriented application, developers focus on writing business logic and
expose that logic via interchangeable, interoperable service endpoints. Clients consume
those endpoints (not the service code, or its packaging). The interaction between the
clients and the service endpoint is based on a standard message exchange, and the
service publishes some standard metadata describing what exactly it can do and how
clients should invoke operations on it. The metadata is the service equivalent of
the C++ header file, the COM type library, or the .NET assembly metadata, yet it
contains not just operation metadata (such as methods and parameters) but also
plumbing metadata. Incompatible clients—that is, clients that are incompatible with
the plumbing expectations of the object—cannot call it, since the call will be denied
by the platform. This is an extension of the object- and component-oriented compile-
time notion that a client that is incompatible with an object’s metadata cannot call it.

Service Orientation | 691

Download from Library of Wow! eBook <www.wowebook.com>

Demanding compatibility with the plumbing (on top of the operations) is paramount.
Otherwise, the object must always check on every call that the client meets its expect-
ations in terms of security, transactions, reliability and so on, and thus the object in-
variably ends up infused with plumbing. Not only that, but the service’s endpoint is
reusable by any client compatible with its interaction constraints (such as synchronous,
transacted, and secure communication), regardless of the client’s implementation
technology.

In many respects, a service is the natural evolution of the component, just as the com-
ponent was the natural evolution of the object, which was the natural evolution of the
function. Service orientation is, to the best of our knowledge as an industry, the correct
way to build maintainable, robust, and secure applications.

The result of improving on the deficiencies of component orientation (i.e., classic .NET)
is that when developing a service-oriented application, you decouple the service code
from the technology and platform used by the client from many of the concurrency
management issues, from transaction propagation and management, and from com-
munication reliability, protocols, and patterns. By and large, securing the transfer of
the message itself from the client to the service is also outside the scope of the service,
and so is authenticating the caller. The service may still do its own local authorization,
however, if the requirements so dictate. Similarly, as long as the endpoint supports the
contract the client expects, the client does not care about the version of the service.
There are also tolerances built into the standards to deal with versioning tolerance of
the data passed between the client and the service.

Benefits of Service Orientation
Service orientation yields maintainable applications because the applications are de-
coupled on the correct aspects. As the plumbing evolves, the application remains un-
affected. A service-oriented application is robust because the developers can use avail-
able, proven, and tested plumbing, and the developers are more productive because
they get to spend more of the cycle time on the features rather than the plumbing. This
is the true value proposition of service orientation: enabling developers to extract the
plumbing from their code and invest more in the business logic and the required
features.

The many other hailed benefits, such as cross-technology interoperability, are merely
a manifestation of the core benefit. You can certainly interoperate without resorting to
services, as was the practice until service orientation. The difference is that with ready-
made plumbing you rely on the plumbing to provide the interoperability for you.

When you write a service, you usually do not care which platform the client executes
on—that is immaterial, which is the whole point of seamless interoperability. However,
a service-oriented application caters to much more than interoperability. It enables
developers to cross boundaries. One type of boundary is the technology and platform,
and crossing that boundary is what interoperability is all about. But other boundaries

692 | Appendix A: Introduction to Service Orientation

Download from Library of Wow! eBook <www.wowebook.com>

may exist between the client and the service, such as security and trust boundaries,
geographical boundaries, organizational boundaries, timeline boundaries, transaction
boundaries, and even business model boundaries. Seamlessly crossing each of these
boundaries is possible because of the standard message-based interaction. For example,
there are standards for how to secure messages and establish a secure interaction be-
tween the client and the service, even though both may reside in domains (or sites) that
have no direct trust relationship. There is also a standard that enables the transaction
manager on the client side to flow the transaction to the transaction manager on the
service side, and have the service participate in that transaction, even though the two
transaction managers never enlist in each other’s transactions directly.

I believe that every application should be service-oriented, not just Enterprise applica-
tions that require interoperability and scalability. Writing plumbing in any type of ap-
plication is wrong, constituting a waste of your time, effort, and budget, resulting in
degradation of quality. Just as with .NET, every application was component-oriented
(which was not so easy to do with COM alone) and with C++ every application was
object-oriented (which was not so easy to do with C alone), when using WCF, every
application should be service-oriented.

Service-Oriented Applications
A service is a unit of functionality exposed to the world over standard plumbing. A
service-oriented application is simply the aggregation of services into a single logical,
cohesive application (see Figure A-1), much as an object-oriented application is the
aggregation of objects.

Figure A-1. A service-oriented application

The application itself may expose the aggregate as a new service, just as an object can
be composed of smaller objects.

Inside services, developers still use concepts such as specific programming languages,
versions, technologies and frameworks, operating systems, APIs, and so on. However,

Service Orientation | 693

Download from Library of Wow! eBook <www.wowebook.com>

between services you have the standard messages and protocols, contracts, and meta-
data exchange.

The various services in an application can be all in the same location or be distributed
across an intranet or the Internet, and they may come from multiple vendors and be
developed across a range of platforms and technologies, versioned independently, and
even execute on different timelines. All of those plumbing aspects are hidden from the
clients in the application interacting with the services. The clients send the standard
messages to the services, and the plumbing at both ends marshals away the differences
between the clients and the services by converting the messages to and from the neutral
wire representation.

Tenets and Principles
The service-oriented methodology governs what happens in the space between services
(see Figure A-1). There is a small set of principles and best practices for building service-
oriented applications, referred to as the tenets of service-oriented architecture:

Service boundaries are explicit
Any service is always confined behind boundaries, such as technology and location.
The service should not make the nature of these boundaries known to its clients
by exposing contracts and data types that betray such details. Adhering to this tenet
will make aspects such as location and technology irrelevant. A different way of
thinking about this tenet is that the more the client knows about the implementa-
tion of the service, the more the client is coupled to the service. To minimize the
potential for coupling, the service has to explicitly expose functionality, and only
operations (or data contracts) that are explicitly exposed will be shared with the
client. Everything else is encapsulated. Service-oriented technologies should adopt
an “opt-out by default” programming model, and expose only those things ex-
plicitly opted-in. This tenet is the modern incarnation of the old object-oriented
adage that the application should maximize encapsulation and information hiding.

Services are autonomous
A service should need nothing from its clients or other services. The service should
be operated and versioned independently from the clients, enabling it to evolve
separately from them. The service should also be secured independently, so it can
protect itself and the messages sent to it regardless of the degree to which the client
uses security. Doing this (besides being common sense) further decouples the client
and the service.

Services share operational contracts and data schema, not type-specific metadata
What the service decides to expose across its boundary should be type-neutral.
The service must be able to convert its native data types to and from some neutral
representation and should not share indigenous, technology-specific things such
as its assembly version number or its type. In addition, the service should not let
its client know about local implementation details such as its instance management

694 | Appendix A: Introduction to Service Orientation

Download from Library of Wow! eBook <www.wowebook.com>

mode or its concurrency management mode. The service should only expose logical
operations. How the service goes about implementing those operations and how
it behaves should not be disclosed to the client.

Services are compatible based on policy
The service should publish a policy indicating what it can do and how clients can
interact with it. Any access constraints expressed in the policy (such as the need
for reliable communication) should be separate from the service implementation
details. Put differently, the service must be able to express, in a standard represen-
tation of policy, what it does and how clients should communicate with it. Being
unable to express such a policy indicates poor service design. Note that a non-
public service may not actually publish any such policy. This tenet simply implies
that the service should be able to publish a policy if necessary.

Practical Principles
Well-designed applications should try to maximize adherence to the tenets just listed.
However, those tenets are very abstract, and how they are supported is largely a product
of the technology used to develop and consume the services, and of the design of the
services. Consequently, just as not all code written in C++ is fully object-oriented, not
all WCF applications may fully comply with the basic tenets just described. I therefore
supplement those tenets with a set of more down-to-earth practical principles:

Services are secure
A service and its clients must use secure communication. At the very least, the
transfer of messages from the clients to the service must be secured, and the clients
must have a way of authenticating the service. The clients may also provide their
credentials in the message so that the service can authenticate and authorize them.

Services leave the system in a consistent state
Conditions such as partially succeeding in executing the client’s request are for-
bidden. All resources the service accesses must be in a consistent state after the
client’s call. If an error occurs the system state should not be only partially affected,
and the service should not require the help of its clients to recover the system back
to a consistent state after an error.

Services are thread-safe
The service must be designed so that it can sustain concurrent access from multiple
clients. The service should also be able to handle causality and logical thread
reentrancy.

Services are reliable
If the client calls a service, the client will always know in a deterministic manner
whether the service received the message. In-order processing of messages is
optional.

Tenets and Principles | 695

Download from Library of Wow! eBook <www.wowebook.com>

Services are robust
The service should isolate its faults, preventing them from taking it down (or taking
down any other services). The service should not require clients to alter their be-
havior according to the type of error the service has encountered. This helps to
decouple the clients from the service on the error-handling dimension.

Optional Principles
While I view the practical principles as mandatory, there is also a set of optional prin-
ciples that may not be required by all applications (although adhering to them as well
is usually a good idea):

Services are interoperable
The service should be designed so that any client, regardless of its technology, can
call it.

Services are scale-invariant
It should be possible to use the same service code regardless of the number of clients
and the load on the service. This will grossly simplify the cost of ownership of the
service as the system grows and allow different deployment scenarios.

Services are available
The service should always be able to accept clients’ requests and should have no
downtime. Otherwise, if the service has periods of unavailability, the client needs
to accommodate them, which in turn introduces coupling.

Services are responsive
The client should not have to wait long for the service to start processing its request.
If the service is unresponsive the client needs to plan for that, which in turn intro-
duces coupling.

Services are disciplined
The service should not block the client for long. The service may perform lengthy
processing, but only as long as it does not block the client. Otherwise, the client
will need to accommodate that, which in turn introduces coupling.

What’s Next?
Since service-oriented frameworks provide off-the-shelf plumbing for connecting serv-
ices together, the more granular those services are, the more use the application can
make of this infrastructure, and the less plumbing the developers have to write. Taken
to the ultimate conclusion, every class and primitive should be a service, to maximize
the use of the ready-made plumbing and to avoid handcrafting plumbing. This, in
theory, will enable effortlessly transactional integers, secure strings, and reliable classes.
But in practice, is that viable? Can .NET support it? Will future platforms offer this
option?

696 | Appendix A: Introduction to Service Orientation

Download from Library of Wow! eBook <www.wowebook.com>

I believe that as time goes by and service-oriented technologies evolve, the industry will
see the service boundary pushed further and further inward, making services more and
more granular, until the most primitive building blocks will be services. This would be
in line with the historical trend of trading performance for productivity via methodol-
ogy and abstraction. As an industry, we have always traded performance for produc-
tivity. .NET, where every class is treated as a binary component, is slower than COM,
but the productivity benefit justifies this. COM itself is orders of magnitude slower than
C++, yet developers opted for COM to address the problems of object orientation.
C++ is likewise slower than C, but it did offer the crucial abstractions of objects over
functions. C in turn is a lot slower than raw assembly language, but the productivity
gains it offered more than made up for that.

My benchmarks show that WCF can easily sustain hundreds of calls per second per
class, making it adequate for the vast majority of business applications. While of course
there is a performance hit for doing so, the productivity gains more than compensate,
and historically, it is evident that this is a trade-off you should make. WCF does have
detrimental overhead, but it’s to do with ownership, not performance (which is ade-
quate). Imagine a decent-sized application with a few hundred classes, each of which
you wish to treat as a service. What would the Main() method of such an application
look like, with hundreds of service host instances to be instantiated, opened, and
closed? Such a Main() method would be unmaintainable. Similarly, would a config file
with many hundreds of service and client endpoint declarations be workable?

The truth is that in practical terms, WCF cannot support (out of the box) such large-
scale granular use. It is designed to be used between applications and across layers in
the same application, not in every class. Just as COM had to use C++ and Windows,
WCF is bolted on top of .NET. The language used (C# or Visual Basic) is merely
component-oriented, not service-oriented, and the platform (.NET) is component-
oriented, not service-oriented. What is required is a service-oriented platform, where
the basic constructs are not classes but services. The syntax may still define a class, but
it will be a service, just as every class in .NET is a binary component, very different from
a C++ class. The service-oriented platform will support a config-less metadata reposi-
tory, much like .NET generalized the type library and IDL concepts of COM. In this
regard, WCF is merely a stopgap, a bridging technology between the world of compo-
nents and the world of service (much like ATL once bridged the world of objects and
C++ with the world of components, until .NET stepped in to provide native support
for components at the class and primitive level).

A Service-Oriented Platform
If you take a wider view, every new idea in software engineering is implemented in three
waves: first there is the methodology, then the technology, then the platform.

For example, object orientation as a methodology originated in the late ’70s. The top
C developers at the time did develop object-oriented applications, but this required

What’s Next? | 697

Download from Library of Wow! eBook <www.wowebook.com>

manually passing state handles between functions and managing tables of function
pointers for inheritance. Clearly, such practices required a level of conviction and skills
that only very few had. With the advent of C++ in the early ’80s came the technology,
allowing every developer to write object-oriented applications. But C++ on its own was
sterile, and required class libraries. Many developers wrote their own, which of course
was not productive or scalable. The development of frameworks such as MFC as an
object-oriented platform, with types ranging from strings to windows, is what liberated
C++ and enabled it to take off.

Similarly, take component orientation: in the first half of the ’90s, developers who
wanted to use COM had to write class factories and implement IUnknown, and concoct
registry scripts and DLL entries. As a methodology, COM was just inaccessible. Then
ATL came along, and this technology enabled developers to expose mere C++ classes
as binary components. But the programming model was still too complex, since Win-
dows knew nothing about COM, and the language was still object-oriented, lacking
support for basic constructs such as interfaces. .NET as a component-oriented runtime
provided the missing platform support for components at the class, primitive, language,
and class library level.

Service orientation emerged as a methodology in the early 2000s, but at the time it was
practically impossible to execute. With WCF, developers can expose mere classes as
services, but the ownership overhead prevents widespread and granular use. I do not
have a crystal ball, but I see no reason why the waves of methodology/technology/
platform should stop now. Extrapolating from the last 30 to 40 years of software
engineering, we are clearly missing a service-oriented platform. I believe the next gen-
eration of technologies from Microsoft will provide just that.

Every class as a service

Until we have a service-oriented platform, must we suffer the consequences of either
unacceptable ownership overhead (granular use of WCF) or productivity and quality
penalties (handcrafted custom plumbing)?

Chapter 1 introduces my InProcFactory class, which lets you instantiate a service class
over WCF:

public static class InProcFactory
{
 public static I CreateInstance<S,I>() where I : class
 where S : I;
 public static void CloseProxy<I>(I instance) where I : class;
 //More members
}

When using InProcFactory, you utilize WCF at the class level without ever resorting
to explicitly managing the host or having client or service config files:

[ServiceContract]
interface IMyContract

698 | Appendix A: Introduction to Service Orientation

Download from Library of Wow! eBook <www.wowebook.com>

{
 [OperationContract]
 string MyMethod();
}

class MyService : IMyContract
{...}

IMyContract proxy = InProcFactory.CreateInstance<MyService,IMyContract>();
proxy.MyMethod();
InProcFactory.CloseProxy(proxy);

This line:

IMyContract proxy = InProcFactory.CreateInstance<MyService,IMyContract>();

is syntactically equivalent to the C# way of instantiating a class type:

IMyContract proxy = new MyService();

The difference syntax-wise is that with C#, there is no need to specify the queried
interfaces, since the compiler will examine the class, see if it supports the interface, and
implicitly cast the class to the assigned interface variable. As it lacks compiler support
for services, InProcFactory requires you to specify the required contract.

Chapter 1 also shows my WcfWrapper helper class, which can eliminate
even that difference, although at the price of defining a wrapper class.

However, the big difference between instantiating the class over WCF rather than C#
is that when you do this all the powerful WCF features described in the rest of this
book kick in: call timeout, encrypted calls, authentication, identity propagation, trans-
action propagation, transaction voting, instance management, error masking, channel
faulting, fault isolation, buffering and throttling, data versioning tolerance, synchro-
nization, synchronization context affinity, and more. With very little effort, you can
also add tracing and logging, authorization, security audits, profiling and instrumen-
tation, and durability, or intercept the calls and add many degrees of extensibility and
customization.

InProcFactory lets you enjoy the benefits of WCF without suffering the ownership
overhead. To me, InProcFactory is more than a useful utility—it is a glimpse of the
future.

What’s Next? | 699

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX B

Headers and Contexts

In every method for every call on a .NET object, there are explicit arguments passed in
as method parameters and implicit parameters available for the method body. Such
implicit parameters include the thread the call executes on (available via
Thread.Current); the call’s app domain (available via AppDomain.Current); the call’s
transactions, if any (available via Transaction.Current); the call synchronization con-
text (available via SynchronizationContext.Current); the security principal of the call
(available via Thread.CurrentPrincipal); and even the little-known execution context
of the call itself (available via Thread.CurrentContext). These out-of-band parameters
provide in effect the logical execution context of the call, essential for the functioning
of the object and .NET itself. But how can you pass additional contextual parameters
to your WCF service, forming your own custom context? Such a need is surprisingly
common and useful: for example, Chapter 4 uses a custom context to manage the
instance IDs of durable services, Chapter 8 uses a custom context to provide the call
priority, and Chapter 9 uses a custom context to pass the address of a queued response
service. This appendix presents and contrasts two distinct techniques for passing and
managing custom contexts, using the message headers or the dedicated context bind-
ing. For both options, I will share dedicated helper classes designed to streamline and
automate the interaction. You will also see some advanced WCF programming
techniques.

Message Headers
Every WCF message contains a collection of outgoing and incoming message headers.
When the client wishes to send out-of-band parameters to the service, it does so by
adding those parameters to the outgoing headers. The service then reads those param-
eters from the incoming headers.

The operation context offers collections of incoming and outgoing headers, available
via the IncomingMessageHeaders and OutgoingMessageHeaders properties:

public sealed class OperationContext : ...
{

701

Download from Library of Wow! eBook <www.wowebook.com>

 public MessageHeaders IncomingMessageHeaders
 {get;}

 public MessageHeaders OutgoingMessageHeaders
 {get;}

 //More members
}

Each collection is of the type MessageHeaders (that is, a collection of MessageHeader
objects):

public sealed class MessageHeaders : ...
{
 public void Add(MessageHeader header);
 public T GetHeader<T>(int index);
 public T GetHeader<T>(string name,string ns);
 //More members
}

The class MessageHeader is not intended for application developers to interact with
directly. Instead, use the MessageHeader<T> class, which provides for type-safe and easy
conversion from a CLR type parameter to a message header:

public abstract class MessageHeader : ...
{...}

public class MessageHeader<T>
{
 public MessageHeader();
 public MessageHeader(T content);
 public T Content
 {get;set;}
 public MessageHeader GetUntypedHeader(string name,string ns);
 //More members
}

You can use any serializable or data contract type as the type parameter for Message
Header<T>. You construct a MessageHeader<T> around a CLR type, and then use the
GetUntypedHeader() method to convert it to a MessageHeader and store it in the outgoing
headers. GetUntypedHeader() requires you to provide it with the generic type parameter
name and namespace, which will be used later to look up the header from the headers
collection. (Actually, using the name and namespace is just a suggestion; any unique
value will do for this purpose. Since the type name and namespace combination tends
to be unique, it is commonly used.) You perform the lookup via the GetHeader<T>()
method of MessageHeaders. Calling GetHeader<T>() obtains the value of the type pa-
rameter of the MessageHeader<T> used.

Client-Side Header Interaction
As mentioned previously, the client needs to add the parameter to the outgoing headers
collection. However, what if the client is not a WCF service, so it does not have an

702 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

operation context? As it turns out, this doesn’t matter if the client is a service, since
once the call enters a service, the operation context becomes immutable, so the client
cannot write to its outgoing headers even if it has an operation context. The solution
for all clients (services and non-services alike) is to create a new operation context and
write to its outgoing headers. WCF enables a client to adopt a new operation context
via the OperationContextScope class, defined as:

public sealed class OperationContextScope : IDisposable
{
 public OperationContextScope(IContextChannel channel);
 public OperationContextScope(OperationContext context);
 public void Dispose();
}

Using OperationContextScope is a general technique for spinning a new context when
the one you have is inadequate. The constructor of OperationContextScope replaces the
current thread’s operation context with the new operation context. Calling Dispose()
on the OperationContextScope instance restores the old context (even if it was null). If
you do not call Dispose(), that may damage other objects on the same thread that expect
the previous context. As a result, OperationContextScope is designed to be used inside
a using statement and provide only a scope of code with a new operation context, even
in the face of exceptions (hence its name):

using(OperationContextScope scope = new OperationContextScope(...))
{
 //Do work with new context
 ...
}//Restores previous context here

When constructing a new OperationContextScope instance, you provide its constructor
with the inner channel of the proxy used for the call (and thus affect the message).
Example B-1 shows the steps required to send an integer to a service in the message
headers.

Example B-1. Passing integer in headers by the client

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyContractClient : ClientBase<IMyContract>,IMyContract
{...}

//Client code:
MessageHeader<int> numberHeader = new MessageHeader<int>(123);

MyContractClient proxy = new MyContractClient();
using(OperationContextScope contextScope =
 new OperationContextScope(proxy.InnerChannel))

Message Headers | 703

Download from Library of Wow! eBook <www.wowebook.com>

{
 OperationContext.Current.OutgoingMessageHeaders.Add(
 numberHeader.GetUntypedHeader("Int32","System"));

 proxy.MyMethod();
}
proxy.Close();

The client first constructs an instance of MessageHeader<int>, initializing it with the
value 123. The client then uses the GetUntypedHeader() method to convert the type-safe
integer header to a non-type-safe representation, using the integer name and namespace
as keys, and add that to the outgoing headers inside a new operation context scope.
The call to the service is also inside the scope. After exiting the operation context scope,
the client closes the proxy in the original operation context scope (if any).

Service-Side Header Interaction
Example B-2 shows the matching service code required to read the integer from the
incoming message headers. Note that the service must know in advance the keys re-
quired to look up the number from the headers.

Example B-2. Reading integer from headers by the service

class MyService : IMyContract
{
 public void MyMethod()
 {
 int number = OperationContext.Current.IncomingMessageHeaders.
 GetHeader<int>("Int32","System");
 Debug.Assert(number == 123);
 }
}

Logically, the service treats the out-of-band integer passed to it as a number context.
Any party down the call chain from the service can also read the number context from
the operation context.

Encapsulating the Headers
Both the client and the service will benefit greatly from encapsulating the interaction
with the message headers by defining a NumberContext helper class, as shown in
Example B-3.

Example B-3. The NumberContext helper class

class NumberContext
{
 public static int Current
 {
 get

704 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

 {
 OperationContext context = OperationContext.Current;
 if(context == null)
 {
 return 0;
 }
 return context.IncomingMessageHeaders.GetHeader<int>("Int32","System");
 }
 set
 {
 OperationContext context = OperationContext.Current;
 MessageHeader<int> numberHeader = new MessageHeader<int>(value);
 context.OutgoingMessageHeaders.Add(
 numberHeader.GetUntypedHeader("Int32","System"));
 }
 }
}

Using NumberContext mimics the use of any built-in .NET context, since it offers the
Current static property, which gets and sets the appropriate headers collection. Using
NumberContext, Example B-1 is reduced to the code shown in Example B-4.

Example B-4. Using NumberContext by the client

MyContractClient proxy = new MyContractClient();
using(OperationContextScope contextScope =
 new OperationContextScope(proxy.InnerChannel))
{
 NumberContext.Current = 123;

 proxy.MyMethod();
}
proxy.Close();

Likewise, Example B-2 is reduced to Example B-5.

Example B-5. Using NumberContext by the service

class MyService : IMyContract
{
 public void MyMethod()
 {
 int number = NumberContext.Current;
 Debug.Assert(number == 123);
 }
}

The GenericContext<T> helper class

While both Example B-4 and Example B-5 are a marked improvement over direct in-
teraction with the headers, such use of the headers is still problematic, since it involves
defining helper classes with repeated, complicated code for every use of message head-
ers as a logical context. The solution is to generalize the technique shown in

Message Headers | 705

Download from Library of Wow! eBook <www.wowebook.com>

Example B-3 using a generic type parameter. This is exactly what my Generic
Context<T> class, shown in Example B-6, does. GenericContext<T> and the rest of the
helper classes in this chapter are available with ServiceModelEx.

Example B-6. The GenericContext<T> class

[DataContract]
public class GenericContext<T>
{
 [DataMember]
 public readonly T Value;

 internal static string TypeName;
 internal static string TypeNamespace;

 static GenericContext()
 {
 //Verify [DataContract] or [Serializable] on T
 Debug.Assert(IsDataContract(typeof(T)) || typeof(T).IsSerializable);

 TypeNamespace = "net.clr:" + typeof(T).FullName;
 TypeName = "GenericContext";
 }
 static bool IsDataContract(Type type)
 {
 object[] attributes =
 type.GetCustomAttributes(typeof(DataContractAttribute),false);
 return attributes.Length == 1;
 }

 public GenericContext(T value)
 {
 Value = value;
 }

 public GenericContext() : this(default(T))
 {}
 public static GenericContext<T> Current
 {
 get
 {
 OperationContext context = OperationContext.Current;
 if(context == null)
 {
 return null;
 }
 try
 {
 return context.IncomingMessageHeaders.
 GetHeader<GenericContext<T>>(TypeName,TypeNamespace);
 }
 catch
 {
 return null;
 }

706 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

 }
 set
 {
 OperationContext context = OperationContext.Current;
 Debug.Assert(context != null);

 //Having multiple GenericContext<T> headers is an error
 bool headerExists = false;
 try
 {
 context.OutgoingMessageHeaders.
 GetHeader<GenericContext<T>>(TypeName,TypeNamespace);
 headerExists = true;
 }
 catch(MessageHeaderException exception)
 {
 Debug.Assert(exception.Message == "There is not a header with name " +
 TypeName + " and namespace " +
 TypeNamespace + " in the message.");
 }
 if(headerExists)
 {
 throw new InvalidOperationException("A header with name " + TypeName +
 " and namespace " + TypeNamespace +
 " already exists in the message.");
 }
 MessageHeader<GenericContext<T>> genericHeader =
 new MessageHeader<GenericContext<T>>(value);
 context.OutgoingMessageHeaders.Add(
 genericHeader.GetUntypedHeader(TypeName,TypeNamespace));
 }
 }
}

GenericContext<T> lets you treat any serializable or data contract type parameter as a
logical context, and its static constructor validates that. The type parameter used is a
generic yet type-safe and application-specific custom context. GenericContext<T> uses
“GenericContext” for the type name and the full name of T for the namespace to reduce
the chance of a conflict. GenericContext<T> also validates that the outgoing headers do
not already contain such a type parameter. Both the client and the service can use
GenericContext<T> as-is. All a client has to do to pass some custom context to the service
is set the static Current property inside a new OperationContextScope:

GenericContext<int>.Current = new GenericContext<int>(123);

On the service side, to read the value out of the headers, any downstream party can
write:

int number = GenericContext<int>.Current.Value;

Alternatively, you can wrap GenericContext<T> with a dedicated context. Using
GenericContext<T>, the NumberContext of Example B-3 is reduced to the code shown in
Example B-7.

Message Headers | 707

Download from Library of Wow! eBook <www.wowebook.com>

Example B-7. NumberContext using GenericContext<T>

class NumberContext
{
 public static int Current
 {
 get
 {
 return GenericContext<int>.Current.Value;
 }
 set
 {
 GenericContext<int>.Current = new GenericContext<int>(value);
 }
 }
}

Streamlining the Client
Even when using GenericContext<T>, the client code (as in Example B-4) is far too raw
and exposed, requiring every invocation of the proxy to use an operation context scope.
It is better to encapsulate these steps in the proxy itself. The constructors of the proxy
should all take additional parameters for the value to pass in the headers. Inside every
method, the proxy will create a new operation context and add the value to the outgoing
headers collection. This will avoid on every invocation polluting the client code with
the interaction with the logical context and the operation context.

Using the same contract definition as in Example B-1, Example B-8 shows such a proxy
used to pass an out-of-band number in the message headers.

Example B-8. Encapsulating the headers and the operation context scope

class MyContractClient : ClientBase<IMyContract>,IMyContract
{
 readonly int Number;

 public MyContractClient(int number)
 {
 Number = number;
 }
 public MyContractClient(int number,string endpointName) : base(endpointName)
 {
 Number = number;
 }

 //More constructors

 public void MyMethod()
 {
 using(OperationContextScope contextScope =
 new OperationContextScope(InnerChannel))
 {
 NumberContext.Current = Number;

708 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

 Channel.MyMethod();
 }
 }
}

All the constructors of the proxy in Example B-8 accept the number to pass to the
service and save it in a read-only variable. The proxy uses the NumberContext class of
Example B-7 to encapsulate the interaction with the headers.

Using the proxy from Example B-8, the client code from Example B-4 is reduced to:

MyContractClient proxy = new MyContractClient(123);
proxy.MyMethod();
proxy.Close();

The HeaderClientBase<T,H> proxy class

The problem with the technique demonstrated in Example B-8 is that you would have
to repeat such code in every method in the proxy, and for every other proxy that wishes
to pass out-of-band parameters. It is therefore preferable to encapsulate these steps
further in a dedicated proxy class, and even avoid the interaction with the operation
context altogether using message interception. To that end, I wrote HeaderClient
Base<T,H>, defined in Example B-9.

Example B-9. The HeaderClientBase<T,H> proxy base class

public abstract partial class HeaderClientBase<T,H> : InterceptorClientBase<T>
 where T : class
{
 public H Header
 {get;protected set;}

 public HeaderClientBase() : this(default(H))
 {}
 public HeaderClientBase(string endpointName) : this(default(H),endpointName)
 {}

 public HeaderClientBase(H header)
 {
 Header = header;
 }
 public HeaderClientBase(H header,string endpointName) : base(endpointName)
 {
 Header = header;
 }

 //More constructors

 protected override void PreInvoke(ref Message request)
 {
 GenericContext<H> context = new GenericContext<H>(Header);
 MessageHeader<GenericContext<H>> genericHeader =
 new MessageHeader<GenericContext<H>>(context);

Message Headers | 709

Download from Library of Wow! eBook <www.wowebook.com>

 request.Headers.Add(genericHeader.GetUntypedHeader(
 GenericContext<H>.TypeName,GenericContext<H>.TypeNamespace));
 }
}

The type parameter H can be any serializable or data contract type. In order for you to
use it with or without header information, HeaderClientBase<T,H> offers two sets of
constructors—one set that accepts a header and one set that does not. The constructors
that accept the header store it in the protected Header property. HeaderClient
Base<T,H> derives from the InterceptorClientBase<T> class defined in Appendix E as
part of a generic interception framework. InterceptorClientBase<T> provides the
PreInvoke() virtual method where its subclasses can hook the outgoing message and
interact with it. The overridden version of PreInvoke() creates a new instance of
GenericContext<H>, and manually adds it to the request message headers. Note that the
value of the header is read every time by accessing the Header property.

Context Bindings
With .NET 3.5, WCF gained three additional bindings dedicated to managing custom
contexts. These bindings, found in the System.WorkflowServices.dll assembly, are the
BasicHttpContextBinding, the NetTcpContextBinding, and the WSHttpContextBinding.
The context bindings all derive from their respective regular bindings:

public class BasicHttpContextBinding : BasicHttpBinding
{
 /* Same constructors as BasicHttpBinding */
}

public class NetTcpContextBinding : NetTcpBinding
{
 /* Same constructors as NetTcpBinding */

 public ProtectionLevel ContextProtectionLevel
 {get;set;}
}
public class WSHttpContextBinding : WSHttpBinding
{
 /* Same constructors as WSHttpBinding */

 public ProtectionLevel ContextProtectionLevel
 {get;set;}
}

In the case of the NetTcpContextBinding and the WSHttpContextBinding, the
ContextProtectionLevel indicates how to protect the context while in transfer, as dis-
cussed in Chapter 10.

The context bindings are used exactly the same way as their base bindings, yet they
add support for a dedicated context management protocol. These bindings can be used
with or without a context. The context protocol lets you pass as a custom context a

710 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

collection of strings in the form of pairs of keys and values, stored implicitly in the
message headers. There are several important differences between using a context
binding and using the direct message headers for passing out-of-band parameters to a
custom context:

• With a context binding, you can only set the information to pass to the service
once, before opening the proxy (or using it for the first time). After that, the custom
context is cached, and any attempt to modify it results in an error. With the message
headers, every call to the services on the same proxy may contain different headers.

• With the context binding, you can only pass as parameters simple strings in the
form of a keys/values dictionary. This is a liability when trying to pass composite
types that go beyond simple values. With message headers, any serializable or data
contract type will do.

• The use of strings means there is inherently no type safety with the context pa-
rameters. While this is also true with message headers, my GenericContext<T> does
restore the missing type safety.

• Out of the box, only a limited set of bindings support the context protocol. Glar-
ingly missing are the IPC and MSMQ bindings. The message headers technique
works over any binding.

Client-Side Context Binding Interaction
The client sets the context to send to the service using the IContextManager interface:

public interface IContextManager
{
 IDictionary<string,string> GetContext();
 void SetContext(IDictionary<string,string> context);

 bool Enabled
 {get;set;}
}

The client obtains the reference to the IContextManager interface by accessing the
proxy’s inner channel properties:

public abstract class ClientBase<T> : ICommunicationObject where T : class
{
 public IClientChannel InnerChannel
 {get;}
 //More members
}
public interface IClientChannel : IContextChannel,...
{...}
public interface IContextChannel : IChannel,...
{...}
public interface IChannel : ICommunicationObject
{
 T GetProperty<T>() where T : class;
}

Context Bindings | 711

Download from Library of Wow! eBook <www.wowebook.com>

The InnerChannel property supports the IChannel interface, which offers the
GetProperty<T>() method:

MyContractClient proxy = new MyContractClient();
IContextManager contextManager = proxy.InnerChannel.GetProperty<IContextManager>();

Once the client obtains IContextManager, it can copy the current context by calling the
GetContext() method. The context is merely a dictionary of strings as keys and values.
Since the dictionary returned from GetContext() is a copy of the actual context, the
client cannot use it to change the context. Instead, the client needs to call the
SetContext() method, providing the new context. The client can override the old
context or just add values to the old context and then set it back in, as shown
in Example B-10.

Example B-10. Setting the context on the proxy

MyContractClient proxy = new MyContractClient();
IContextManager contextManager = proxy.InnerChannel.GetProperty<IContextManager>();

//Just add in, not overwriting dictionary
IDictionary<string,string> context = contextManager.GetContext();
context["NumberContext"] = "123";
contextManager.SetContext(context);

proxy.MyMethod();

proxy.Close();

Service-Side Context Binding Interaction
The service reads the context values from the incoming message properties, accessed
via the operation context:

public sealed class OperationContext : ...
{
 public MessageProperties IncomingMessageProperties
 {
 get;
 }
 //More members
}

MessageProperties is a non-type-safe dictionary that accepts a string key and returns
the matching object value:

public sealed class MessageProperties : IDictionary<string,object>
{...}

To obtain the context property, the service uses the static string ContextMessage
Property.Name. This returns an object of the type ContextMessageProperty, defined as:

[Serializable]
public class ContextMessageProperty : IMessageProperty
{

712 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

 public IDictionary<string,string> Context
 {get;}
 public static string Name
 {get;}

 //More members
}

The Context property of ContextMessageProperty is the same dictionary of parameters
passed by the client. Example B-11 shows the required service-side steps to read the
number context passed in Example B-10.

Example B-11. Reading the context by the service

class MyService : IMyContract
{
 public void MyMethod()
 {
 ContextMessageProperty contextProperty = OperationContext.Current.
 IncomingMessageProperties[ContextMessageProperty.Name]
 as ContextMessageProperty;

 Debug.Assert(contextProperty.Context.ContainsKey("NumberContext"));

 string number = contextProperty.Context["NumberContext"];

 Debug.Assert(number == "123");
 }
}

Streamlining the Client
You can streamline the steps required of the client to read or write to the context using
my ContextManager static helper class, shown in Example B-12.

Example B-12. Client-side methods of ContextManager

public static class ContextManager
{
 public static void SetContext(IClientChannel innerChannel,
 string key,string value)
 {
 SetContext(innerChannel,CreateContext(key,value));
 }

 public static void SetContext(IClientChannel innerChannel,
 IDictionary<string,string> context)
 {
 IContextManager contextManager = innerChannel.GetProperty<IContextManager>();
 contextManager.SetContext(context);
 }

 public static IDictionary<string,string> CreateContext(string key,string value)
 {

Context Bindings | 713

Download from Library of Wow! eBook <www.wowebook.com>

 IDictionary<string,string> context = new Dictionary<string,string>();
 context[key] = value;
 return context;
 }

 public static IDictionary<string,string> UpdateContext(
 IClientChannel innerChannel,
 string key,string value)
 {
 IContextManager contextManager = innerChannel.GetProperty<IContextManager>();

 IDictionary<string,string> context =
 new Dictionary<string,string>(contextManager.GetContext());
 context[key] = value;
 return context;
 }

 //Proxy extensions
 public static void SetContext<T>(this ClientBase<T> proxy,
 string key,string value) where T : class
 {
 SetContext(proxy.InnerChannel,key,value);
 }

 public static void SetContext<T>(this ClientBase<T> proxy,
 IDictionary<string,string> context) where T : class
 {
 SetContext(proxy.InnerChannel,context);
 }
 public static IDictionary<string,string> UpdateContext<T>(
 this ClientBase<T> proxy,string key,string value) where T : class
 {
 return UpdateContext(proxy.InnerChannel,key,value);
 }
}

ContextManager offers overloaded versions of the SetContext() method that allow the
client to set a new context on a proxy’s inner channel, using a single key/value pair or
a collection of such pairs in a dictionary. These methods are useful both with a proxy
class and with a channel factory. ContextManager also exposes setting the context as an
extension method on the proxy class. You can use the CreateContext() method to create
a new dictionary or the UpdateContext() method to add a key/value pair to an existing
context. Using ContextManager, Example B-10 is reduced to:

MyContractClient proxy = new MyContractClient();
proxy.SetContext("NumberContext","123");
proxy.MyMethod();
proxy.Close();

However, relying on SetContext() this way requires you to explicitly use it upon every
instantiation of the proxy. It is better to encapsulate ContextManager in a dedicated
proxy class, such as my ContextClientBase<T>:

714 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

public abstract class ContextClientBase<T> : ClientBase<T> where T : class
{
 public ContextClientBase();
 public ContextClientBase(string endpointName);
 public ContextClientBase(string key,string value);
 public ContextClientBase(IDictionary<string,string> context);
 public ContextClientBase(string key,string value,string endpointName);
 public ContextClientBase(IDictionary<string,string> context,
 string endpointName);
 //More constructors
}

The constructors of ContextClientBase<T> accept the usual proxy parameters, such as
the endpoint name or binding and address, as well as the contextual parameters to send
the service (either a single key/value pair, or a collection of keys and values using a
dictionary). Your proxy can derive directly from ContextClientBase<T>:

class MyContractClient : ContextClientBase<IMyContract>,IMyContract
{
 public MyContractClient(string key,string value) : base(key,value)
 {}
 /* More constructors */
 public void MyMethod()
 {
 Channel.MyMethod();
 }
}

Using ContextClientBase<T>, Example B-10 is reduced to:

MyContractClient proxy = new MyContractClient("NumberContext","123");
proxy.MyMethod();
proxy.Close();

Example B-13 shows the implementation of ContextClientBase<T>.

Example B-13. Implementing ContextClientBase<T>

public abstract class ContextClientBase<T> : ClientBase<T> where T : class
{
 public ContextClientBase(string key,string value,string endpointName)
 : this(ContextManager.CreateContext(key,value),endpointName)
 {}
 public ContextClientBase(IDictionary<string,string> context,string endpointName)
 : base(endpointName)
 {
 SetContext(context);
 }

 /* More constructors */

 void SetContext(IDictionary<string,string> context)
 {
 VerifyContextBinding();
 ContextManager.SetContext(InnerChannel,context);
 }

Context Bindings | 715

Download from Library of Wow! eBook <www.wowebook.com>

 void VerifyContextBinding()
 {
 BindingElementCollection elements = Endpoint.Binding.CreateBindingElements();

 if(elements.Contains(typeof(ContextBindingElement)))
 {
 return;
 }

 throw new InvalidOperationException("Can only use context binding");
 }
}

A few of the constructors of ContextClientBase<T> use ContextManager to create a new
context and pass it to another constructor, which calls the SetContext() helper method.
SetContext() first verifies that the binding used is indeed a context binding and then
uses ContextManager to set the context. Verifying that the binding indeed supports the
context protocol is done by searching for the ContextBindingElement in the collection
of binding elements. This way of verifying is better than looking at the binding type,
since it also works automatically with a custom context binding.

Streamlining the Service
For the service, the ContextManager helper class encapsulates the interaction with op-
eration context and message properties. ContextManager provides the GetContext()
method:

public static class ContextManager
{
 public static string GetContext(string key);

 //More members
}

Using GetContext(), the service code in Example B-11 is reduced to:

class MyService : IMyContract
{
 public void MyMethod()
 {
 string number = ContextManager.GetContext("NumberContext");

 Debug.Assert(number == "123");
 }
}

Example B-14 shows the implementation of GetContext().

Example B-14. Implementing GetContext()

public static class ContextManager
{
 public static string GetContext(string key)

716 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

 {
 if(OperationContext.Current == null)
 {
 return null;
 }
 if(OperationContext.Current.IncomingMessageProperties.
 ContainsKey(ContextMessageProperty.Name))
 {
 ContextMessageProperty contextProperty =
 OperationContext.Current.IncomingMessageProperties[ContextMessageProperty.Name]
 as ContextMessageProperty;
 if(contextProperty.Context.ContainsKey(key) == false)
 {
 return null;
 }
 return contextProperty.Context[key];
 }
 else
 {
 return null;
 }
 }
}

GetContext() is similar to the explicit steps taken in Example B-11, except it adds state
and error management. If the context does not contain the request key (or if no context
was found), GetContext() returns null.

Creating a Custom Context Binding
WCF provides context support for the basic, WS, and TCP bindings. Missing from that
list is the IPC binding. It would be valuable to have that support for the IPC binding
for custom context support on the same machine. Creating such a custom binding is a
worthy exercise, and it serves as a good demonstration of how to write a custom
binding.

ServiceModelEx contains the NetNamedPipeContextBinding class, defined as:

public class NetNamedPipeContextBinding : NetNamedPipeBinding
{
 /* Same constructors as NetNamedPipeBinding */

 public ProtectionLevel ContextProtectionLevel
 {get;set;}
}

NetNamedPipeContextBinding is used exactly like its base class, and you can use it with
or without a context. Both the client and the host can use this binding programmatically
as-is, by instantiating it like any other built-in binding. However, when using a custom
binding in conjunction with a config file, you need to inform WCF where the custom
binding is defined.

Context Bindings | 717

Download from Library of Wow! eBook <www.wowebook.com>

To that end, ServiceModelEx also defines the NetNamedPipeContextBindingElement and
NetNamedPipeContextBindingCollectionElement helper classes:

public class NetNamedPipeContextBindingElement : NetNamedPipeBindingElement
{
 public NetNamedPipeContextBindingElement();
 public NetNamedPipeContextBindingElement(string name);
 public ProtectionLevel ContextProtectionLevel
 {get;set;}
}
public class NetNamedPipeContextBindingCollectionElement :
 StandardBindingCollectionElement<NetNamedPipeContextBinding,
 NetNamedPipeContextBindingElement>
{}

You need to add the type of NetNamedPipeContextBindingCollectionElement and its
assembly to the list of binding extensions, naming NetNamedPipeContextBinding as a
custom binding. You can do this on a per-application basis by adding it to the appli-
cation config file.

Example B-15 shows such an application-specific config file for the host side, but you
have to enter the same directives in the client’s config file as well.

Example B-15. Adding per-application administrative custom binding support

<system.serviceModel>
 <extensions>
 <bindingExtensions>
 <add name = "netNamedPipeContextBinding"
 type = "ServiceModelEx.NetNamedPipeContextBindingCollectionElement,
 ServiceModelEx"
 />
 </bindingExtensions>
 </extensions>

 <services>
 <service name = "...">
 <endpoint
 address = "net.pipe://..."
 binding = "netNamedPipeContextBinding"
 contract = "..."
 />
 </service>
 </services>
</system.serviceModel>

Alternatively, you can add NetNamedPipeContextBindingCollectionElement to
machine.config to affect every application on the machine. In that case, there is no need
to list the binding extensions in the client or service config file. Example B-16 shows
such a configuration.

718 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

Example B-16. Adding machine-wide administrative custom binding support

<!--In machine.config-->
<bindingExtensions>
 <add name = "wsHttpContextBinding" type = "..."/>
 <add name = "netTcpContextBinding" type = "..."/>
 <add name = "netNamedPipeContextBinding"
 type = "ServiceModelEx.NetNamedPipeContextBindingCollectionElement,
 ServiceModelEx"/>
 <!--Additional bindings-->
</bindingExtensions>

<!--In app.config-->
<system.serviceModel>
 <services>
 <service name = "...">
 <endpoint
 address = "net.pipe://..."
 binding = "netNamedPipeContextBinding"
 contract = "..."
 />
 </service>
 </services>
</system.serviceModel>

Of course, you can configure a binding section to customize any property of NetNamed
PipeContextBinding, whether it comes from NetNamedPipeBinding or from
NetNamedPipeContextBinding:

<bindings>
 <netNamedPipeContextBinding>
 <binding name = "TransactionalSecureContextIPC"
 contextProtectionLevel = "EncryptAndSign"
 transactionFlow = "True"
 />
 </netNamedPipeContextBinding>
</bindings>

Implementing NetNamedPipeContextBinding

Example B-17 lists the implementation of NetNamedPipeContextBinding and its sup-
porting classes.

Example B-17. Implementing NetNamedPipeContextBinding

public class NetNamedPipeContextBinding : NetNamedPipeBinding
{
 internal const string SectionName = "netNamedPipeContextBinding";

 public ProtectionLevel ContextProtectionLevel
 {get;set;}

 public NetNamedPipeContextBinding()
 {
 ContextProtectionLevel = ProtectionLevel.EncryptAndSign;

Context Bindings | 719

Download from Library of Wow! eBook <www.wowebook.com>

 }
 public NetNamedPipeContextBinding(NetNamedPipeSecurityMode securityMode) :
 base(securityMode)
 {
 ContextProtectionLevel = ProtectionLevel.EncryptAndSign;
 }
 public NetNamedPipeContextBinding(string configurationName)
 {
 ContextProtectionLevel = ProtectionLevel.EncryptAndSign;
 ApplyConfiguration(configurationName);
 }
 public override BindingElementCollection CreateBindingElements()
 {
 BindingElement element = new ContextBindingElement(ContextProtectionLevel,
 ContextExchangeMechanism.ContextSoapHeader);

 BindingElementCollection elements = base.CreateBindingElements();
 elements.Insert(0,element);

 return elements;
 }

 void ApplyConfiguration(string configurationName)
 {
 Configuration config =
 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);
 ServiceModelSectionGroup sectionGroup =
 ServiceModelSectionGroup.GetSectionGroup(config);

 BindingsSection bindings = sectionGroup.Bindings;

 NetNamedPipeContextBindingCollectionElement section =
 (NetNamedPipeContextBindingCollectionElement)bindings[SectionName];

 NetNamedPipeContextBindingElement element =
 section.Bindings[configurationName];
 if(element == null)
 {
 throw new ConfigurationErrorsException();
 }
 else
 {
 element.ApplyConfiguration(this);
 }
 }
}
public class NetNamedPipeContextBindingElement : NetNamedPipeBindingElement
{
 const string ContextProtectionLevelName = "contextProtectionLevel";

 public NetNamedPipeContextBindingElement()
 {
 Initialize();
 }
 public NetNamedPipeContextBindingElement(string name) : base(name)

720 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

 {
 Initialize();
 }

 void Initialize()
 {
 ConfigurationProperty property =
 new ConfigurationProperty(ContextProtectionLevelName,
 typeof(ProtectionLevel),
 ProtectionLevel.EncryptAndSign);
 Properties.Add(property);

 ContextProtectionLevel = ProtectionLevel.EncryptAndSign;
 }
 protected override void OnApplyConfiguration(Binding binding)
 {
 base.OnApplyConfiguration(binding);

 NetNamedPipeContextBinding netNamedPipeContextBinding =
 binding as NetNamedPipeContextBinding;
 Debug.Assert(netNamedPipeContextBinding != null);

 netNamedPipeContextBinding.ContextProtectionLevel = ContextProtectionLevel;
 }
 protected override Type BindingElementType
 {
 get
 {
 return typeof(NetNamedPipeContextBinding);
 }
 }

 public ProtectionLevel ContextProtectionLevel
 {
 get
 {
 return (ProtectionLevel)base[ContextProtectionLevelName];
 }
 set
 {
 base[ContextProtectionLevelName] = value;
 }
 }
}

public class NetNamedPipeContextBindingCollectionElement :
 StandardBindingCollectionElement
 <NetNamedPipeContextBinding,NetNamedPipeContextBindingElement>
{}

The constructors of NetNamedPipeContextBinding all delegate the actual construction to
the base constructors of NetNamedPipeBinding, and the only initialization they do is
setting the context protection level to default to ProtectionLevel.EncryptAndSign.

Context Bindings | 721

Download from Library of Wow! eBook <www.wowebook.com>

The heart of any binding class is the CreateBindingElements() method. NetNamedPipe
ContextBinding accesses its base binding collection of binding elements and adds to it
the ContextBindingElement. Inserting this element into the collection adds support for
the context protocol. The rest of Example B-17 is mere bookkeeping to enable admin-
istrative configuration. The ApplyConfiguration() method is called by the constructor,
which takes the binding section configuration name. ApplyConfiguration() uses the
ConfigurationManager class (discussed in Chapter 9) to parse out of the config file the
netNamedPipeContextBinding section, and from it an instance of NetNamedPipeContext
BindingElement. That binding element is then used to configure the binding instance
by calling its ApplyConfiguration() method. The constructors of NetNamedPipeContext
BindingElement add to its base class Properties collection of configuration properties
a single property for the context protection level. In OnApplyConfiguration() (which is
called as a result of calling ApplyConfiguration() on NetNamedPipeBindingElement by
NetNamedPipeContextBinding.ApplyConfiguration()), the method first configures its
base element and then sets the context protection level according to the configured
level.

The NetNamedPipeContextBindingCollectionElement type is used to bind NetNamedPipe
ContextBinding with the NetNamedPipeContextBindingElement. This way, when adding
NetNamedPipeContextBindingCollectionElement as a binding extension, the configura-
tion manager knows which type to instantiate and provide with the binding parameters.

Since you can use NetNamedPipeContextBinding with or without a con-
text, the InProcFactory class presented in Chapter 1 actually uses the
NetNamedPipeContextBinding to enable transparent support for custom
contexts if required.

722 | Appendix B: Headers and Contexts

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX C

Discovery

All the WCF calls demonstrated throughout this book share two constraints. First, the
port or the pipe assigned to the service must be available. The application developer or
the administrator literally has to guess or have some way of knowing the port or the
pipe is not used by any other application on that machine. TCP port sharing can alle-
viate this problem, but does not help with the second constraint: the client must a priori
know the address of the service endpoints—not just the port number or the pipe name,
but also the name of the service machine (in the case of TCP).

It would be great if the service could use any available address, decided upon at runtime.
In turn, the client would need to discover that address at runtime. In fact, there is even
an industry standard-based solution that stipulates how that discovery takes place. That
solution, called simply discovery (and its supporting mechanisms), is the subject of this
appendix.

Discovery is not a new idea, and veteran developers have often opted
for not embedding the type of the class to instantiate in their code and
instead resorted to a class factory to resolve or discover the actual type
supporting the desired interface:

IMyInterface obj = MyClassFactory.CreateInstance<IMyInterface>();

In WCF, since the client always programs against the interface or the
proxy, the address of the service is analogous to the type of the imple-
mentation class in regular .NET programming. Address discovery is
therefore a modern incarnation of the class factory of old.

Address Discovery
Discovery relies on UDP (User Datagram Protocol). Unlike TCP, UDP is a connec-
tionless protocol, and no direct connection is required between the packet’s sender and
the receiver. The client uses UDP to broadcast discovery requests for any endpoint
supporting a specified contract type. Dedicated UDP discovery endpoints that the

723

Download from Library of Wow! eBook <www.wowebook.com>

services support will receive these requests (WCF offers a standard implementation of
the discovery endpoint). The implementation of the discovery endpoint, in turn, re-
sponds back to the client with the address of the service endpoints that support the
specified contract. Once the client discovers the services, it continues to invoke them
as with regular WCF calls. This sequence is illustrated in Figure C-1.

Figure C-1. Address discovery over UDP

Since discovery is predicated on the service responding to the client re-
quest, the service process must be running before the client issues the
request. This mandates the use of self-hosting or Windows Server App-
Fabric with Auto-start enabled.

Service Configuration
To receive the discovery request, the service must support a discovery endpoint. Much
like the MEX endpoint, WCF offers a standard discovery endpoint with the type Udp
DiscoveryEndpoint:

public class DiscoveryEndpoint : ServiceEndpoint
{...}
public class UdpDiscoveryEndpoint : DiscoveryEndpoint
{...}

The service can have the host implement that endpoint by adding the
ServiceDiscoveryBehavior to the collections of behaviors the service supports. You can
do that programmatically like this:

ServiceHost host = new ServiceHost(...);

host.AddServiceEndpoint(new UdpDiscoveryEndpoint());
ServiceDiscoveryBehavior discovery = new ServiceDiscoveryBehavior();
host.Description.Behaviors.Add(discovery);
host.Open();

724 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

Example C-1 shows how to add the discovery endpoint and the discovery behavior
using the service config file.

Example C-1. Adding discovery endpoint in the config file

<services>
 <service name = "MyService">
 <endpoint
 kind = "udpDiscoveryEndpoint"
 />
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceDiscovery/>
 </behavior>
 </serviceBehaviors>
</behaviors>

When using discovery for base addresses or business endpoint ad-
dresses, it is vital to avoid relative machine names or addresses, such as
localhost or 127.0.0.1, and instead use only explicit machine names.
The reason is that when the service responds to the client’s discovery
request, if the response contains a relative machine name, the client will
try to invoke the service on the client machine rather than on the service
machine.

Dynamic endpoint addresses

Discovery is independent of how the service host defines its endpoints. The service host
can respond to discovery requests with the addresses of preconfigured endpoints, where
the addresses are either listed in the config file or hardcoded. I call such addresses static
addresses. Static addresses cater to both clients that use discovery to find the endpoint
addresses and clients that use static addresses themselves. The downsides of static ad-
dress are the need to deal with configuration and the fact the ports or pipes have to be
available on the target machine.

However, what if the client is expected to use discovery to find the service address? In
that case, the service is at liberty to configure its endpoint addresses on the fly, dy-
namically, based on any available port or pipe. I call such addresses dynamic addresses.

Note that when using dynamic addresses, the host cannot rely on having WCF implic-
itly add the default endpoints. This is because WCF will only add the default endpoints
if no other endpoint is already defined for the service, and yet the use of dynamic
addresses mandates the presence of the discovery endpoint. The host must add the
endpoint explicitly by listing them in the config file (using relative addresses only, since
the base address is unknown at configuration time), or adding the endpoint program-
matically, or explicitly adding the default endpoints.

Address Discovery | 725

Download from Library of Wow! eBook <www.wowebook.com>

To automate the use of dynamic addresses, I wrote the DiscoveryHelper static helper
class with the two properties AvailableIpcBaseAddress and AvailableTcpBaseAddress
(shown in Example C-2).

Example C-2. Implementing dynamic addresses

public static class DiscoveryHelper
{
 public static Uri AvailableIpcBaseAddress
 {
 get
 {
 string machineName = Environment.MachineName;
 return new Uri("net.pipe://" + machineName + "/" + Guid.NewGuid() + "/");
 }
 }
 public static Uri AvailableTcpBaseAddress
 {
 get
 {
 string machineName = Environment.MachineName;
 return new Uri("net.tcp://" + machineName +":"+ FindAvailablePort()+"/");
 }
 }
 static int FindAvailablePort()
 {
 Mutex mutex = new Mutex(false,
 "ServiceModelEx.DiscoveryHelper.FindAvailablePort");
 try
 {
 mutex.WaitOne();
 IPEndPoint endPoint = new IPEndPoint(IPAddress.Any,0);
 using(Socket socket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,ProtocolType.Tcp))
 {
 socket.Bind(endPoint);
 IPEndPoint local = (IPEndPoint)socket.LocalEndPoint;
 return local.Port;
 }
 }
 finally
 {
 mutex.ReleaseMutex();
 }
 }
}

Implementing AvailableIpcBaseAddress is straightforward. Since any uniquely named
pipe will do, the property uses a new GUID to name the pipe. Implementing
AvailableTcpBaseAddress is more challenging because it requires finding an available
TCP port (port zero in TCP parlance). To avoid a race condition with other concurrent
invocations of AvailableTcpBaseAddress on the same machine, AvailableTcpBase

726 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

Address uses a named mutex. However, a race condition is still possible with someone
else running similar code on the same machine.

As for the machine name, AvailableTcpBaseAddress simply uses the current machine
name. Example C-3 shows how to use AvailableTcpBaseAddress.

Example C-3. Using dynamic addresses

Uri baseAddress = DiscoveryHelper.AvailableTcpBaseAddress;

ServiceHost host = new ServiceHost(typeof(MyService),baseAddress);
host.AddDefaultEndpoints();

host.Open();

<service name = "MyService">
 <endpoint
 kind = "udpDiscoveryEndpoint"
 />
</service>

<serviceBehaviors>
 <behavior>
 <serviceDiscovery/>
 </behavior>
</serviceBehaviors>

The host in Example C-3 uses the config file to add the discovery endpoint and the
discovery behavior. The host uses AvailableTcpBaseAddress and explicitly adds the de-
fault endpoints.

Enabling discovery

If all you want is a dynamic base address for your service, then the code in Exam-
ple C-3 is less than perfect, since it still requires you to add discovery, either in the
config file or programmatically. You can streamline these steps with my
EnableDiscovery() host extension, defined as:

public static class DiscoveryHelper
{
 public static void EnableDiscovery(this ServiceHost host,
 bool enableMEX = true);
}

When using EnableDiscovery() there is no need for programmatic steps or a config file:

Uri baseAddress = DiscoveryHelper.AvailableTcpBaseAddress;

ServiceHost host = new ServiceHost(typeof(MyService),baseAddress);
host.EnableDiscovery();
host.Open();

Example C-4 lists the implementation of EnableDiscovery().

Address Discovery | 727

Download from Library of Wow! eBook <www.wowebook.com>

Example C-4. Implementing EnableDiscovery()

public static class DiscoveryHelper
{
 public static void EnableDiscovery(this ServiceHost host,bool enableMEX = true)
 {
 if(host.Description.Endpoints.Count == 0)
 {
 host.AddDefaultEndpoints();
 }

 host.AddServiceEndpoint(new UdpDiscoveryEndpoint());
 ServiceDiscoveryBehavior discovery = new ServiceDiscoveryBehavior();
 host.Description.Behaviors.Add(discovery);

 if(enableMEX == true)
 {
 host.Description.Behaviors.Add(new ServiceMetadataBehavior());

 foreach(Uri baseAddress in host.BaseAddresses)
 {
 Binding binding = null;
 if(baseAddress.Scheme == "net.tcp")
 {
 binding = MetadataExchangeBindings.CreateMexTcpBinding();
 }
 if(baseAddress.Scheme == "net.pipe")
 {
 binding = MetadataExchangeBindings.CreateMexNamedPipeBinding();
 }
 if(binding != null)
 {
 host.AddServiceEndpoint(typeof(IMetadataExchange),binding,"MEX");
 }
 }
 }
 }
}

If the host has not already defined endpoints for the service, EnableDiscovery() will
add the default endpoints. EnableDiscovery() will also default to adding the MEX end-
point to the service on its base addresses.

Client-Side Steps
The client uses the DiscoveryClient class to discover all endpoint addresses of all serv-
ices that support a specified contract:

public sealed class DiscoveryClient : ICommunicationObject
{
 public DiscoveryClient();
 public DiscoveryClient(string endpointName);
 public DiscoveryClient(DiscoveryEndpoint discoveryEndpoint);

728 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 public FindResponse Find(FindCriteria criteria);

 //More members
}

Logically, DiscoveryClient is a proxy to the discovery endpoint. Like all proxies, the
client must provide the proxy’s constructor with the information about the target end-
point. The client can use a config file to specify the endpoint or programmatically
provide the standard UDP discovery endpoint for that purpose, since no further details
(such as address or binding) are required. The client then calls the Find() method,
providing it with the contract type to discover via an instance of FindCriteria:

public class FindCriteria
{
 public FindCriteria(Type contractType);
 //More members
}

Find() returns an instance of FindResponse which contains a collection of all the dis-
covered endpoints:

public class FindResponse
{
 public Collection<EndpointDiscoveryMetadata> Endpoints
 {get;}
 //More members
}

Each endpoint is represented by the EndpointDiscoveryMetadata class:

public class EndpointDiscoveryMetadata
{
 public static EndpointDiscoveryMetadata FromServiceEndpoint(
 ServiceEndpoint endpoint);
 public EndpointAddress Address
 {get;set;}
 //More members
}

The main property of the EndpointDiscoveryMetadata is Address, which finally contains
the discovered endpoint address. Example C-5 shows how a client can use these types
in conjunction to discover the endpoint address and invoke the service.

Example C-5. Discovering and invoking an endpoint

DiscoveryClient discoveryClient = new DiscoveryClient(new UdpDiscoveryEndpoint());

FindCriteria criteria = new FindCriteria(typeof(IMyContract));

FindResponse discovered = discoveryClient.Find(criteria);

discoveryClient.Close();

Debug.Assert(discovered.Endpoints.Count > 0);

Address Discovery | 729

Download from Library of Wow! eBook <www.wowebook.com>

//Just grab the first found
EndpointAddress address = discovered.Endpoints[0].Address;
Binding binding = new NetTcpBinding();

IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(binding,address);
proxy.MyMethod();

(proxy as ICommunicationObject).Close();

There are several noteworthy problems with Example C-5:

• While the client may discover multiple endpoints supporting the desired contract,
it has no logic to resolve which one to invoke. It simply invokes the first one in the
returned collection.

• Discovery is geared toward addresses only. There is no information about which
binding to use to invoke the service. Example C-5 simply hard-codes the use of the
TCP binding.

• The client will have to repeat these minute steps over and over every time it needs
to discover the service address.

• Discovery takes time. By default, Find() will wait 20 seconds for the services to
respond to the UDP discovery request. Such a delay makes discovery inadequate
for use in many applications, certainly when the application performs a high vol-
ume of tight calls. While you could shorten that timeout, doing so poses the risk
of not discovering any or all of the services. DiscoveryClient does offer an asyn-
chronous discovery, but that is of no use for a client that needs to invoke the service
before continuing with its execution.

You will see several approaches to addressing these problems in this appendix.

When combining IPC with discovery, the client will discover IPC end-
points on remote machines as well as on the local machine. Since only
the IPC endpoints on the local machine are relevant, the client must
ignore the remote endpoints by filtering on the local machine name.

Scopes
The use of discovery implies a somewhat loose relationship between the client and the
service or services it discovers. This presents another set of problems—how can the
client know it has discovered the right endpoint? When multiple compatible endpoints
are discovered, which one should the client invoke? Clearly, there is a need for some
mechanism that will help the client filter the results of discovery. This is exactly what
scopes are about. A scope is merely a valid URL (not a mere URI) associated with the
endpoint. The service can associate a scope or even multiple scopes with each of its
endpoints. The scopes are bundled along with the addresses in the response to the
discovery request. In turn, the client can filter the discovered addresses based on the
scopes found or, better yet, try to find only relevant scopes in the first place.

730 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

Scopes are immensely useful in customizing discovery and in adding sophisticated be-
havior to your application, especially when writing a framework or administration
tools. The classic use for scopes is enabling the client to distinguish between polymor-
phic services from different applications—that is, when multiple applications share the
same intranet and contract type but not the services implementation. However, this is
somewhat of a rare occurrence. I find scopes handy when it comes to distinguishing
between endpoint types in the same application. For example, suppose you have several
implementations for a given contract. You have the operational mode used in produc-
tion, the simulation mode used in testing or diagnostics, and an emulation mode used
in stress testing. Using scopes, the client can pick and choose the correct implementa-
tion type for its needs, and different clients never conflict with each other by consuming
one another’s services. You can also have the same client pick up a different endpoint
based on the context of the invocation. You can have endpoints for profiling, debug-
ging, diagnostics, testing, instrumentation, and so on.

Assigning scopes

The host assigns scopes on a per-endpoint basis using the EndpointDiscoveryBehavior
class. For example, to apply across all endpoints, use a default endpoint behavior:

<services>
 <service name = "MyService">
 <endpoint
 ...
 />
 ...
 </service>
</services>
<behaviors>
 ...
 <endpointBehaviors>
 <behavior>
 <endpointDiscovery>
 <scopes>
 <add scope = "net.tcp://MyApplication"/>
 </scopes>
 </endpointDiscovery>
 </behavior>
 </endpointBehaviors>
</behaviors>

You can, of course, apply scopes discretely, based on the type of service, by assigning
the behaviors explicitly:

<services>
 <service name = "MyService">
 <endpoint behaviorConfiguration = "OperationalScope"
 ...
 />
 ...
 </service>

Address Discovery | 731

Download from Library of Wow! eBook <www.wowebook.com>

 <service name = "MySimulator">
 <endpoint behaviorConfiguration = "SimulationScope"
 ...
 />
 ...
 </service>
</services>

<behaviors>
 ...
 <endpointBehaviors>
 <behavior name = "OperationalScope">
 <endpointDiscovery>
 <scopes>
 <add scope = "net.tcp://Operational"/>
 </scopes>
 </endpointDiscovery>
 </behavior>

 <behavior name = "SimulationScope">
 <endpointDiscovery>
 <scopes>
 <add scope = "net.tcp://Simulation"/>
 </scopes>
 </endpointDiscovery>
 </behavior>
 </endpointBehaviors>
</behaviors>

A single discovery behavior can list multiple scopes:

<endpointDiscovery>
 <scopes>
 <add scope = "net.tcp://MyScope1"/>
 <add scope = "net.tcp://MyScope2"/>
 </scopes>
</endpointDiscovery>

If an endpoint has multiple associated scopes, when the client tries to discover the
endpoint based on scope matching, the client needs at least one of the scopes to match,
but not all of them.

Using scopes

The client has two ways of using scopes. The first is to add the scope to the finding
criteria:

public class FindCriteria
{
 public Collection<Uri> Scopes
 {get;}

 //More members
}

732 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

Now, the Find() method will return only compatible endpoints that also list that scope.

If the client adds multiple scopes, Find() will return only endpoints that support all of
the listed scopes. Note that the endpoint may support additional scopes not provided
to Find().

The second way of using scopes is to examine the scopes returned in FindResponse:

public class EndpointDiscoveryMetadata
{
 public Collection<Uri> Scopes
 {get;}

 //More members
}

These are all the scopes supported by the endpoint, and they are useful for additional
filtering.

Another use for scopes is in a team environment. When developers de-
velop and test their services on the same intranet, if they work on the
same service, or if the services are polymorphic, you run the risk of one
developer wanting to test a client against a service on the local machine
and unintentionally discovering another developer’s service on another
machine and invoking that instead. During development, as a precau-
tion, you can use a scope matching the current machine name to avoid
the conflict.

Streamlining Discovery
You should encapsulate and automate the manual steps required by the client. To that
end, I wrote the helper method DiscoverAddresses<T>(), defined as:

public static class DiscoveryHelper
{
 public static EndpointAddress[] DiscoverAddresses<T>(Uri scope = null);
 //More members
}

Using DiscoverAddresses<T>(), Example C-5 is reduced to Example C-6.

Example C-6. Using DiscoverAddresses<T>()

EndpointAddress[] addresses = DiscoveryHelper.DiscoverAddresses<IMyContract>();

//Just grab the first found
EndpointAddress address = addresses[0];
Binding binding = new NetTcpBinding();

IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(binding,address);
proxy.MyMethod();

(proxy as ICommunicationObject).Close();

Address Discovery | 733

Download from Library of Wow! eBook <www.wowebook.com>

Example C-7 shows the implementation of DiscoverAddresses<T>().

Example C-7. Implementing DiscoverAddresses<T>()

public static class DiscoveryHelper
{
 public static EndpointAddress[] DiscoverAddresses<T>(Uri scope = null)
 {
 DiscoveryClient discoveryClient =
 new DiscoveryClient(new UdpDiscoveryEndpoint());

 FindCriteria criteria = new FindCriteria(typeof(T));

 if(scope != null)
 {
 criteria.Scopes.Add(scope);
 }

 FindResponse discovered = discoveryClient.Find(criteria);
 discoveryClient.Close();

 return discovered.Endpoints.Select(endpoint=>endpoint.Address).ToArray();
 }
}

However, Example C-6 still has the rest of the problems of Example C-5, namely, which
endpoint to invoke in case of discovering multiple endpoints, the discovery latency,
and hard-coding the binding.

Discovery cardinality

The most acute of these problems is what I call discovery cardinality, that is, how many
endpoints are discovered and which one, if any, to invoke. There are several cases of
cardinality:

• No endpoint is discovered. In this case, the client needs to deal with the absence
of the service. This is no different from any other WCF client whose service is
unavailable.

• Exactly one compatible endpoint is discovered. This is by far both the most com-
mon and straightforward case—the client simply proceeds to invoke the service.

• Multiple endpoints are discovered. Here, the client (in theory) has two options.
The first is to invoke all of the discovered endpoints. This is the case with a pub-
lisher firing an event at subscribers as discussed in Appendix D and is a valid sce-
nario. The second option is to invoke some (including only one) but not all of the
discovered endpoints. I find this scenario to be moot—any attempt to place logic
in the client that resolves which endpoint to invoke creates too much coupling
across the system and negates the very notion of runtime discovery, namely, that
any discovered endpoint will do. If it is possible to discover undesirable endpoints,

734 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

then using discovery is a poor design choice, and you should instead provide static
addresses to the client.

Single endpoint

If the client expects to discover exactly one endpoint (cardinality of one), the client
should instruct Find() to return as soon as it finds that endpoint. Doing so will dras-
tically reduce the discovery latency and make it adequate for the majority of cases.

The client can configure the cardinality using the MaxResults property of FindCriteria:

public class FindCriteria
{
 public int MaxResults
 {get;set;}
 //More members
}

FindCriteria criteria = new FindCriteria(typeof(IMyContract));
criteria.MaxResults = 1;

An interesting situation occurs when the client sets MaxResults to 1 and
yet multiple compatible endpoints are available. In this case, each in-
vocation of Find() is liable to retrieve a different endpoint in a nonde-
terministic manner. It may never discover a particular endpoint or it
may discover the same endpoint repeatedly. Do not attempt to use
MaxResults set to 1 as a crude load balancer. My testing indicates a dis-
parity of as much as 600:1 between the available endpoints.

You can streamline the case of cardinality of one using my DiscoveryHelper.Discover
Address<T>() helper method, defined as:

public static class DiscoveryHelper
{
 public static EndpointAddress DiscoverAddress<T>(Uri scope = null);

 //More members
}

Using DiscoverAddress<T>(), Example C-6 is reduced to Example C-8.

Example C-8. UsingDiscoverAddress<T>()

EndpointAddress address = DiscoveryHelper.DiscoverAddress<IMyContract>();

Binding binding = new NetTcpBinding();
IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(binding,address);
proxy.MyMethod();

(proxy as ICommunicationObject).Close();

Example C-9 shows the implementation of DiscoverAddress<T>() along with a refac-
tored DiscoverAddresses<T>().

Address Discovery | 735

Download from Library of Wow! eBook <www.wowebook.com>

Example C-9. Implementing DiscoverAddress<T>()

public static class DiscoveryHelper
{
 static EndpointAddress[] Discover<T>(int maxResults,Uri scope)
 {
 DiscoveryClient discoveryClient =
 new DiscoveryClient(new UdpDiscoveryEndpoint());
 FindCriteria criteria = new FindCriteria(typeof(T));
 criteria.MaxResults = maxResults;
 if(scope != null)
 {
 criteria.Scopes.Add(scope);
 }
 FindResponse discovered = discoveryClient.Find(criteria);
 discoveryClient.Close();

 return discovered.Endpoints.Select((endpoint)=>endpoint.Address).ToArray();
 }
 public static EndpointAddress DiscoverAddress<T>(Uri scope = null)
 {
 EndpointAddress[] addresses = Discover<T>(1,scope);
 Debug.Assert(addresses.Length == 1);

 return addresses[0];
 }
 public static EndpointAddress[] DiscoverAddresses<T>(Uri scope = null)
 {
 return Discover<T>(int.MaxValue,scope);
 }
}

Binding discovery

So far, when it comes to determining which binding to use, the client has had two
options. First, the client can hardcode the binding type and its properties. Second, the
client can improve on that approach by inferring the binding type from the discovered
address scheme and only hardcode the binding properties per binding type rather than
the binding type itself.

However, a third option is available: if the service supports a MEX endpoint, the client
can first discover the MEX endpoint address and then proceed to retrieve and process
the metadata to the obtain the binding type to use, along with its properties. I call this
technique binding discovery. To help with MEX endpoint discovery, the FindCriteria
class offers the static method CreateMetadataExchangeEndpointCriteria(), which re-
turns matching criteria for endpoints that support IMetadataExchange:

public class FindCriteria
{
 public static FindCriteria CreateMetadataExchangeEndpointCriteria();

 //More members
}

736 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

You can call CreateMetadataExchangeEndpointCriteria() and further refine the criteria
by adding scopes or setting MaxResults.

To streamline binding discovery, use my DiscoveryHelper.DiscoverBinding<T>()
method, defined as:

public static class DiscoveryHelper
{
 public static Binding DiscoverBinding<T>(Uri scope = null);
 //More members
}

Using DiscoveryHelper.DiscoverBinding<T>(), you can convert Example C-8 to
Example C-10.

Example C-10. Using DiscoverBinding<T>()

EndpointAddress address = DiscoveryHelper.DiscoverAddress<IMyContract>();
Binding binding = DiscoveryHelper.DiscoverBinding<IMyContract>();

IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(
 binding,address);
proxy.MyMethod();

(proxy as ICommunicationObject).Close();

Example C-11 shows the implementation of DiscoverBinding<T>().

Example C-11. Implementing DiscoverBinding<T>()

public static class DiscoveryHelper
{
 public static Binding DiscoverBinding<T>(Uri scope = null)
 {
 DiscoveryClient discoveryClient = new DiscoveryClient(
 new UdpDiscoveryEndpoint());
 FindCriteria criteria =
 FindCriteria.CreateMetadataExchangeEndpointCriteria();
 criteria.MaxResults = 1;
 if(scope != null)
 {
 criteria.Scopes.Add(scope);
 }
 FindResponse discovered = discoveryClient.Find(criteria);
 discoveryClient.Close();

 Debug.Assert(discovered.Endpoints.Count == 1);

 Uri mexAddress = discovered.Endpoints[0].Address.Uri;

 ServiceEndpoint[] endpoints = MetadataHelper.GetEndpoints(
 mexAddress.AbsoluteUri,typeof(T));

 Debug.Assert(endpoints.Length == 1);

Address Discovery | 737

Download from Library of Wow! eBook <www.wowebook.com>

 return endpoints[0].Binding;
 }
}

DiscoverBinding<T>() assumes there is exactly one MEX endpoint to discover. Once
that MEX endpoint is discovered, DiscoverBinding<T>() uses my MetadataHelper class
discussed in Chapter 2 to obtain the service metadata. DiscoverBinding<T>() assumes
there is exactly one endpoint on the service supporting the desired contract and it
returns that endpoint’s binding.

Discovery factory

There is an obvious problem with Example C-10. The client has to pay for two discovery
requests. It would be preferable to combine the two discovery attempts into a single
call using my DiscoveryFactory.CreateChannel<T>() method:

public static class DiscoveryFactory
{
 public static T CreateChannel<T>(Uri scope = null) where T : class;
 //More members
}

Using CreateChannel<T>(), Example C-10 is reduced to:

IMyContract proxy = DiscoveryFactory.CreateChannel<IMyContract>();
proxy.MyMethod();
(proxy as ICommunicationObject).Close();

Example C-12 shows the implementation of CreateChannel<T>().

Example C-12. Implementing CreateChannel<T>()

public static class DiscoveryFactory
{
 public static T CreateChannel<T>(Uri scope = null) where T : class
 {
 DiscoveryClient discoveryClient =
 new DiscoveryClient(new UdpDiscoveryEndpoint());

 FindCriteria criteria =
 FindCriteria.CreateMetadataExchangeEndpointCriteria();

 criteria.MaxResults = 1;

 if(scope != null)
 {
 criteria.Scopes.Add(scope);
 }
 FindResponse discovered = discoveryClient.Find(criteria);
 discoveryClient.Close();

 Debug.Assert(discovered.Endpoints.Count == 1);

 Uri mexAddress = discovered.Endpoints[0].Address.Uri;

738 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 ServiceEndpoint[] endpoints = MetadataHelper.GetEndpoints(
 mexAddress.AbsoluteUri,typeof(T));
 Debug.Assert(endpoints.Length == 1);

 Binding binding = endpoints[0].Binding;
 EndpointAddress address = endpoints[0].Address;

 return ChannelFactory<T>.CreateChannel(binding,address);
 }
}

CreateChannel<T>() assumes cardinality of one with the MEX endpoint (that is, only a
single discoverable MEX endpoint is found in the local network). It also assumes the
metadata contains exactly one endpoint whose contract is the specified type
parameter T.

Note that CreateChannel<T>() uses the MEX endpoint for both the endpoint binding
and address. The service is expected to support both a MEX endpoint and a discovery
endpoint (although the client never uses the discovery endpoint to find the actual end-
point). This is why the EnableDiscovery() extension method of Example C-4 adds the
MEX endpoint by default.

In case there are multiple services supporting the desired service contract or there are
multiple MEX endpoints, DiscoveryFactory also offers the CreateChannels<T>()
method:

public static class DiscoveryFactory
{
 public static T[] CreateChannels<T>(bool inferBinding = true) where T : class;
 //More members
}

By default, CreateChannels<T>() will infer which binding to use from the scheme of the
service endpoint. If inferBinding is false, it will discover the binding from the MEX
endpoints.

CreateChannels<T>() does not assume a cardinality of 1 on the compatible service end-
points or the MEX endpoints, and will return an array of all compatible endpoints.

Example C-13 shows the implementation of CreateChannels<T>().

Example C-13. Implementing CreateChannels<T>()

public static class DiscoveryFactory
{
 public static T[] CreateChannels<T>(bool inferBinding = true) where T : class
 {
 if(inferBinding)
 {
 return CreateInferredChannels<T>();
 }
 else
 {
 return CreateChannelsFromMex<T>();

Address Discovery | 739

Download from Library of Wow! eBook <www.wowebook.com>

 }
 }
 static T[] CreateChannelsFromMex<T>() where T : class
 {
 DiscoveryClient discoveryClient =
 new DiscoveryClient(new UdpDiscoveryEndpoint());
 FindCriteria criteria =
 FindCriteria.CreateMetadataExchangeEndpointCriteria();

 FindResponse discovered = discoveryClient.Find(criteria);
 discoveryClient.Close();

 List<T> list = new List<T>();

 foreach(EndpointDiscoveryMetadata mexEndpoint in discovered.Endpoints)
 {
 ServiceEndpoint[] endpoints = MetadataHelper.GetEndpoints(
 mexEndpoint.Address.Uri.AbsoluteUri,typeof(T));

 foreach(ServiceEndpoint endpoint in endpoints)
 {
 T proxy = ChannelFactory<T>.CreateChannel(endpoint.Binding,
 endpoint.Address);
 list.Add(proxy);
 }
 }
 return list.ToArray();
 }
 static T[] CreateInferredChannels<T>() where T : class
 {
 DiscoveryClient discoveryClient =
 new DiscoveryClient(new UdpDiscoveryEndpoint());
 FindCriteria criteria = new FindCriteria(typeof(T));
 FindResponse discovered = discoveryClient.Find(criteria);
 discoveryClient.Close();

 List<T> list = new List<T>();
 foreach(EndpointDiscoveryMetadata endpoint in discovered.Endpoints)
 {
 Binding binding = InferBindingFromUri(endpoint.Address.Uri);
 T proxy = ChannelFactory<T>.CreateChannel(binding,endpoint.Address);
 list.Add(proxy);
 }
 return list.ToArray();
 }
 static Binding InferBindingFromUri(Uri address)
 {
 switch(address.Scheme)
 {
 case "net.tcp":
 {
 NetTcpBinding tcpBinding =
 new NetTcpBinding(SecurityMode.Transport,true);
 tcpBinding.TransactionFlow = true;
 return tcpBinding;

740 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 }
 case "net.pipe":
 {
 NetNamedPipeBinding ipcBinding = new NetNamedPipeBinding();
 ipcBinding.TransactionFlow = true;
 return ipcBinding;
 }
 case "net.msmq":
 {
 NetMsmqBinding msmqBinding = new NetMsmqBinding();
 msmqBinding.Security.Transport.MsmqProtectionLevel =
 ProtectionLevel.EncryptAndSign;
 return msmqBinding;
 }
 default:
 {
 throw new InvalidOperationException("Can only create a channel
 over TCP/IPC/MSMQ bindings");
 }
 }
 }
}

CreateChannels<T>() uses two private methods, CreateChannelsFromMex<T>() and
CreateInferredChannels<T>(), depending on the value of inferBinding. CreateChan
nelsFromMex<T>() is similar to CreateChannel<T>(), except it does not assume any car-
dinality on the MEX or service endpoint. It will return an array of proxies targeting all
the compatible endpoints described in all the MEX endpoints it discovers. Cre
ateInferredChannels<T>() also does not assume any cardinality. It will use discovery
to find and return proxies to all compatible service endpoints. It uses the
InferBindingFromUri() helper method to infer the binding type from the endpoint ad-
dress scheme and hard-codes the binding properties by using transactions, reliability,
and security.

Creating discoverable host

My DiscoveryFactory class also provides the CreateDiscoverableHost<T>() method,
defined as:

public static class DiscoveryHelper
{
 public static ServiceHost<T> CreateDiscoverableHost<T>(bool supportIpc = false)
 {
 ServiceHost<T> host;
 if(supportIpc == true)
 {
 host = new ServiceHost<T>(DiscoveryHelper.AvailableIpcBaseAddress,
 DiscoveryHelper.AvailableTcpBaseAddress);
 }
 else
 {
 host = new ServiceHost<T>(DiscoveryHelper.AvailableTcpBaseAddress);

Address Discovery | 741

Download from Library of Wow! eBook <www.wowebook.com>

 }
 host.EnableDiscovery();

 return host;
 }
 //More members
}

CreateDiscoverableHost<T>() returns a host instance with a dynamic TCP base address
by default, which supports discovery. The returned host instance also adds the default
endpoints. Consequently, there is no need for any config file or additional program-
matic setting other than opening the host:

ServiceHost host = DiscoveryHelper.CreateDiscoverableHost<MyService>();
host.Open();

The Metadata Explorer

I have revamped the Metadata Explorer tool presented in Chapter 1 to take advantage
of discovery (see Figure C-2).

Figure C-2. The Metadata Explorer with discovery

Clicking the Discover button triggers a discovery request for all MEX endpoints without
any limit on cardinality. The tool then displays all discovered endpoints in the tree.

742 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

Ongoing Discovery
The discovery mechanism as described thus far assumes a static services environment.
The services are always running and always connected, and it is up to the clients to
discover them. Under this assumption, the clients need to make only a single discovery
effort. However, what if the environment is more dynamic? What if services come and
go or the network is shaky, so that services are intermittently disconnected? For such
an environment, it is up to the client to continuously try to discover the services
and maintain a list of available services. To that end, I wrote the class
DiscoveredServices<T>, defined as:

public class DiscoveredServices<T> : AddressesContainer<T> where T: class
{
 public DiscoveredServices(DiscoveredServices<T> container = null);

 public void Abort();
}

DiscoveredServices<T> is designed to maintain as much as possible an up-to-date list
of all discovered services, and it stores the addresses it discovers in its base class,
AddressesContainer<T>. AddressesContainer<T> is a rich address management helper
collection that you can use whenever you need to manipulate multiple addresses.
AddressesContainer<T> supports several iterators, indexers, conversion methods, and
queries such as creating a union of two AddressesContainer<T> and a complement
(finding all the addresses that do not have a specified scope). Example C-14 lists
AddressesContainer<T>.

Example C-14. The AddressesContainer<T> base class

public abstract class AddressesContainer<T> : IEnumerable<EndpointAddress>,
 IEnumerable<KeyValuePair<EndpointAddress,Collection<Uri>>>,
 IDisposable where T : class
{
 public AddressesContainer();
 public AddressesContainer(AddressesContainer<T> container);

 public abstract void Close();
 public abstract void Open();

 public void Dispose();

 public EndpointAddress[] Find(Uri scope);

 public EndpointAddress[] FindComplement(Uri scopeToExclude);

 public static Dictionary<EndpointAddress, Collection<Uri>> FindUnion(
 AddressesContainer<T> container1, AddressesContainer<T> container2);

 protected readonly Dictionary<EndpointAddress,Uri[]> Dictionary;

 public void Remove(EndpointAddress address);

Address Discovery | 743

Download from Library of Wow! eBook <www.wowebook.com>

 public int Count
 {get;}

 public EndpointAddress[] Addresses
 {get;}

 public Collection<Uri> this[EndpointAddress address]
 {get;}
 public EndpointAddress this[int index]
 {get;}
 protected string Namespace
 {get;}
}

DiscoveredServices<T> spins off an ongoing discovery as background activity, shown
in Example C-15, without some of the error handling and synchronization code.

Example C-15. Implementing DiscoveredServices<T>

public class DiscoveredServices<T> : AddressesContainer<T> where T : class
{
 Thread m_WorkerThread;

 bool Terminate
 {get;set;}

 public override void Open()
 {
 m_WorkerThread = new Thread(Discover);
 m_WorkerThread.Start();
 }
 public override void Close()
 {
 Terminate = true;
 m_WorkerThread.Join();
 }
 public void Abort()
 {
 Terminate = true;
 Thread.Sleep(0);
 m_WorkerThread.Abort();
 m_WorkerThread.Join();
 }
 void Discover()
 {
 while(Terminate == false)
 {
 DiscoveryClient discoveryClient =
 new DiscoveryClient(new UdpDiscoveryEndpoint());
 FindCriteria criteria = new FindCriteria(typeof(T));
 FindResponse discovered = discoveryClient.Find(criteria);
 discoveryClient.Close();

 lock(this)
 {

744 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 Dictionary.Clear();
 foreach(EndpointDiscoveryMetadata endpoint in discovered.Endpoints)
 {
 Dictionary[endpoint.Address] = endpoint.Scopes;
 }
 }
 }
 }
}

When you open DiscoveredServices<T>, it creates a worker thread whose thread’s
method repeatedly discovers compatible service endpoints for the service contract T
and updates the base dictionary. When you close DiscoveredServices<T>, it terminates
that worker thread gracefully. You can also abort the worker thread.

Announcements
The discovery mechanism presented thus far is passive from the perspective of the
service. The client queries the discovery endpoint and the service responds. As an al-
ternative to this passive address discovery, WCF offers an active model in which the
service broadcasts its status to all clients and provides its address. The service host
broadcasts a “hello” announcement when the host is opened and a “bye” announce-
ment when the host shuts down gracefully. It the host is aborted ungracefully, no “bye”
announcement is sent. These announcements are received on a special announcements
endpoint hosted by the client (see Figure C-3).

Figure C-3. The announcement architecture

Announcements are an individual endpoint-level mechanism, not a host-level one. The
host can choose which endpoint to announce. Each announcement contains the end-
point address, its scopes, and its contract.

Note that announcements are unrelated to address discovery. The host may not support
a discovery endpoint at all, and there is no need for the discovery behavior. On the

Announcements | 745

Download from Library of Wow! eBook <www.wowebook.com>

other hand, the host may both support the discovery endpoint and announce its end-
points, as shown in Figure C-3.

Announcing Endpoints
The host can manually announce its endpoints using the AnnouncementClient class,
defined as:

public sealed class AnnouncementClient : ICommunicationObject
{
 public AnnouncementClient();
 public AnnouncementClient(AnnouncementEndpoint announcementEndpoint);
 public AnnouncementClient(string endpointName);

 public void AnnounceOffline(EndpointDiscoveryMetadata metadata);
 public void AnnounceOnline(EndpointDiscoveryMetadata metadata);

 //More members
}

AnnouncementClient is actually a proxy to the clients’ announcement endpoints. As with
every proxy, you need to provide its constructor with information about the target
endpoint. As with the discovery endpoints, WCF provides a standard endpoint, the
UdpAnnouncementEndpoint, defined as:

public class AnnouncementEndpoint : ServiceEndpoint
{...}
public class UdpAnnouncementEndpoint : AnnouncementEndpoint
{...}

Example C-16 shows a host manually announcing all its endpoints.

Example C-16. Using AnnouncementClient

ServiceHost host = ...;
host.Open();

AnnouncementClient announcementClient = new AnnouncementClient(
 new UdpAnnouncementEndpoint());

foreach(ServiceEndpoint endpoint in host.Description.Endpoints)
{
 EndpointDiscoveryMetadata metadata = EndpointDiscoveryMetadata.
 FromServiceEndpoint(endpoint);
 announcementClient.AnnounceOnline(metadata);
}

//Sometimes later:
host.Close();

foreach(ServiceEndpoint endpoint in host.Description.Endpoints)
{
 EndpointDiscoveryMetadata metadata = EndpointDiscoveryMetadata.
 FromServiceEndpoint(endpoint);

746 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 announcementClient.AnnounceOffline(metadata);
}

announcementClient.Close();

The host can provide the information about the announcement endpoint in its config
file:

<system.serviceModel>
 <client>
 <endpoint
 kind = "udpAnnouncementEndpoint"
 />
 </client>
</system.serviceModel>

In this case, there is no need to provide the endpoint instance to the constructor of
AnnouncementClient:

AnnouncementClient announcementProxy = new AnnouncementClient();

Automatic announcements

Instead of the tedious manual announcements used in Example C-16, the host can
automatically announce its endpoints. All you need to do is provide the information
about the client announcement endpoint for the discovery behavior. For example,
when using a config file:

<behavior>
 <serviceDiscovery>
 <announcementEndpoints>
 <endpoint
 kind = "udpAnnouncementEndpoint"
 />
 </announcementEndpoints>
 </serviceDiscovery>
</behavior>

Note again that while the config file contains the discovery behavior, there is no need
for a discovery endpoint, but you may add it if you want to.

Receiving Announcements
WCF provides a pre-canned implementation of an announcements endpoint with the
AnnouncementService class:

public class AnnouncementEventArgs : EventArgs
{
 public EndpointDiscoveryMetadata EndpointDiscoveryMetadata
 {get;}
 //More members
}

Announcements | 747

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 ConcurrencyMode = ConcurrencyMode.Multiple)]
public class AnnouncementService : ...
{
 public event EventHandler<AnnouncementEventArgs> OfflineAnnouncementReceived;
 public event EventHandler<AnnouncementEventArgs> OnlineAnnouncementReceived;
 //More members
}

AnnouncementService is a singleton service configured for concurrent access. Announce
mentService provides two event delegates that the client can subscribe to in order to
receive the announcements. The client should host the AnnouncementService using the
constructor of ServiceHost, which accepts a singleton instance. This is required so the
client can interact with the instance and subscribe to the events. In addition, the client
must add the UDP announcement endpoint to the host. Example C-17 demonstrates
these steps.

Example C-17. Hosting AnnouncementService

AnnouncementService announcementService = new AnnouncementService();
announcementService.OnlineAnnouncementReceived += OnHello;
announcementService.OfflineAnnouncementReceived += OnBye;

ServiceHost host = new ServiceHost(announcementService);

host.AddServiceEndpoint(new UdpAnnouncementEndpoint());

host.Open();

void OnHello(object sender,AnnouncementEventArgs args)
{...}

void OnBye(object sender,AnnouncementEventArgs args)
{...}

There is one important detail related to receiving announcements. The client receives
all notifications of all services on the intranet, regardless of contract type or, for that
matter, applications or scopes. The client must filter out the relevant announcements.

The MEX Explorer utilizes announcements of MEX endpoints. In re-
sponding to these events, the MEX Explorer refreshes itself and presents
the new endpoints or removes those that are no longer running from
the tree.

748 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

Streamlining Announcements
You can easily add automatic announcement to the EnableDiscovery() method of
Example C-4 by adding the announcement endpoint to the discovery behavior:

public static class DiscoveryHelper
{
 public static void EnableDiscovery(this ServiceHost host,
 bool enableMEX = true)
 {
 ...
 host.AddServiceEndpoint(new UdpDiscoveryEndpoint());
 ServiceDiscoveryBehavior discovery = new ServiceDiscoveryBehavior();
 discovery.AnnouncementEndpoints.Add(new UdpAnnouncementEndpoint());
 host.Description.Behaviors.Add(discovery);
 ...
 }
}

Since my CreateDiscoverableHost<T>() method of DiscoveryFactory
uses EnableDiscovery(), the returned host instance is not just discover-
able, it also supports announcements.

The announcements sink

You can greatly simplify and improve on the raw steps required of the client to utilize
announcements using my AnnouncementSink<T> class, defined as:

public class AnnouncementSink<T> : AddressesContainer<T> where T: class
{
 public AnnouncementSink(AnnouncementSink<T> container = null);

 public event Action<string,Uri[]> OnlineAnnouncementReceived;
 public event Action<string,Uri[]> OfflineAnnouncementReceived;
}

AnnouncementSink<T> automates hosting the announcements endpoint by encapsulat-
ing the steps in Example C-17. While AnnouncementSink<T> hosts an instance of
AnnouncementService internally, it improves on its deficiencies. First, Announcement
Sink<T> offers two event delegates for notifications. Unlike the raw AnnouncementSer
vice, AnnouncementSink<T> fires these delegates concurrently. In addition, Announce
mentSink<T> disables the synchronization context affinity of AnnouncementService so
that it can accept the announcements on any incoming thread, making it truly concur-
rent. AnnouncementSink<T> filters the contract types and fires its events only when com-
patible endpoints announce themselves. The only thing the client needs to do is open
and close AnnouncementSink<T> to indicate when to start and stop receiving
notifications.

Announcements | 749

Download from Library of Wow! eBook <www.wowebook.com>

AnnouncementSink<T> derives my general-purpose address container. As long as the
service announces itself before the client tries to obtain its address, the client can use
AnnouncementSink<T> without ever subscribing to its events, simply by using the base
AddressesContainer<T>:

class MyClient
{
 AddressesContainer<IMyContract> m_Addresses;

 public MyClient()
 {
 m_Addresses = new AnnouncementSink<IMyContract>();

 m_Addresses.Open();

 ...
 }
 public void CallService()
 {
 EndpointAddress address = m_Addresses[0];

 IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(
 new NetTcpBinding(),address);
 proxy.MyMethod();
 (proxy as ICommunicationObject).Close();
 }
 public void Close()
 {
 m_Addresses.Close();
 }
}

The following shows how the client can use the events of AnnouncementSink<T>:

class MyClient
{
 AnnouncementSink<IMyContract> m_AnnouncementSink;

 public MyClient()
 {
 m_AnnouncementSink = new AnnouncementSink<IMyContract>();
 m_AnnouncementSink.OnlineAnnouncementReceived += OnHello;
 m_AnnouncementSink.Open();

 ...
 }
 public void Close()
 {
 m_AnnouncementSink.Close();
 }
 void OnHello(string address,Uri[] scopes)
 {
 EndpointAddress endpointAddress = new EndpointAddress(address);

 IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(

750 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 new NetTcpBinding(),endpointAddress);
 proxy.MyMethod();
 (proxy as ICommunicationObject).Close();
 }
}

Example C-18 lists the implementation of AnnouncementSink<T>.

Example C-18. Implementing AnnouncementSink<T>

public abstract class AddressesContainer<T> : ...
{
 protected string Namespace
 {
 get
 {
 ContractDescription description =
 ContractDescription.GetContract(typeof(T));
 return description.Namespace;
 }
 }
 //Rest of the implementation
}

public class AnnouncementSink<T> : AddressesContainer<T> where T : class
{
 readonly ServiceHost m_Host;

 public event Action<string,Uri[]> OnlineAnnouncementReceived = delegate{};
 public event Action<string,Uri[]> OfflineAnnouncementReceived = delegate{};

 public AnnouncementSink(AnnouncementSink<T> container = null) : base(container)
 {
 AnnouncementService announcementService = new AnnouncementService();
 m_Host = new ServiceHost(announcementService);
 m_Host.Description.Behaviors.Find<ServiceBehaviorAttribute>().
 UseSynchronizationContext = false;

 m_Host.AddServiceEndpoint(new UdpAnnouncementEndpoint());

 announcementService.OfflineAnnouncementReceived += OnBye;
 announcementService.OnlineAnnouncementReceived += OnHello;
 }
 public override void Open()
 {
 m_Host.Open();
 }
 public override void Close()
 {
 m_Host.Close();
 }
 protected void OnHello(object sender,AnnouncementEventArgs args)
 {
 foreach(XmlQualifiedName contract in
 args.EndpointDiscoveryMetadata.ContractTypeNames)
 {

Announcements | 751

Download from Library of Wow! eBook <www.wowebook.com>

 if(contract.Name == typeof(T).Name && contract.Namespace == Namespace)
 {
 PublishAvailabilityEvent(OnlineAnnouncementReceived,
 args.EndpointDiscoveryMetadata.Address.Uri.AbsoluteUri,
 args.EndpointDiscoveryMetadata.Scopes.ToArray());
 Dictionary[args.EndpointDiscoveryMetadata.Address] =
 args.EndpointDiscoveryMetadata.Scopes.ToArray();
 }
 }
 }
 protected void OnBye(object sender,AnnouncementEventArgs args)
 {
 //Same as OnHello but fires OfflineAnnouncementReceived and
 //removes from dictionary
 }
 void PublishAvailabilityEvent(Action<string,Uri[]> notification,
 string address,Uri[] scopes)
 {
 Delegate[] subscribers = notification.GetInvocationList();
 WaitCallback fire = _ => notification(address,scopes);

 foreach(Delegate subscriber in subscribers)
 {
 ThreadPool.QueueUserWorkItem(fire,subscriber);
 }
 }
}

The constructor of AnnouncementSink<T> is similar to the code in Example C-17. The
heart of the implementation is the OnHello and OnBye methods. These methods examine
each announcement, looking for the contract type and namespace. If a match is found,
they fire their respective events asynchronously and concurrently using threads from
the .NET thread pool. The methods also update the base address container with the
address and scopes.

Service Bus Discovery
The benefits of dynamic addresses and decoupling clients and services on the address
axis apply just as well to services that rely on the service bus to receive client calls. The
problem is that UDP-based discovery is purely an intranet facility—there is no way to
broadcast address information across the Internet. This means services that use the
service bus cannot use WCF discovery.

However, you can use the events relay binding to substitute UDP multicast requests to
provide discovery and announcements. This allows you to combine the benefits of ease
of deployment of discoverable services with the unhindered connectivity of the service
bus. The rest of this appendix walks through a small framework I wrote to support
discovery over the service bus, bringing it on par with the built-in support for discovery
in WCF, along with my set of helper classes. It also serves as an example for rolling out
your own discovery mechanism.

752 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

Solution Architecture
For the built-in discovery of WCF, there are standard contracts for the discovery
exchange. Sadly, these contracts are defined as internal. The first step in a custom
discovery mechanism is to define the contracts for discovery request and callbacks. I
defined the IServiceBusDiscovery contract:

[ServiceContract]
public interface IServiceBusDiscovery
{
 [OperationContract(IsOneWay = true)]
 void OnDiscoveryRequest(string contractName,string contractNamespace,
 Uri[] scopesToMatch,Uri replayAddress);
}

The discovery endpoint supports the single-operation IServiceBusDiscovery.
OnDiscoveryRequest() allows the clients to discover service endpoints that support a
particular contract, as with regular WCF. The clients can also pass in an optional set
of scopes to match.

Services should support the discovery endpoint over the events relay binding. A client
fires requests at services that support the discovery endpoint, requesting the services
call back to the client’s provided reply address.

The services call back to the client using the IServiceBusDiscoveryCallback, defined as:

[ServiceContract]
public interface IServiceBusDiscoveryCallback
{
 [OperationContract(IsOneWay = true)]
 void DiscoveryResponse(Uri address,string contractName,
 string contractNamespace,
 Uri[] scopes);
}

The client provides an endpoint supporting IServiceBusDiscoveryCallback. That end-
point address is the replayAddress parameter of OnDiscoveryRequest(). The binding
should be the one-way relay binding to approximate unicast as much as possible.
Figure C-4 depicts the discovery sequence (compare it to Figure C-1).

The first step in Figure C-4 is a client firing an event of discovery request at the discovery
endpoint supporting IServiceBusDiscovery. Thanks to the events binding, all discov-
erable services receive this event. If a service supports the requested contract, it calls
back to the client through the service bus (step 2 in Figure C-4). Once the client receives
the service endpoint (or endpoints) addresses, it proceeds to call the service as with a
regular service bus call (step 3 in Figure C-4).

Service Bus Discovery | 753

Download from Library of Wow! eBook <www.wowebook.com>

Discoverable Host
There is obviously a lot of work involved in supporting such a discovery mechanism
especially for the service. I was able to encapsulate that with my DiscoverableService
Host, defined as:

public class DiscoverableServiceHost : ServiceHost,IServiceBusProperties
{
 public const string DiscoveryPath = "DiscoveryRequests";

 protected string Namespace
 {get;}

 public Uri DiscoveryAddress
 {get;set;}

 public NetEventRelayBinding DiscoveryRequestBinding
 {get;set;}

 public NetOnewayRelayBinding DiscoveryResponseBinding
 {get;set;}

 public DiscoverableServiceHost(object singletonInstance,
 params Uri[] baseAddresses);
 public DiscoverableServiceHost(Type serviceType,
 params Uri[] baseAddresses);
}

Chapter 11 discusses using DiscoverableServiceHost to publish the service endpoints
to the service bus registry. Here, it also adds discovery support. However, that support

Figure C-4. Discovery over the service bus

754 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

is disabled by default. To enable it, as with regular WCF discovery, you must add a
discovery behavior and a WCF discovery endpoint. This is deliberate, both to avoid
adding yet another control switch and to have a single consistent configuration where
you turn all modes of discovery on or off in one place.

You use DiscoverableServiceHost like any other service relying on the service bus:

Uri baseAddress =
 new Uri("sb://MyServiceNamespace.servicebus.windows.net/MyService/");

ServiceHost host = new DiscoverableServiceHost(typeof(MyService),baseAddress);

//Address is dynamic
host.AddServiceEndpoint(typeof(IMyContract),new NetTcpRelayBinding(),
 Guid.NewGuid().ToString());

host.SetServiceBusCredentials(...);

host.Open();

Note that when using discovery, the service address can be completely dynamic.

Example C-19 provides the partial implementation of pertinent elements of
DiscoverableServiceHost.

Example C-19. Implementing DiscoverableServiceHost (partial)

public class DiscoverableServiceHost : ServiceHost,IServiceBusProperties
{
 Uri m_DiscoveryAddress;
 ServiceHost m_DiscoveryHost;

 //Extracts the service namespace out of the endpoints or base addresses
 protected string Namespace
 {
 get
 {...}
 }

 bool IsDiscoverable
 {
 get
 {
 if(Description.Behaviors.Find<ServiceDiscoveryBehavior>() != null)
 {
 return Description.Endpoints.Any(
 endpoint => endpoint is DiscoveryEndpoint);
 }
 return false;
 }
 }

 public Uri DiscoveryAddress
 {
 get

Service Bus Discovery | 755

Download from Library of Wow! eBook <www.wowebook.com>

 {
 if(m_DiscoveryAddress == null)
 {
 m_DiscoveryAddress =
 ServiceBusEnvironment.CreateServiceUri("sb",Namespace,DiscoveryPath);
 }
 return m_DiscoveryAddress;
 }
 set
 {
 m_DiscoveryAddress = value;
 }
 }

 public NetEventRelayBinding DiscoveryRequestBinding
 {
 //When unset, returns plain NetEventRelayBinding
 get
 {...}
 set
 {...}
 }

 public NetOnewayRelayBinding DiscoveryResponseBinding
 {
 //When unset, returns plain NetOnewayRelayBinding
 get
 {...}
 set
 {...}
 }

 public DiscoverableServiceHost(Type serviceType,params Uri[] baseAddresses)
 : base(serviceType,baseAddresses)
 {}

 void EnableDiscovery()
 {
 //Launch the service to monitor discovery requests
 DiscoveryRequestService discoveryService =
 new DiscoveryRequestService(Description.Endpoints.ToArray());

 discoveryService.DiscoveryResponseBinding = DiscoveryResponseBinding;

 m_DiscoveryHost = new ServiceHost(discoveryService);

 m_DiscoveryHost.AddServiceEndpoint(typeof(IServiceBusDiscovery),
 DiscoveryRequestBinding,
 DiscoveryAddress.AbsoluteUri);

 TransportClientEndpointBehavior credentials =
 (this as IServiceBusProperties).Credential;
 m_DiscoveryHost.Description.Endpoints[0].Behaviors.Add(credentials);

756 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 m_DiscoveryHost.Open();
 }

 protected override void OnOpening()
 {
 if(IsDiscoverable)
 {
 EnableDiscovery();
 }

 base.OnOpening();
 }
 protected override void OnClosed()
 {
 if(m_DiscoveryHost != null)
 {
 m_DiscoveryHost.Close();
 }

 base.OnClosed();
 }

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,...]
 class DiscoveryRequestService : IServiceBusDiscovery
 {
 public DiscoveryRequestService(ServiceEndpoint[] endpoints);

 public NetOnewayRelayBinding DiscoveryResponseBinding
 {get;set;}
 }
}

The helper property IsDiscoverable of DiscoverableServiceHost returns true only if
the service has a discovery behavior and at least one discovery endpoint.
DiscoverableServiceHost overrides the OnOpening() method of ServiceHost. If the serv-
ice is discoverable, OnOpening() calls the EnableDiscovery() method.

EnableDiscovery() is the heart of DiscoverableServiceHost. It creates an internal
host for a private singleton class called DiscoveryRequestService (shown in
Example C-20). The constructor of DiscoveryRequestService accepts the service end-
points for which it needs to monitor discovery requests (these are basically the end-
points of DiscoverableServiceHost). DiscoverableServiceHost also sets the binding
used for responding to the client discovery request on the instance of DiscoveryRequest
Service. The binding will default to a plain instance of NetOnewayRelayBinding, but
you can change that by setting the DiscoveryResponseBinding property of
DiscoverableServiceHost.

EnableDiscovery() then adds an endpoint implementing IServiceBusDiscovery to the
host, since DiscoveryRequestService is the one that actually responds to the discovery
requests from the clients. The address of the discovery endpoint defaults for the URI
“DiscoveryRequests” under the service namespace. However, you can change that

Service Bus Discovery | 757

Download from Library of Wow! eBook <www.wowebook.com>

before opening DiscoverableServiceHost to any other URI using the DiscoveryAd
dress property. The binding for the discovery endpoint defaults to a plain instance of
NetEventRelayBinding, but you can change that by setting the DiscoveryRe
questBinding property. Finally, EnableDiscovery() provides the discovery endpoint
with same credentials it uses to authenticate against the service bus and it opens the
host. Closing DiscoverableServiceHost also closes the host for the discovery endpoint.

Example C-20 lists the implementation of DiscoveryRequestService.

Example C-20. Implementing DiscoveryRequestService

public class DiscoverableServiceHost : ServiceHost,IServiceBusProperties
{
 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 UseSynchronizationContext = false)]
 class DiscoveryRequestService : IServiceBusDiscovery
 {
 readonly ServiceEndpoint[] Endpoints;

 public NetOnewayRelayBinding DiscoveryResponseBinding
 {
 //When unset, returns plain NetOnewayRelayBinding
 get
 {...}
 set
 {...}
 }

 //Reads the credentials from the IServiceBusDiscovery's endpoint
 TransportClientEndpointBehavior Credentials
 {
 get
 {...}
 }

 public DiscoveryRequestService(ServiceEndpoint[] endpoints)
 {
 Endpoints = endpoints;
 }

 void IServiceBusDiscovery.OnDiscoveryRequest(string contractName,
 string contractNamespace,
 Uri[] scopesToMatch,
 Uri responseAddress)
 {
 ChannelFactory<IServiceBusDiscoveryCallback> factory =
 new ChannelFactory<IServiceBusDiscoveryCallback>(
 DiscoveryResponseBinding,
 new EndpointAddress(responseAddress));

 factory.Endpoint.Behaviors.Add(Credentials);

 IServiceBusDiscoveryCallback callback = factory.CreateChannel();

758 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 foreach(ServiceEndpoint endpoint in Endpoints)
 {
 if(endpoint.Contract.Name == contractName &&
 endpoint.Contract.Namespace == contractNamespace)
 {
 Uri[] scopes = DiscoveryHelper.LookupScopes(endpoint);

 if(scopesToMatch != null)
 {
 bool scopesMatched = true;
 foreach(Uri scope in scopesToMatch)
 {
 if(scopes.Any(
 uri => uri.AbsoluteUri == scope.AbsoluteUri) == false)
 {
 scopesMatched = false;
 break;
 }
 }
 if(scopesMatched == false)
 {
 continue;
 }
 }
 callback.DiscoveryResponse(endpoint.Address.Uri,contractName,
 contractNamespace,scopes);
 }
 }
 (callback as ICommunicationObject).Close();
 }
 }
}

public static class DiscoveryHelper
{
 static Uri[] LookupScopes(ServiceEndpoint endpoint)
 {
 Uri[] scopes = new Uri[]{};
 EndpointDiscoveryBehavior behavior =
 endpoint.Behaviors.Find<EndpointDiscoveryBehavior>();
 if(behavior != null)
 {
 if(behavior.Scopes.Count > 0)
 {
 scopes = behavior.Scopes.ToArray();
 }
 }
 return scopes;
 }
 //More members
}

OnDiscoveryRequest() first creates a proxy to call back the discovering client. The bind-
ing is a plain NetOnewayRelayBinding, but you can control that by setting the
DiscoveryResponseBinding property. Note that DiscoverableServiceHost has a

Service Bus Discovery | 759

Download from Library of Wow! eBook <www.wowebook.com>

corresponding property just for that purpose. For credentials, OnDiscoveryRequest()
uses the same credentials it uses to receive the discovery request. OnDiscoveryRe
quest() then iterates over the collection of endpoints provided to the constructor. For
each endpoint, it checks that the contract matches the requested contract in the dis-
covery request. If the contract matches, OnDiscoveryRequest() looks up the scopes as-
sociated with the endpoint and verifies that those scopes match the optional scopes in
the discovery request. Finally, OnDiscoveryRequest() calls back the client with the ad-
dress, contract, and scope of the endpoint.

To automate using DiscoverableServiceHost, I added the static method helper Create
DiscoverableHost(), defined as:

public class DiscoverableServiceHost : ServiceHost,IServiceBusProperties
{
 public static DiscoverableServiceHost CreateDiscoverableHost(Type serviceType,
 Uri baseAddress,Uri scope = null);
 //More members
}

CreateDiscoverableHost() is very similar to DiscoveryHelper.CreateDiscoverable
Host<T>(). It enables both regular and service bus discovery by adding the WCF dis-
covery endpoint and behavior, as well as the service bus discovery. It also adds the
default service bus endpoints and the metadata exchange endpoint.

Discovery Client
For the client, I wrote the helper class ServiceBusDiscoveryClient, defined as:

public class ServiceBusDiscoveryClient : ClientBase<IServiceBusDiscovery>,
 IServiceBusProperties
{
 protected Uri ResponseAddress
 {get;}

 public ServiceBusDiscoveryClient(string serviceNamespace,string secret);

 public ServiceBusDiscoveryClient(string endpointName);
 public ServiceBusDiscoveryClient(NetOnewayRelayBinding binding,
 EndpointAddress address);

 public FindResponse Find(FindCriteria criteria);
}

I modeled ServiceBusDiscoveryClient after WCF’s DiscoveryClient, and you can use
it in very much the same way. Compare Example C-21 to Example C-5.

Example C-21. Using ServiceBusDiscoveryClient

string serviceNamespace = "...";
string secret = "...";

760 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

ServiceBusDiscoveryClient discoveryClient =
 new ServiceBusDiscoveryClient(serviceNamespace,secret);

FindCriteria criteria = new FindCriteria(typeof(IMyContract));
FindResponse discovered = discoveryClient.Find(criteria);
discoveryClient.Close();

EndpointAddress address = discovered.Endpoints[0].Address;
Binding binding = new NetTcpRelayBinding();
ChannelFactory<IMyContract> factory = new ChannelFactory<IMyContract>
 (binding,address);
factory.SetServiceBusCredentials(secret);

IMyContract proxy = factory.CreateChannel();
proxy.MyMethod();
(proxy as ICommunicationObject).Close();

ServiceBusDiscoveryClient is a proxy for the IServiceBusDiscovery discovery events
endpoint. Clients use it to fire the discovery request at the discoverable services. The
discovery endpoint address defaults to “DiscoveryRequests,” but you can specify a
different address using any of the constructors that take an endpoint name or an end-
point address. It will use a plain instance of NetOnewayRelayBinding for the discovery
endpoint, but, again, you can specify a different binding using any of the constructors
that take an endpoint name or a binding instance. ServiceBusDiscoveryClient supports
cardinality and discovery timeouts, just like DiscoveryClient.

Example C-22 shows partial implementation of ServiceBusDiscoveryClient.

Example C-22. Implementing ServiceBusDiscoveryClient (partial)

public class ServiceBusDiscoveryClient : ClientBase<IServiceBusDiscovery>,
 IServiceBusProperties
{
 protected Uri ResponseAddress
 {get;private set;}

 public ServiceBusDiscoveryClient(string endpointName) : base(endpointName)
 {
 string serviceNamespace =
 ServiceBusHelper.ExtractNamespace(Endpoint.Address.Uri);
 ResponseAddress = ServiceBusEnvironment.CreateServiceUri(
 "sb",serviceNamespace,"DiscoveryResponses/" + Guid.NewGuid());
 }

 public FindResponse Find(FindCriteria criteria)
 {
 string contractName = criteria.ContractTypeNames[0].Name;
 string contractNamespace = criteria.ContractTypeNames[0].Namespace;

 FindResponse response = DiscoveryHelper.CreateFindResponse();

 ManualResetEvent handle = new ManualResetEvent(false);

Service Bus Discovery | 761

Download from Library of Wow! eBook <www.wowebook.com>

 Action<Uri,Uri[]> addEndpoint = (address,scopes)=>
 {
 EndpointDiscoveryMetadata metadata =
 new EndpointDiscoveryMetadata();
 metadata.Address =
 new EndpointAddress(address);
 if(scopes != null)
 {
 foreach(Uri scope in scopes)
 {
 metadata.Scopes.Add(scope);
 }
 }
 response.Endpoints.Add(metadata);

 if(response.Endpoints.Count >=
 criteria.MaxResults)
 {
 handle.Set();
 }
 };

 DiscoveryResponseCallback callback =
 new DiscoveryResponseCallback(addEndpoint);

 ServiceHost host = new ServiceHost(callback);

 host.AddServiceEndpoint(typeof(IServiceBusDiscoveryCallback),
 Endpoint.Binding,ResponseAddress.AbsoluteUri);

 TransportClientEndpointBehavior credentials =
 Endpoint.Behaviors.Find<TransportClientEndpointBehavior>();

 host.Description.Endpoints[0].Behaviors.Add(credentials);

 host.Open();

 try
 {
 DiscoveryRequest(criteria.ContractTypeNames[0].Name,
 criteria.ContractTypeNames[0].Namespace,
 criteria.Scopes.ToArray(),ResponseAddress);

 handle.WaitOne(criteria.Duration);
 }
 catch
 {}
 finally
 {
 host.Abort();
 }
 return response;
 }

762 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 void DiscoveryRequest(string contractName,string contractNamespace,
 Uri[] scopesToMatch,Uri replayAddress)
 {
 Channel.OnDiscoveryRequest(contractName,contractNamespace,scopesToMatch,
 replayAddress);
 }

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 UseSynchronizationContext = false)]
 class DiscoveryResponseCallback : IServiceBusDiscoveryCallback
 {
 readonly Action<Uri,Uri[]> Action;

 public DiscoveryResponseCallback(Action<Uri,Uri[]> action)
 {
 Action = action;
 }
 public void DiscoveryResponse(Uri address,string contractName,
 string contractNamespace,Uri[] scopes)
 {
 Action(address,scopes);
 }
 }
}

public static class DiscoveryHelper
{
 internal static FindResponse CreateFindResponse()
 {
 Type type = typeof(FindResponse);

 ConstructorInfo constructor =
 type.GetConstructors(BindingFlags.Instance|BindingFlags.NonPublic)[0];

 return constructor.Invoke(null) as FindResponse;
 }
 //More members
}

The Find() method needs a way of receiving callbacks from the discovered services. To
that end, every time it is called, Find() opens and closes a host for an internal synchron-
ized singleton class called DiscoveryResponseCallback. Find() adds to the host an end-
point supporting IServiceBusDiscoveryCallback with the same binding and credentials
it uses to call IServiceBusDiscovery. The constructor of DiscoveryResponseCallback
accepts a delegate of the type Action<Uri,Uri[]>. Every time a service responds back,
the implementation of DiscoveryResponse() invokes that delegate, providing it with the
discovered address and scope. The Find() method uses a Lambda expression to aggre-
gate the responses in an instance of FindResponse. Unfortunately, there is no public
constructor for FindResponse, so Find() uses the CreateFindResponse() method of
DiscoveryHelper, which in turn uses reflection to instantiate it. Find() also creates a
waitable event handle. The Lambda expression signals that handle once the cardinality
is met. After calling DiscoveryRequest(), Find() waits for the handle to be signaled or

Service Bus Discovery | 763

Download from Library of Wow! eBook <www.wowebook.com>

for the discovery duration to expire, then it aborts the host to strop processing any
discovery responses in progress.

More client-side helper classes

Since I wrote ServiceBusDiscoveryClient to be functionally identical to Discovery
Client, it also would benefit from a streamlined discovery experience. My ServiceBus
DiscoveryHelper offers methods similar to DiscoveryHelper:

public static class ServiceBusDiscoveryHelper
{
 public static EndpointAddress DiscoverAddress<T>(
 string serviceNamespace,string secret,Uri scope = null);

 public static EndpointAddress[] DiscoverAddresses<T>(
 string serviceNamespace,string secret,Uri scope = null);

 public static Binding DiscoverBinding<T>(
 string serviceNamespace,string secret,Uri scope = null);
}

DiscoverAddress<T>() discovers a service with a cardinality of one,
DiscoverAddresses<T>() discovers all available service endpoints (cardinality of all),
and DiscoverBinding<T>() uses the service metadata endpoint to discover the endpoint
binding.

Much the same way, I defined the class ServiceBusDiscoveryFactory:

public static class ServiceBusDiscoveryFactory
{
 public static T CreateChannel<T>(string serviceNamespace,string secret,
 Uri scope = null) where T : class;

 public static T[] CreateChannels<T>(string serviceNamespace,string secret,
 Uri scope = null) where T : class;
}

CreateChannel<T>() assumes cardinality of one and it uses the metadata endpoint
to obtain the service’s address and binding used to create the proxy.
CreateChannels<T>() creates proxies to all discovered services, using all discovered
metadata endpoints.

Announcements
To support announcements, you can again use the events relay binding to substitute
UDP multicast. First, I defined the IServiceBusAnnouncements announcement contract
as the following:

764 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceContract]
public interface IServiceBusAnnouncements
{
 [OperationContract(IsOneWay = true)]
 void OnHello(Uri address,string contractName,string contractNamespace,
 Uri[] scopes);
 [OperationContract(IsOneWay = true)]
 void OnBye(Uri address,string contractName,string contractNamespace,
 Uri[] scopes);
}

As shown in Figure C-5, this time it is up to the clients to expose an event binding
endpoint and monitor the announcements.

Figure C-5. Availability announcements over the service bus

The services will announce their availability (over the one-way relay binding), providing
their address (step 1 in Figure C-5), and the clients will proceed to invoke them (step
2 in Figure C-5).

Service Bus Discovery | 765

Download from Library of Wow! eBook <www.wowebook.com>

Service-side announcements

My DiscoveryRequestService supports announcements:

public class DiscoverableServiceHost : ServiceHost,IServiceBusProperties
{
 public const string AnnouncementsPath = "AvailabilityAnnouncements";

 public Uri AnnouncementsAddress
 {get;set;}

 public NetOnewayRelayBinding AnnouncementsBinding
 {get;set;}

 //More members
}

However, on par with the built-in WCF announcements, it will not announce its avail-
ability by default. To enable announcements, you need to configure an announcement
endpoint with the discovery behavior. In most cases, this is all you need to do.
DiscoveryRequestService will fire its availability events on the “AvailabilityAnnounce-
ments” URI under the service namespace. You can change that default by setting the
AnnouncementsAddress property before opening the host. The events will be fired by
default using a plain one-way relay binding, but you can provide an alternative using
the AnnouncementsBinding property before opening the host. DiscoveryRequestService
will fire its availability events asynchronously to avoid blocking operations during
opening and closing of the host. Example C-23 shows the announcement support el-
ements of DiscoveryRequestService.

Example C-23. Supporting announcements with DiscoveryRequestService

public class DiscoverableServiceHost : ServiceHost,IServiceBusProperties
{
 Uri m_AnnouncementsAddress;

 bool IsAnnouncing
 {
 get
 {
 ServiceDiscoveryBehavior behavior =
 Description.Behaviors.Find<ServiceDiscoveryBehavior>();
 if(behavior != null)
 {
 return behavior.AnnouncementEndpoints.Any();
 }
 return false;
 }
 }

 public Uri AnnouncementsAddress
 {
 get
 {

766 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 if(m_AnnouncementsAddress == null)
 {
 m_AnnouncementsAddress = ServiceBusEnvironment.
 CreateServiceUri("sb",Namespace,AnnouncementsPath);
 }
 return m_AnnouncementsAddress;
 }
 set
 {
 m_AnnouncementsAddress = value;
 }
 }

 public NetOnewayRelayBinding AnnouncementsBinding
 {
 //When unset, returns plain NetOnewayRelayBinding
 get
 {...}
 set
 {...}
 }

 IServiceBusAnnouncements CreateAvailabilityAnnouncementsClient()
 {
 TransportClientEndpointBehavior credentials =
 (this as IServiceBusProperties).Credential;

 ChannelFactory<IServiceBusAnnouncements> factory =
 new ChannelFactory<IServiceBusAnnouncements>(
 AnnouncementsBinding,new EndpointAddress(AnnouncementsAddress));

 factory.Endpoint.Behaviors.Add(credentials);

 return factory.CreateChannel();
 }

 protected override void OnOpened()
 {
 base.OnOpened();

 if(IsAnnouncing)
 {
 IServiceBusAnnouncements proxy = CreateAvailabilityAnnouncementsClient();
 PublishAvailabilityEvent(proxy.OnHello);
 }
 }

 protected override void OnClosed()
 {
 if(IsAnnouncing)
 {
 IServiceBusAnnouncements proxy = CreateAvailabilityAnnouncementsClient();
 PublishAvailabilityEvent(proxy.OnBye);
 }
 ...

Service Bus Discovery | 767

Download from Library of Wow! eBook <www.wowebook.com>

 }

 void PublishAvailabilityEvent(Action<Uri,string,string,Uri[]> notification)
 {
 foreach(ServiceEndpoint endpoint in Description.Endpoints)
 {
 if(endpoint is DiscoveryEndpoint || endpoint is ServiceMetadataEndpoint)
 {
 continue;
 }
 Uri[] scopes = LookupScopes(endpoint);

 WaitCallback fire = delegate
 {
 try
 {
 notification(endpoint.Address.Uri,
 endpoint.Contract.Name,
 endpoint.Contract.Namespace,
 scopes);
 (notification.Target as ICommunicationObject).Close();

 }
 catch
 {}
 };
 ThreadPool.QueueUserWorkItem(fire);
 }
 }
}

The CreateAvailabilityAnnouncementsClient() helper method uses a channel factory
to create a proxy to the IServiceBusAnnouncements announcements events endpoint.
The proxy will use the same service bus credentials for the announcements as
the DiscoverableServiceHost itself uses. After opening and before closing
DiscoveryRequestService, it fires the notifications. DiscoveryRequestService overrides
both the OnOpened() and OnClosed() methods of ServiceHost. If you configure the host
to announce, OnOpened() and OnClosed() call CreateAvailabilityAnnouncement
sClient() to create a proxy and pass it to the PublishAvailabilityEvent() method to
fire the event asynchronously. Since the act of firing the event is identical for both the
hello and bye announcements and the only difference is which method of ISer
viceBusAnnouncements to call, PublishAvailabilityEvent() accepts a delegate for the
target method. For each endpoint of DiscoveryRequestService, PublishAvailabilityE
vent() looks up the scopes associated with that endpoint and queues up the announce-
ment to the .NET thread pool using a WaitCallback anonymous method. The anony-
mous method invokes the provided delegate and closes the underlying target proxy.

768 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

The DiscoverableServiceHost.CreateDiscoverableHost() mentioned
earlier also supports announcements.

Receiving announcements

While I could have mimicked the WCF-provided AnnouncementService, as described
earlier, there is a long list of things I have improved upon with my Announcement
Sink<T>, and I did not see a case in which it would be preferable to use Announcement
Service in favor of AnnouncementSink<T>. I also wanted to leverage and reuse the be-
havior of AnnouncementSink<T> and its base class.

Therefore, for the client I wrote ServiceBusAnnouncementSink<T>, defined as:

[ServiceBehavior(UseSynchronizationContext = false,
 InstanceContextMode = InstanceContextMode.Single)]
public class ServiceBusAnnouncementSink<T> : AnnouncementSink<T>,
 IServiceBusAnnouncements,
 IServiceBusProperties where T : class
{
 public ServiceBusAnnouncementSink(string serviceNamespace,string secret);

 public ServiceBusAnnouncementSink(string serviceNamespace,string owner,
 string secret);
 public Uri AnnouncementsAddress
 {get;set;}

 public NetEventRelayBinding AnnouncementsBinding
 {get;set;}
}

The constructors of ServiceBusAnnouncementSink<T> require the service namespace and
the service bus credentials.

ServiceBusAnnouncementSink<T> supports IServiceBusAnnouncements as a self-hosted
singleton. ServiceBusAnnouncementSink<T> also publishes itself to the service bus reg-
istry. ServiceBusAnnouncementSink<T> subscribes to the availability announcements on
the “AvailabilityAnnouncements” URI under the service namespace by default. You
can change that (before opening it) by setting the AnnouncementsAddress property.
ServiceBusAnnouncementSink<T> uses a plain NetEventRelayBinding to receive the noti-
fications by default, but you can change that by setting the AnnouncementsBinding before
opening ServiceBusAnnouncementSink<T>. The clients of ServiceBusAnnouncement
Sink<T> can subscribe to the delegates of AnnouncementSink<T> to receive the announce-
ments, or they can just access the address in the base address container. For example:

class MyClient
{
 AddressesContainer<IMyContract> m_Addresses;

 public MyClient()
 {

Service Bus Discovery | 769

Download from Library of Wow! eBook <www.wowebook.com>

 string serviceNamespace = "...";
 string secret = "...";

 m_Addresses = new ServiceBusAnnouncementSink<IMyContract>(
 serviceNamespace,secret);

 m_Addresses.Open();

 ...
 }
 void OnCallService()
 {
 EndpointAddress address = m_Addresses[0];

 IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(
 new NetTcpRelayBinding(),address);
 proxy.MyMethod();
 (proxy as ICommunicationObject).Close();
 }
 ...
}

Example C-24 shows the partial implementation of ServiceBusAnnouncementSink<T>
without some of the error handling.

Example C-24. Implementing ServiceBusAnnouncementSink<T> (partial)

[ServiceBehavior(UseSynchronizationContext = false,
 InstanceContextMode = InstanceContextMode.Single)]
public class ServiceBusAnnouncementSink<T> : AnnouncementSink<T>,
 IServiceBusAnnouncements
{
 Uri m_AnnouncementsAddress;

 readonly ServiceHost Host;
 readonly string ServiceNamespace;
 readonly string Owner;
 readonly string Secret;

 public ServiceBusAnnouncementSink(string serviceNamespace,
 string owner,string secret)
 {
 Host = new ServiceHost(this);
 ServiceNamespace = serviceNamespace;
 Owner = owner;
 Secret = secret;
 }

 public NetEventRelayBinding AnnouncementsBinding
 {
 //When unset, returns plain NetEventRelayBinding
 get
 {...}
 set
 {...}

770 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

 }

 public Uri AnnouncementsAddress
 {
 get
 {
 if(m_AnnouncementsAddress == null)
 {
 m_AnnouncementsAddress = ServiceBusEnvironment.CreateServiceUri(
 "sb",ServiceNamespace,DiscoverableServiceHost.AnnouncementsPath);
 }
 return m_AnnouncementsAddress;
 }
 set
 {
 m_AnnouncementsAddress = value;
 }
 }
 public override void Open()
 {
 base.Open();

 Host.AddServiceEndpoint(typeof(IServiceBusAnnouncements),
 AnnouncementsBinding,
 AnnouncementsAddress.AbsoluteUri);
 Host.SetServiceBusCredentials(Owner,Secret);
 Host.Open();
 }
 public override void Close()
 {
 Host.Close();

 base.Close();
 }

 void IServiceBusAnnouncements.OnHello(Uri address,string contractName,
 string contractNamespace,Uri[] scopes)
 {
 AnnouncementEventArgs args = DiscoveryHelper.CreateAnnouncementArgs(
 address,contractName,contractNamespace,scopes);
 OnHello(this,args);
 }

 void IServiceBusAnnouncements.OnBye(Uri address,string contractName,
 string contractNamespace,Uri[] scopes)
 {
 AnnouncementEventArgs args = DiscoveryHelper.CreateAnnouncementArgs(
 address,contractName,contractNamespace,scopes);
 OnBye(this,args);
 }
}

public static class DiscoveryHelper
{

Service Bus Discovery | 771

Download from Library of Wow! eBook <www.wowebook.com>

 static AnnouncementEventArgs CreateAnnouncementArgs(Uri address,
 string contractName,
 string contractNamespace,
 Uri[] scopes)
 {
 Type type = typeof(AnnouncementEventArgs);
 ConstructorInfo constructor =
 type.GetConstructors(BindingFlags.Instance|BindingFlags.NonPublic)[0];

 ContractDescription contract =
 new ContractDescription(contractName,contractNamespace);

 ServiceEndpoint endpoint =
 new ServiceEndpoint(contract,null,new EndpointAddress(address));
 EndpointDiscoveryMetadata metadata =
 EndpointDiscoveryMetadata.FromServiceEndpoint(endpoint);

 return constructor.Invoke(
 new object[]{null,metadata}) as AnnouncementEventArgs;
 }
 //More members
}

The constructor of ServiceBusAnnouncementSink<T> hosts itself as a singleton and
saves the service namespace and service bus credentials. When you open
ServiceBusAnnouncementSink<T>, it adds an endpoint supporting IServiceBusAnnounce
ments to its own host. The implementation of the event handling methods of
IServiceBusAnnouncements create an AnnouncementEventArgs instance, populating it
with the announced service address, contract, and scopes, and then call the base class
implementation of the respective announcement methods as if they were called using
regular WCF discovery. This both populates the base class of the
AddressesContainer<T> and fires the appropriate events of AnnouncementSink<T> (see
Example C-18). Note that to create an instance of AnnouncementEventArgs, you must
use reflection due to the lack of a public constructor.

The Metadata Explorer
Using my support for discovery for the service bus, I extended the discovery feature of
the Metadata Explorer tool to support the service bus. If you click the Discover button
(see Figure C-2), the Metadata Explorer will try to discover metadata exchange end-
points of discoverable services for every service namespace you have already provided
credentials for. It will display the discovered endpoints in the tree. The Metadata Ex-
plorer will default to using the URI “DiscoveryRequests” under the service namespace.
You can change that path by selecting Service Bus from the menu, then selecting Dis-
covery... to bring up the Configure AppFabric Service Bus Discovery dialog box (see
Figure C-6).

For each service namespace of interest, the dialog box lets you configure the desired
relative path of the discovery events endpoint in the Discovery Path text box.

772 | Appendix C: Discovery

Download from Library of Wow! eBook <www.wowebook.com>

The Metadata Explorer also supports announcements of service bus metadata exchange
endpoints. To enable receiving the availability notification, bring up the discovery con-
figuration dialog box and place a check in the Enable checkbox under in Availability
Announcements group. The Metadata Explorer will default to using the
“AvailabilityAnnouncements” URI under the specified service namespace, but you can
configure any other desired path for the announcements endpoint for each service
namespace.

The announcements support in the Metadata Explorer makes it a sim-
ple, practical, and useful service bus monitoring tool.

Figure C-6. Configuring discovery over the service bus

Service Bus Discovery | 773

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX D

Publish-Subscribe Service

Using raw duplex callbacks for events has numerous drawbacks. The primary concern
is that it often introduces too much coupling between the publisher and the subscribers.
The subscriber has to know where all the publishing services are in the application and
connect to them. Any publisher that the subscriber is unaware of will not be able to
notify the subscriber of events. This in turn makes adding new subscribers (or removing
existing ones) difficult in an already deployed application. There is no way for a sub-
scriber to ask to be notified whenever anyone in the application raises a particular type
of event. In addition, the subscriber must make multiple, potentially expensive calls to
each publisher, both to subscribe and to unsubscribe. Different publishers may fire the
same event but offer slightly different ways to subscribe and unsubscribe, which, of
course, couples the subscribers to those methods.

Much the same way, the publisher can only send notifications to subscribers it knows
about. There is no way for the publisher to deliver an event to whomever wishes to
receive it, or to broadcast an event. In addition, all publishers must have the necessary
code to manage the list of subscribers and the publishing act itself. This code has almost
nothing to do with the business problem the service is designed to solve, and it can get
fairly complex if advanced features, such as concurrent publishing, are employed. Since
the publishers cannot assume the subscribers are all disciplined (i.e., do not take long
to process the event), they must publish concurrently on multiple threads. To avoid
maxing out the system when there are many subscribers, the publisher needs to mul-
tiplex the events on threads from a thread pool. Such publishing logic is not trivial, yet
all publishers will have to have it.

Furthermore, duplex-based callbacks introduce coupling between the lifetime of the
publisher and the subscribers. The subscribers have to be up and running in order to
subscribe to and receive events.

There is no way for a subscriber to ask that if an event is fired, the application create
an instance of the subscriber and let it handle the event.

775

Download from Library of Wow! eBook <www.wowebook.com>

Since proxy references are not serializable, they must reside in memory in some form
of list. If the publisher’s process (or host machine) crashes, the subscriptions will be
lost, yet none of the subscribers will be aware of it.

Security represents yet another dimension of coupling: the subscribers need to be able
to authenticate themselves against all publishers, across all security modes and cre-
dentials used. The publisher must also have sufficient security credentials to fire the
event, and different subscribers may have different role membership mechanisms.

Finally, you must set up subscriptions programmatically. There is no easy administra-
tive way to configure subscriptions in the application or to administratively change the
subscriber’s preferences when the system is running.

These problems are not actually specific to WCF duplex calls. They also characterize
past technologies, such as COM connection points and .NET delegates—all are tightly
coupled event-management mechanisms that rely on object references.

The Publish-Subscribe Design Pattern
The solution to the problems just described is to design around them using what is
known as the publish-subscribe design pattern. The idea behind the pattern is a simple
one: decouple the publishers from the subscribers by introducing a dedicated sub-
scription service and a dedicated publishing service in between, as shown in Figure D-1.

Figure D-1. A publish-subscribe system

Subscribers that want to subscribe to events register with the subscription service,
which manages the lists of subscribers (and provides a similar ability to unsubscribe).
Similarly, all publishers use the publisher service to fire their events and avoid delivering
the events directly to the subscribers. The subscription and publishing services provide

776 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

a layer of indirection that decouples your system. No longer do the subscribers have
any knowledge about the identity of the publishers—they can subscribe to a type of
event and will receive that event from any publisher. The subscription mechanism is
uniform across all publishers. In fact, no publisher has to manage any subscription list,
and the publishers have no idea who the subscribers are. They simply deliver the events
to the publishing service to be delivered to any interested subscriber.

Subscriber Types
You can even define two types of subscribers: transient subscribers are in memory run-
ning subscribers and persistent subscribers are subscribers that persist on the disk, rep-
resenting services to invoke when the event takes place. For transient subscribers, you
can use the duplex callback mechanism as a handy way of passing the callback reference
to the running service. For the persistent subscribers, all you really need to record is
the subscriber address as a reference. When the event is raised, the publishing service
will call to the persistent subscriber address and deliver the event to it. Another im-
portant distinction between the two types of subscriptions is that you can store a per-
sistent subscription on the disk or in a database. Doing so will persist the subscription
across application shutdowns or machine crashes and reboots, thus enabling admin-
istrative configuration: the subscriber is persistent and the subscription is persistent.
Obviously, you cannot save transient subscriptions across an application shutdown,
and you will need to set them up explicitly every time the application starts: the sub-
scriber is transient, and so is the subscription.

The Publish-Subscribe Framework
ServiceModelEx contains a simple-to-use, industrial-strength publish-subscribe
framework. I wanted to provide not just a publish-subscribe service, but also a general-
purpose framework that automates implementing such services and adding the support
for any application in just one line of code (if that). The first step in building the frame-
work was to factor the publish-subscribe management interfaces and provide separate
contracts for transient and persistent subscriptions and for publishing.*

Managing Transient Subscriptions
For managing transient subscriptions, I defined the ISubscriptionService interface
shown in Example D-1.

* I first wrote about my publish-subscribe framework in my article “WCF Essentials: What You Need to Know
About One-Way Calls, Callbacks, and Events” (MSDN Magazine, October 2006).

The Publish-Subscribe Framework | 777

Download from Library of Wow! eBook <www.wowebook.com>

Example D-1. The ISubscriptionService interface manages transient subscribers

[ServiceContract]
public interface ISubscriptionService
{
 [OperationContract]
 void Subscribe(string eventOperation);

 [OperationContract]
 void Unsubscribe(string eventOperation);
}

Note that ISubscriptionService does not identify the callback contract its implement-
ing endpoint expects. Being a general-purpose interface, it is unaware of particular
callback contracts. It is up to the using application to define those callback contracts.
The callback interface is provided in the using application by deriving from
ISubscriptionService and specifying the desired callback contract:

public interface IMyEvents
{
 [OperationContract(IsOneWay = true)]
 void OnEvent1();

 [OperationContract(IsOneWay = true)]
 void OnEvent2(int number);

 [OperationContract(IsOneWay = true)]
 void OnEvent3(int number,string text);
}

[ServiceContract(CallbackContract = typeof(IMyEvents))]
public interface IMySubscriptionService : ISubscriptionService
{}

Typically, every operation on the callback contract corresponds to a specific event. The
subinterface of ISubscriptionService (IMySubscriptionService, in this example) does
not need to add operations. ISubscriptionService provides the transient subscription
management functionality. In each call to Subscribe() or Unsubscribe(), the subscriber
needs to provide the name of the operation (and therefore the event) it wants to sub-
scribe to or unsubscribe from. If the caller wants to subscribe to all events, it can pass
an empty or null string.

My framework offers an implementation for the methods of ISubscriptionService in
the form of the generic abstract class SubscriptionManager<T>:

public abstract class SubscriptionManager<T> where T : class
{
 public void Subscribe(string eventOperation);
 public void Unsubscribe(string eventOperation);
 //More members
}

778 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

The generic type parameter for SubscriptionManager<T> is the events contract. Note
that SubscriptionManager<T> does not implement ISubscriptionService.

The using application needs to expose its own transient subscription service in the form
of an endpoint that supports its specific subinterface of ISubscriptionService. To
do so, the application needs to provide a service class that derives from
SubscriptionManager<T>, specify the callback contract as a type parameter, and derive
from that specific subinterface of ISubscriptionService. For example, to implement a
transient subscription service using the IMyEvents callback interface:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MySubscriptionService : SubscriptionManager<IMyEvents>,
 IMySubscriptionService
{}

MySubscriptionService doesn’t need any code because IMySubscriptionService does
not add any new operations and SubscriptionManager<T> already implements the meth-
ods of ISubscriptionService.

Note that just deriving from SubscriptionManager<IMyEvents> is insufficient because it
does not derive from a contract interface—you must add the derivation from
IMySubscriptionService to support transient subscriptions.

Finally, the using application needs to define an endpoint for IMySubscriptionService:

<services>
 <service name = "MySubscriptionService">
 <endpoint
 address = "..."
 binding = "..."
 contract = "IMySubscriptionService"
 />
 </service>
</services>

Example D-2 shows how SubscriptionManager<T> manages transient subscriptions.

Example D-2. The transient subscribers management in SubscriptionManager<T>

public abstract class SubscriptionManager<T> where T : class
{
 static Dictionary<string,List<T>> m_TransientStore;

 static SubscriptionManager()
 {
 m_TransientStore = new Dictionary<string,List<T>>();
 string[] methods = GetOperations();
 Action<string> insert = (methodName)=>
 {
 m_TransientStore.Add(methodName,new List<T>());
 };
 methods.ForEach(insert);
 }
 static string[] GetOperations()

The Publish-Subscribe Framework | 779

Download from Library of Wow! eBook <www.wowebook.com>

 {
 MethodInfo[] methods = typeof(T).GetMethods(BindingFlags.Public|
 BindingFlags.FlattenHierarchy|
 BindingFlags.Instance);
 List<string> operations = new List<string>(methods.Length);

 Action<MethodInfo> add = (method)=>
 {
 Debug.Assert(!operations.Contains(method.Name));
 operations.Add(method.Name);
 };
 methods.ForEach(add);
 return operations.ToArray();
 }
 static void AddTransient(T subscriber,string eventOperation)
 {
 lock(typeof(SubscriptionManager<T>))
 {
 List<T> list = m_TransientStore[eventOperation];
 if(list.Contains(subscriber))
 {
 return;
 }
 list.Add(subscriber);
 }
 }
 static void RemoveTransient(T subscriber,string eventOperation)
 {
 lock(typeof(SubscriptionManager<T>))
 {
 List<T> list = m_TransientStore[eventOperation];
 list.Remove(subscriber);
 }
 }

 public void Subscribe(string eventOperation)
 {
 lock(typeof(SubscriptionManager<T>))
 {
 T subscriber = OperationContext.Current.GetCallbackChannel<T>();
 if(String.IsNullOrEmpty(eventOperation) == false)
 {
 AddTransient(subscriber,eventOperation);
 }
 else
 {
 string[] methods = GetOperations();
 Action<string> addTransient = (methodName)=>
 {
 AddTransient(subscriber,methodName);
 };
 methods.ForEach(addTransient);
 }
 }
 }

780 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

 public void Unsubscribe(string eventOperation)
 {
 lock(typeof(SubscriptionManager<T>))
 {
 T subscriber = OperationContext.Current.GetCallbackChannel<T>();
 if(String.IsNullOrEmpty(eventOperation) == false)
 {
 RemoveTransient(subscriber,eventOperation);
 }
 else
 {
 string[] methods = GetOperations();
 Action<string> removeTransient = (methodName)=>
 {
 RemoveTransient(subscriber,methodName);
 };
 methods.ForEach(removeTransient);
 }
 }
 }
 //More members
}

SubscriptionManager<T> stores the transient subscribers in a generic static dictionary
called m_TransientStore:

static Dictionary<string,List<T>> m_TransientStore;

Each entry in the dictionary contains the name of the event operation and all its sub-
scribers in the form of a linked list. The static constructor of SubscriptionManager<T>
uses reflection to get all the operations of the callback interfaces (the type parameter
for SubscriptionManager<T>) and initializes the dictionary to have all the operations
with empty lists. The Subscribe() method extracts the callback reference from the op-
eration call context. If the caller specifies an operation name, Subscribe() calls the
helper method AddTransient(). AddTransient() retrieves the list of subscribers for the
event from the store, and if the list does not contain the subscriber, it adds it in.

If the caller specifies an empty string or null for the operation name, Subscribe() calls
AddTransient() for each operation in the callback contract.

Unsubscribe() operates in a similar manner. Note that the caller can subscribe to all
events and then unsubscribe from a particular one.

Managing Persistent Subscribers
For managing persistent subscribers, I defined the IPersistentSubscriptionService
interface shown in Example D-3.

The Publish-Subscribe Framework | 781

Download from Library of Wow! eBook <www.wowebook.com>

Example D-3. The IPersistentSubscriptionService interface manages persistent subscribers

[ServiceContract]
public interface IPersistentSubscriptionService
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void Subscribe(string address,string eventsContract,string eventOperation);

 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void Unsubscribe(string address,string eventsContract,string eventOperation);
 //More members
}

To add a persistent subscriber, the caller needs to call Subscribe(), providing the ad-
dress of the subscriber, the event’s contract name, and the specific event operation
itself. To unsubscribe, the caller calls Unsubscribe() with the same information. Note
that IPersistentSubscriptionService does not imply where the subscribers persist on
the service side—that is an implementation detail.

The class SubscriptionManager<T>, presented previously, also implements the methods
of IPersistentSubscriptionService:

[BindingRequirement(TransactionFlowEnabled = true)]
public abstract class SubscriptionManager<T> where T : class
{
 public void Unsubscribe(string address,string eventsContract,
 string eventOperation);
 public void Subscribe(string address,string eventsContract,
 string eventOperation);
 //More members
}

SubscriptionManager<T> stores the persistent subscribers in SQL Server. It is configured
to use the Client/Service transaction mode (presented in Chapter 7), and it enforces
that mode using my BindingRequirement attribute.

The generic type parameter for SubscriptionManager<T> is the events contract. Note
that SubscriptionManager<T> does not derive from IPersistentSubscriptionService.
The using application needs to expose its own persistent subscription service, but there
is no need to derive a new contract from IPersistentSubscriptionService, because
no callback references are required. The application simply derives from
SubscriptionManager<T>, specifying the events contract as a type parameter and adding
a derivation from IPersistentSubscriptionService, for example:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MySubscriptionService : SubscriptionManager<IMyEvents>,
 IPersistentSubscriptionService
{}

There’s no need for any code in MySubscriptionService, because Subscription
Manager<T> already implements the methods of IPersistentSubscriptionService.

782 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

Note that just deriving from SubscriptionManager<IMyEvents> is insufficient, because
SubscriptionManager<IMyEvents> does not derive from a contract interface—you must
add the derivation from IPersistentSubscriptionService to support persistent
subscriptions.

Finally, the application needs to define an endpoint for IPersistentSubscription
Service:

<services>
 <service name = "MySubscriptionService">
 <endpoint
 address = "..."
 binding = "..."
 contract = "ServiceModelEx.IPersistentSubscriptionService"
 />
 </service>
</services>

The implementation of the methods of IPersistentSubscriptionService by
SubscriptionManager<T> is shown in Example D-4. Example D-4 is very similar to
Example D-2, except the subscribers are stored in SQL Server, not in memory in a
dictionary.

Example D-4. Persistent subscriber management in SubscriptionManager<T>

public abstract class SubscriptionManager<T> where T : class
{
 static void AddPersistent(string address,string eventsContract,
 string eventOperation)
 {
 //Store the subscription in SQL Server
 }

 static void RemovePersistent(string address,string eventsContract,
 string eventOperation)
 {
 //Remove the subscription from SQL Server
 }

 [OperationBehavior(TransactionScopeRequired = true)]
 public void Subscribe(string address,string eventsContract,
 string eventOperation)
 {
 if(String.IsNullOrEmpty(eventOperation) == false)
 {
 AddPersistent(address,eventsContract,eventOperation);
 }
 else
 {
 string[] methods = GetOperations();
 Action<string> addPersistent = (methodName)=>
 {
 AddPersistent(address,eventsContract,methodName);
 };

The Publish-Subscribe Framework | 783

Download from Library of Wow! eBook <www.wowebook.com>

 methods.ForEach(addPersistent);
 }
 }

 [OperationBehavior(TransactionScopeRequired = true)]
 public void Unsubscribe(string address,string eventsContract,
 string eventOperation)
 {
 if(String.IsNullOrEmpty(eventOperation) == false)
 {
 RemovePersistent(address,eventsContract,eventOperation);
 }
 else
 {
 string[] methods = GetOperations();
 Action<string> removePersistent = (methodName)=>
 {
 RemovePersistent(address,eventsContract,methodName);
 };
 methods.ForEach(removePersistent);
 }
 }
 //More members
}

If you want the application to support both transient and persistent subscribers for the
same events contract, simply derive the subscription service class from both the speci-
alized subinterface of ISubscriptionService and IPersistentSubscriptionService:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MySubscriptionService : SubscriptionManager<IMyEvents>,
 IMySubscriptionService,
 IPersistentSubscriptionService
{}

Next, expose the two matching endpoints:

<services>
 <service name = "MySubscriptionService">
 <endpoint
 address = "..."
 binding = "..."
 contract = "IMySubscriptionService"
 />
 <endpoint
 address = "..."
 binding = "..."
 contract = "ServiceModelEx.IPersistentSubscriptionService"
 />
 </service>
</services>

784 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

Event Publishing
The parts of the publish-subscribe framework shown so far deal only with the aspects
of subscription management. The framework also enables easy implementation of the
publishing service. The publishing service should support the same events contract as
the subscribers, and it should be the only point of contact known to the publishers in
the application. Because the publishing service exposes the events contract in an end-
point, you need to mark the events contract as a service contract, even if you only use
it for duplex callbacks with transient subscribers:

[ServiceContract]
public interface IMyEvents
{
 [OperationContract(IsOneWay = true)]
 void OnEvent1();

 [OperationContract(IsOneWay = true)]
 void OnEvent2(int number);

 [OperationContract(IsOneWay = true)]
 void OnEvent3(int number,string text);
}

The publish-subscribe framework contains the helper class PublishService<T>, defined
as:

public abstract class PublishService<T> where T : class
{
 protected static void FireEvent(params object[] args);
}

PublishService<T> requires as a type parameter the type of the events contract. To
provide your own publishing service, derive from PublishService<T> and use the Fire
Event() method to deliver the event to all subscribers, be they transient or persistent,
as shown in Example D-5.

Example D-5. Implementing an event-publishing service

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyPublishService : PublishService<IMyEvents>,IMyEvents
{
 public void OnEvent1()
 {
 FireEvent();
 }
 public void OnEvent2(int number)
 {
 FireEvent(number);
 }
 public void OnEvent3(int number,string text)
 {
 FireEvent(number,text);
 }
}

The Publish-Subscribe Framework | 785

Download from Library of Wow! eBook <www.wowebook.com>

Note that you can use FireEvent() to fire any type of event, regardless of the parameters,
because of the use of the params object array.

Finally, the application needs to expose an endpoint for the publishing service with the
events contract:

<services>
 <service name = "MyPublishService">
 <endpoint
 address = "..."
 binding = "..."
 contract = "IMyEvents"
 />
 </service>
</services>

Example D-6 shows the implementation of PublishService<T>.

Example D-6. Implementing PublishService<T>

public abstract class PublishService<T> where T : class
{
 protected static void FireEvent(params object[] args)
 {
 string action = OperationContext.Current.IncomingMessageHeaders.Action;
 string[] slashes = action.Split('/');
 string methodName = slashes[slashes.Length-1];

 FireEvent(methodName,args);
 }
 static void FireEvent(string methodName,object[] args)
 {
 PublishPersistent(methodName,args);
 PublishTransient(methodName,args);
 }
 static void PublishPersistent(string methodName,object[] args)
 {
 T[] subscribers = SubscriptionManager<T>.GetPersistentList(methodName);
 Publish(subscribers,true,methodName,args);
 }
 static void PublishTransient(string methodName,object[] args)
 {
 T[] subscribers = SubscriptionManager<T>.GetTransientList(methodName);
 Publish(subscribers,false,methodName,args);
 }
 static void Publish(T[] subscribers,bool closeSubscribers,string methodName,
 object[] args)
 {
 WaitCallback fire = (subscriber)=>
 {
 Invoke(subscriber as T,methodName,args);
 if(closeSubscribers)
 {
 using(subscriber as IDisposable)
 {}
 }

786 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

 };
 Action<T> queueUp = (subscriber)=>
 {
 ThreadPool.QueueUserWorkItem(fire,subscriber);
 };
 subscribers.ForEach(queueUp);
 }
 static void Invoke(T subscriber,string methodName,object[] args)
 {
 Debug.Assert(subscriber != null);
 Type type = typeof(T);
 MethodInfo methodInfo = type.GetMethod(methodName);
 try
 {
 methodInfo.Invoke(subscriber,args);
 }
 catch
 {}
 }
}

To simplify firing the event, the FireEvent() method accepts the parameters to pass to
the subscribers, yet its caller does not provide it with the name of the operation to
invoke on the subscribers. Instead, FireEvent() extracts the method name from the
incoming message headers. It then uses an overloaded FireEvent() that accepts the
method name. That method, in turn, uses the helper method PublishPersistent() to
publish to all persistent subscribers and uses the PublishTransient() helper method
to publish to all transient subscribers. The publishing methods operate in an almost
identical way: they access SubscriptionManager<T> to retrieve their respective subscrib-
ers list, then use the Publish() method to fire the event. The subscribers are returned
in the form of an array of proxies to the subscribers, which is passed to the Publish()
method.

Publish() could have simply invoked the subscribers at this point. However, I wanted
to support concurrent publishing of events so that if any subscriber is undisciplined
and takes a long time to process the event, this will not preclude the other subscribers
from receiving the event in a timely manner. Having the event operations marked as
one way is no guarantee of asynchronous invocation, and besides, I wanted to support
concurrent publishing even when the event operation is not marked as a one-way op-
eration. Publish() defines two anonymous methods. The first calls the Invoke() helper
method, which fires the event to the individual subscriber provided and then closes the
proxy if so specified. Because Invoke() was never compiled against the specific sub-
scriber type, it uses reflection and late binding for the invocation. Invoke() also sup-
presses any exceptions raised by the invocation, because these are of no interest to the
publishing party. The second anonymous method queues up the first anonymous
method to be executed by a thread from the thread pool. Finally, Publish() invokes
the second anonymous method on every subscriber in the provided array.

The Publish-Subscribe Framework | 787

Download from Library of Wow! eBook <www.wowebook.com>

Notice how uniformly PublishService<T> treats the subscribers—it almost does not
matter if they are transient or persistent. The only difference is that after publishing to
a persistent subscriber, you need to close the proxy. You can achieve this uniformity
using the helper methods GetTransientList() and GetPersistentList() of
SubscriptionManager<T>. Of these two, GetTransientList() is the simpler one:

public abstract class SubscriptionManager<T> where T : class
{
 internal static T[] GetTransientList(string eventOperation)
 {
 lock(typeof(SubscriptionManager<T>))
 {
 if(m_TransientStore.ContainsKey(eventOperation))
 {
 List<T> list = m_TransientStore[eventOperation];
 return list.ToArray();
 }
 return new T[]{};
 }
 }
 //More members
}

GetTransientList() looks up all the subscribers to the specified operation in the tran-
sient store and returns them as an array. GetPersistentList() faces a bigger challenge:
there is no ready-made list of proxies to persistent subscribers. The only thing known
about them is their addresses. GetPersistentList() therefore needs to instantiate the
persistent subscribers’ proxies, as shown in Example D-7.

Example D-7. Creating the persistent subscribers proxy list

public abstract class SubscriptionManager<T> where T : class
{
 internal static T[] GetPersistentList(string eventOperation)
 {
 string[] addresses = GetSubscribersToContractEventOperation(
 typeof(T).ToString(),eventOperation);

 List<T> subscribers = new List<T>(addresses.Length);

 foreach(string address in addresses)
 {
 Binding binding = GetBindingFromAddress(address);
 T proxy = ChannelFactory<T>.CreateChannel(binding,
 new EndpointAddress(address));
 subscribers.Add(proxy);
 }
 return subscribers.ToArray();
 }
 static string[] GetSubscribersToContractEventOperation(string eventsContract,
 string eventOperation)
 {
 //Query SQL Server for the subscribers to the event
 }

788 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

 static Binding GetBindingFromAddress(string address)
 {
 if(address.StartsWith("http:") || address.StartsWith("https:"))
 {
 WSHttpBinding binding = new WSHttpBinding();
 binding.ReliableSession.Enabled = true;
 binding.TransactionFlow = true;
 return binding;
 }
 if(address.StartsWith("net.tcp:"))
 {
 NetTcpBinding binding = new NetTcpBinding();
 binding.ReliableSession.Enabled = true;
 binding.TransactionFlow = true;
 return binding;
 }
 /* Similar code for the one-way relay, IPC and MSMQ bindings */
 Debug.Assert(false,"Unsupported binding specified");
 return null;
 }
 //More members
}

To create a proxy for each subscriber, GetPersistentList() needs the subscriber’s
address, binding, and contract. The contract is, of course, the type parameter
for SubscriptionManager<T>. To obtain the addresses, GetPersistentList() calls
GetSubscribersToContractEventOperation(), which queries the subscribers store and
returns as an array the addresses of all of the persistent subscribers who have subscribed
to the specified event. All GetPersistentList() needs now is the binding used by
each subscriber. For that, GetPersistentList() calls the helper method
GetBindingFromAddress(), which infers the binding to use from the address schema.
GetBindingFromAddress() assumes all HTTP or HTTPS addresses indicate the use
the WSHttpBinding. For service bus addresses with the sb scheme,
GetBindingFromAddress() uses an instance of the NetOnewayRelayBinding.

In addition, when applicable, GetBindingFromAddress() turns on reliability and trans-
action propagation for each binding to enable inclusion of the event in the publisher’s
transaction when one-way operations are not used, such as with this events contract:

[ServiceContract]
interface IMyEvents
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void OnEvent1();

 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void OnEvent2(int number);

The Publish-Subscribe Framework | 789

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void OnEvent3(int number,string text);
}

Administering Persistent Subscribers
While you can add and remove persistent subscriptions at runtime by using the meth-
ods of the IPersistentSubscriptionService interface shown in Example D-3, because
of their persistent nature, you can best manage the subscriptions with some kind of
administration tool. To that end, IPersistentSubscriptionService defines additional
operations that answer various queries against the subscribers store, as shown in
Example D-8.

Example D-8. The IPersistentSubscriptionService interface

[DataContract]
public struct PersistentSubscription
{
 [DataMember]
 public string Address
 {get;set;}

 [DataMember]
 public string EventsContract
 {get;set;}

 [DataMember]
 public string EventOperation
 {get;set;}
}

[ServiceContract]
public interface IPersistentSubscriptionService
{
 //Administration operations
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 PersistentSubscription[] GetAllSubscribers();

 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 PersistentSubscription[] GetSubscribersToContract(string eventsContract);

 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 string[] GetSubscribersToContractEventType(string eventsContract,
 string eventOperation);
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 PersistentSubscription[] GetAllSubscribersFromAddress(string address);
 //More members
}

790 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

All of these administration operations utilize a simple data contract called Persistent
Subscription, which contains the address of the subscriber, the subscribed contract,
and the event. GetAllSubscribers() simply returns the list of all subscribers.
GetSubscribersToContract() returns all subscribers to a specific contract, and
GetSubscribersToContractEventType() returns all subscribers to a particular event
operation on a specified contract. Finally, for the sake of completeness,
GetAllSubscribersFromAddress() returns all subscribers that provided a specified
address.

My publish-subscribe framework includes a sample persistent subscription adminis-
tration tool called Persistent Subscription Manager, shown in Figure D-2.

Figure D-2. The Persistent Subscription Manager application

The administration tool uses IPersistentSubscriptionService to add and remove sub-
scriptions. To add a new subscription, you need to provide it with the metadata
exchange address of the events contract definition. You can use the metadata exchange
address of the persistent subscriber itself or the metadata exchange address of the pub-
lishing service (such as the one shown in Example D-5), because they are polymorphic.
Enter the metadata exchange base address in the MEX Address text box and click the
Lookup button. The tool will programmatically retrieve the metadata of the event
service and populate the Contract and Event combo boxes. My MetadataHelper class,
presented in Chapter 2, retrieves the metadata and parses its content.

Once you’ve provided the address of the persistent subscriber, click the Subscribe but-
ton. Persistent Subscription Manager then adds the subscription by calling to the
subscription service (MySubscriptionService in the examples so far). The Persistent
Subscription Manager config file maintains the address for the subscription service.

The Publish-Subscribe Framework | 791

Download from Library of Wow! eBook <www.wowebook.com>

Singleton subscriber

While duplex operations are, in general, the only way to subscribe a live object, there
is one exception to that rule: a singleton subscriber. You can treat a singleton service
as just another persistent subscriber and add its address to the subscription store. This
technique is particularly useful for user interface applications that need to monitor
some events. You can use my FormHost<F> (presented in Chapter 8) to expose the form
as a singleton, and then add the form as a persistent subscriber. Add the form using the
Persistent Subscription Manager tool, or the form can subscribe itself upon startup.

The publish-subscribe pattern also decouples the system security-wise.
Publishers only need to authenticate themselves against a single pub-
lishing service, as opposed to multiple subscribers and potentially mul-
tiple security mechanisms. The subscribers, in turn, only need to allow
the publishing service, rather than all publishers in the system, to deliver
events; they trust the publishing service to properly authenticate and
authorize the publishers. Applying role-based security on the publishing
service allows you to easily enforce in one place various rules regarding
who is allowed to publish an event across the system.

Queued Publishers and Subscribers
Instead of using the synchronous bindings to either publish or subscribe to the events,
you can use the NetMsmqBinding. A queued publish-subscribe service combines the
benefits of a loosely coupled system and the flexibility of disconnected execution. When
using queued events, all events on the contract must, of course, be marked as one-way
operations. As shown in Figure D-3, you can use queuing at either end independently.

Figure D-3. Queued publish-subscribe deployment

792 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

You can have a queued publisher and connected synchronous subscribers, you can
have a connected publisher publishing to queued subscribers, or you can have both
queued publishers and queued subscribers. Note, however, that you cannot have
queued transient subscriptions—there is no support within the MSMQ binding for
duplex callbacks, since that would render the disconnected aspect of the communica-
tion useless. As before, you can use the administration tool to manage the subscribers,
and the administration operations are still connected and synchronous.

Queued publisher

To utilize a queued publisher, the publishing service needs to expose a queued endpoint
using the MSMQ binding. When firing events at a queued publisher, the publishing
service can be offline or the publishing client itself can be disconnected. Note that when
publishing two events to a queued publishing service, there are no guarantees as to the
order in which these events will be delivered to and processed by the end subscribers.
Due to the asynchronous concurrent publishing, there is no order, even when the events
contract is configured for a session.

Queued subscriber

To deploy a queued subscriber, the persistent subscribing service needs to expose a
queued endpoint. This will enable the subscriber to be offline even when the publisher
is online. When the subscriber connects again, it will receive all of its queued-up events.
In addition, queued subscribers can handle the case when the publishing service itself
is disconnected, because no events are lost. Of course, having both a queued publisher
and subscriber allows both to work offline at the same time.

When multiple events are fired at a single queued subscriber, there are no guarantees
as to the order of delivery of the events, even when you configure the events contract
for a session.

Publish-Subscribe with the Service Bus
Chapter 11 presents the capabilities and aspects of the Windows Azure AppFabric
Service Bus. The service bus offers a distinct way to manage events for applications that
rely on the cloud, using the NetEventRelayBinding. This section presents these options
along with the helper classes of ServiceModelEx, which streamline the overall
experience.

The Event Relay Binding
The design shown in Figure 11-9 has the appearance of a general-purpose publish-
subscribe pattern. In reality, it falls short of that and it is intended to provide only a
lightweight, ready-made, cloud-assisted event distribution solution. Missing is admin-
istrative support to add and remove subscribers. More importantly, there is no support

Publish-Subscribe with the Service Bus | 793

Download from Library of Wow! eBook <www.wowebook.com>

for discrete, operation-level events. Events equate to service endpoints or, more spe-
cifically, to the contract. The service cannot subscribe to particular operations on the
contract but not to others. This means the subscribing service itself still receives events
it may not care about simply because it has a matching endpoint.

For example, consider the IMyEvents contract:

[ServiceContract]
interface IMyEvents
{
 [OperationContract(IsOneWay = true)]
 void OnEvent1();

 [OperationContract(IsOneWay = true)]
 void OnEvent2(int number);

 [OperationContract(IsOneWay = true)]
 void OnEvent3(int number,string text);
}

If the subscriber defines the endpoint as so:

<endpoint
 address = "sb://MyNamespace.servicebus.windows.net/IMyEvents"
 binding = "netEventRelayBinding"
 contract = "IMyEvents"
/>

The subscriber will receive all calls to the endpoint. If the subscriber should receive
calls only to the OnEvent2() operation, it must still expose an endpoint over the event
relay binding, receiving the calls to OnEvent2(), but also receive all the unwanted traffic
for OnEvent1() and OnEvent3() and explicitly filter them inside the service. All of this
further complicates managing the subscriptions using an external administration tool.

This is a direct result of subscribing at the contract (or the endpoint) level and not at
the discrete operation level. Much the same way, the publisher has no way of publishing
just OnEvent2(). Publishing any of the events on the IMyEvents contract notifies all sub-
scribers, regardless of their interest.

The only way to manage events at the operation level out of the box is to logically map
endpoints to operations rather than contracts. Example D-9 shows the publisher view
of such endpoints.

Example D-9. Defining events at the operation level

<endpoint name = "OnEvent1"
 address = "sb://MyNamespace.servicebus.windows.net/IMyEvents/OnEvent1"
 binding = "netOnewayBinding"
 contract = "IMyEvents"
/>
<endpoint name = "OnEvent2"
 address = "sb://MyNamespace.servicebus.windows.net/IMyEvents/OnEvent2"
 binding = "netOnewayBinding"
 contract = "IMyEvents"

794 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

/>
<endpoint name = "OnEvent3"
 address = "sb://MyNamespace.servicebus.windows.net/IMyEvents/OnEvent3"
 binding = "netOnewayBinding"
 contract = "IMyEvents"
/>

For the publisher, the downside is that it must maintain a proxy per operation on the
contract. This not only complicates the publisher’s code, it is also expensive. Since
Microsoft charges for the service bus based on connections, the more proxies you
manage, the more it costs.

Matters are even more complex on the service side. First, you should allow subscribing
and unsubscribing to individual events without disturbing other event processing in
progress. Second, the subscriber cannot open all the endpoints using the same host,
since that would gain nothing—the subscriber would still get all the unwanted events.
The only way (out of the box) to manage operation-level events is to have as many hosts
as subscribed operations on the contract, all targeting the same service type.

Each host will open a single endpoint corresponding to a specific event (operation). To
subscribe or unsubscribe to a particular event at run-time, you must open or close
respectively the corresponding host. Because you cannot rely on listing the endpoints
in the host config file (this will just make all hosts open all endpoints), you must pro-
grammatically add each desired endpoint to the specific host, as shown in Exam-
ple D-10 in pseudo code. The code in Example D-10 sets up the endpoints exposed to
the publisher in Example D-9.

Example D-10. Equating events with operations

class MySubscriber : IMyEvents
{...}

ServiceHost hostEvent1;
ServiceHost hostEvent2;
ServiceHost hostEvent3;

Binding binding = new NetEventRelayBinding();
Uri baseAddress = new Uri("sb://MyNamespace.servicebus.windows.net/IMyEvents/");

//Subscribing to all events:
hostEvent1 = new ServiceHost(typeof(MySubscriber),baseAddress);
hostEvent1.AddServiceEndpoint(typeof(IMyEvents),binding,"OnEvent1");
hostEvent1.Open();

hostEvent2 = new ServiceHost(typeof(MySubscriber),baseAddress);
hostEvent2.AddServiceEndpoint(typeof(IMyEvents),binding,"OnEvent2");
hostEvent2.Open();

hostEvent3 = new ServiceHost(typeof(MySubscriber),baseAddress);
hostEvent3.AddServiceEndpoint(typeof(IMyEvents),binding,"OnEvent3");
hostEvent3.Open();

Publish-Subscribe with the Service Bus | 795

Download from Library of Wow! eBook <www.wowebook.com>

//Unsubscribe Event2():
hostEvent2.Close();

The code in Example D-10 is tedious, repetitive, and error-prone. It is also tightly cou-
pled to the event contract. Not only that, but there is an expense penalty, since the
service must pay for each host connection instead of a single host connection.

The ServiceBusEventsHost

To streamline, automate, and reduce the cost of subscribing to discrete events, I wrote
the helper host ServiceBusEventsHost:

public class ServiceBusEventsHost : ServiceBusHost
{
 public ServiceBusEventsHost(Type serviceType,Uri baseAddress);
 public ServiceBusEventsHost(Type serviceType,Uri[] baseAddresses);

 /* Additional constructors */

 //Can optionally specify binding
 public virtual NetOnewayRelayBinding RelayBinding
 {get;set;}
 public void SetBinding(string bindingConfigName);

 //Subscription management
 public void Subscribe();
 public void Subscribe(Type contractType);
 public void Subscribe(Type contractType,string operation);

 public void Unsubscribe();
 public void Unsubscribe(Type contractType);
 public void Unsubscribe(Type contractType,string operation);
}

The constructors of ServiceBusEventsHost all require at least one base addresses (with
a regular host, base addresses are optional). For each base address provided, Service
BusEventsHost will open an endpoint per contract supported by the service type. The
address of that endpoint will be the base address suffixed by the events contract type:

[base address]/[events contract name]

The key in implementing ServiceBusEventsHost is that with the service bus, when a
host listens on a service bus address, it actually monitors all of its sub-addresses as well.
As a result, ServiceBusEventsHost will also receive the publisher’s messages sent to:

[base address]/[events contract name]/[event operation]

ServiceBusEventsHost uses interception to rout the messages to the correct operation,
all outside the scope of the service. The service will process only the events it has sub-
scribed to. Managing the events outside the scope of the service, per-host, enables
integration with your application administration tools.

796 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

ServiceBusEventsHost derives from ServiceBusHost (presented in Chapter 11) for au-
tomating security configuration and discovery. ServiceBusEventsHost will default to a
plain instance of NetEventRelayBinding with anonymous message security. You can also
provide ServiceBusEventsHost with the binding to use via the RelayBinding property or
the SetBinding() method. Like any other host, you need to open and close
ServiceBusEventsHost. However, to receive calls (the events), you must use one of the
Subscribe() methods. You can subscribe (or unsubscribe) to all events on all service
contracts supported by the service type, to all events on a particular service contract,
or to a specific event operation on a particular service contract.

There is no need for a config file when using ServiceBusEventsHost, and the code in
Example D-10 is reduced to:

ServiceBusEventsHost host = new ServiceBusEventsHost(typeof(MySubscriber),
 "sb://MyNamespace.servicebus.windows.net/");
host.Open();

//Subscribing to all events:
host.Subscribe();

//Unsubscribe Event2():
host.Unsubscribe(typeof(IMyEvents),"OnEvent2");

Example D-11 shows the partial implementation of ServiceBusEventsHost, without the
error handling and synchronization code.

Example D-11. Implementing ServiceBusEventsHost (partial)

//Partial listing and without error handling and synchronization
public class ServiceBusEventsHost : ServiceBusHost
{
 //Managing the subscriptions
 Dictionary<string,List<string>> Subscriptions
 {get;set;}

 public ServiceBusEventsHost(Type serviceType,Uri[] baseAddresses) :
 base(serviceType,baseAddresses)
 {
 Subscriptions = new Dictionary<string,List<string>>();

 foreach(Uri baseAddress in BaseAddresses)
 {
 Type[] contracts = GetServiceContracts(Description.ServiceType);
 foreach(Type contract in contracts)
 {
 AddServiceEndpoint(contract,RelayBinding,
 baseAddress.AbsoluteUri + contract);
 Subscriptions[contract.Name] = new List<string>();
 }
 }
 IEndpointBehavior selector = new EventSelector(Subscriptions);
 foreach(ServiceEndpoint endpoint in Description.Endpoints)

Publish-Subscribe with the Service Bus | 797

Download from Library of Wow! eBook <www.wowebook.com>

 {
 endpoint.Behaviors.Add(selector);
 }
 }

 public void Subscribe(Type contractType,string operation)
 {
 if(Subscriptions[contractType.Name].Contains(operation) == false)
 {
 Subscriptions[contractType.Name].Add(operation);
 }
 }

 public void Unsubscribe(Type contractType,string operation)
 {
 if(Subscriptions[contractType.Name].Contains(operation))
 {
 Subscriptions[contractType.Name].Remove(operation);
 }
 }

 //Uses reflection to get all service contracts
 static Type[] GetServiceContracts(Type serviceType)
 {...}

 class EventSelector : IDispatchOperationSelector,IEndpointBehavior
 {
 readonly Dictionary<string,List<string>> m_Subscriptions;

 public EventSelector(Dictionary<string,List<string>> subscriptions)
 {
 m_Subscriptions = subscriptions;
 }
 public string SelectOperation(ref Message message)
 {
 string[] slashes = message.Headers.Action.Split('/');
 string contract = slashes[slashes.Length-2];
 string operation = slashes[slashes.Length-1];

 if(m_Subscriptions[contract].Contains(operation))
 {
 return operation;
 }
 else
 {
 return null;
 }
 }
 void IEndpointBehavior.ApplyDispatchBehavior(ServiceEndpoint endpoint,
 EndpointDispatcher endpointDispatcher)
 {
 endpointDispatcher.DispatchRuntime.OperationSelector = this;
 }
 ...

798 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

 }
}

ServiceBusEventsHost stores the subscriptions in the Subscriptions dictionary, which
has a matching key for every service contract supported by the service type. For each
such contract, ServiceBusEventsHost manages a linked list of operations on the con-
tract, representing the subscribed events. The Subscribe() and Unsubscribe() methods
merely add or remove the events from the corresponding operations linked list.

The heart of ServiceBusEventsHost is its ability to intercept the messages sent to the
endpoint and rout them to the desired event-handling operation. For such cases, WCF
provides an extensibility hook in the form of the IDispatchOperationSelector interface,
defined as:

public interface IDispatchOperationSelector
{
 string SelectOperation(ref Message message);
}

The implementation of IDispatchOperationSelector is attached to the endpoint dis-
patcher. Every time a method is received, you can have your implementation of
SelectOperation() arbitrate which operation on the contract will actually process the
message, by returning the name of the selected operation.

Every endpoint dispatcher is represented by the EndpointDispatcher, with the property
DispatchRuntime:

public class EndpointDispatcher
{
 public DispatchRuntime DispatchRuntime
 {get;}
 //More members
}

DispatchRuntime has a property called OperationSelector of the type IDispatch
OperationSelector:

public sealed class DispatchRuntime
{
 public IDispatchOperationSelector OperationSelector
 {get;}
 //More members
}

To install an operation selector, use an endpoint behavior, because the ApplyDispatch
Behavior() method of IEndpointBehavior is given a reference to the endpoint’s
dispatcher:

public interface IEndpointBehavior
{
 void ApplyDispatchBehavior(ServiceEndpoint endpoint,
 EndpointDispatcher endpointDispatcher);
 //More members
}

Publish-Subscribe with the Service Bus | 799

Download from Library of Wow! eBook <www.wowebook.com>

ServiceBusEventsHost has such an implementation of an endpoint behavior with the
private nested class EventSelector:

class EventSelector : IDispatchOperationSelector,IEndpointBehavior
{...}

EventSelector supports both IEndpointBehavior (so it can interact with the dispatcher)
and IDispatchOperationSelector (so it can attach itself to the dispatcher).

The constructors of ServiceBusEventsHost iterate over the collection of endpoints in
the service description, adding an instance of EventSelector for each endpoint.

ServiceBusEventsHost passes a reference to the dictionary containing the subscriptions
to the constructor of EventSelector, and EventSelector stores it as a class member.

In EventSelector, the implementation of ApplyDispatchBehavior() attaches the in-
stance to the dispatcher runtime as an operation selector.

The implementation of SelectOperation() parses the contract and the operation name
out of the incoming message. It then uses them to see if there is a matching subscription
in the dictionary and, if so, returns the name of the target operation. If no subscription
is found, SelectOperation() discards the message.

The ServiceBusEventsClientBase

The publisher can use any proxy over the one-way relay binding to fire the event, in-
cluding my OneWayClientBase<T> presented in Chapter 11. The publisher must provide
the endpoint address with the base address that ServiceBusEventsHost expects, suffixed
by the contract name. To tighten this potential loose screw, I wrote the helper class
ServiceBusEventsClientBase defined in Example D-12.

Example D-12. The ServiceBusEventsClientBase class

public abstract class ServiceBusEventsClientBase<T> : OneWayClientBase<T>
 where T : class
{
 public ServiceBusEventsClientBase(string baseAddress)
 : this(baseAddress,new NetOnewayRelayBinding())
 {}
 public ServiceBusEventsClientBase(string baseAddress,
 NetOnewayRelayBinding binding)
 : base(binding,ToEventAddress(namespaceBaseAddress))
 {}

 /* More constructor */

 static EndpointAddress ToEventAddress(string baseAddress)
 {
 return new EndpointAddress(baseAddress + typeof(T).Name);
 }
}

800 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

All ServiceBusEventsClientBase needs is the events base address, and there is no need
for a config file. ServiceBusEventsClientBase will append the contract name to the
events base address.

You can also provide ServiceBusEventsClientBase with the binding to use as well as
the security parameters offered by the constructors of OneWayClientBase<T>.

To use ServiceBusEventsClientBase<T>, just derive from it like the regular Client
Base<T>:

class MyEventsProxy : ServiceBusEventsClientBase<IMyEvents>,IMyEvents
{
 public MyEventsProxy(string baseAddress) : base(baseAddress)
 {}

 public void OnEvent1()
 {
 Channel.OnEvent1();
 }
 public void OnEvent2(int number)
 {
 Channel.OnEvent2(number);
 }
 public void OnEvent3(int number,string text)
 {
 Channel.OnEvent3(number,text);
 }
}

Publish-Subscribe with Discovery
You can also use the mechanisms of discovery and announcements (presented in Ap-
pendix C) to provide yet another way of implementing a publish-subscribe system.

Unlike all the techniques presented thus far for supporting the publish-subscribe design
pattern, a discovery-based solution is the only publish-subscribe case that requires no
explicit steps by the subscribers or administrator. When utilizing discovery, there is no
need to explicitly subscribe either in code or in the config file. In turn, this significantly
simplifies the deployment of the system and it enables great volatility in the presence
of both publishers and subscribers. You can easily add or remove subscribers and pub-
lishers without any additional administration steps or programming.

When taking advantage of discovery for a publish-subscribe system, the subscribers
can provide a discovery endpoint so that the publish-subscribe service can discover
them, or they can announce their event-handling endpoints, or they can even do both.
However, the likelihood of supporting both is low. Announcing subscribers is very
much akin to the transient subscribers presented previously. Announcing subscribers
is a straightforward way for a running live service instance to receive events. However,
unlike transient subscribers management that relies on a fragile list of duplex proxies,
susceptible to timeouts and other communication failures, the framework I will present

Publish-Subscribe with Discovery | 801

Download from Library of Wow! eBook <www.wowebook.com>

next constructs the proxies on the fly every time, and is far more robust for firing events
at live objects. Discoverable subscribers are akin to the persistent subscribers and you
can use them easily to fire events at a subscriber that normally persists on the disk
(unless the subscriber is a singleton).

The publishers should not discover the subscribers directly, since that may incur the
discovery latency on every event firing (having the cardinality of all endpoints). Instead,
the publishers should discover the publish-subscribe service, which is a one-time neg-
ligible cost. The publish-subscribe service should be a singleton (enabling fast
discovery, since it has cardinality of one). The publish-subscribe service exposes the
same event endpoint as the subscribers, so it looks like a meta-subscriber to the pub-
lishers; that is, it requires the same code to fire the event at the publish-subscribe service
as against an actual subscriber. The events endpoint of the publish-subscribe service
must use a particular scope. This scope enables the publishers to find the publish-
subscribe service rather than the subscribers. In addition to supporting discovering that
specially scoped events endpoint, the publish-subscribe service provides an announce-
ment endpoint.

The publish-subscribe service maintains a list of all subscribers. The publish-subscribe
service can keep that list current by constantly trying to discover the subscribers using
some ongoing background activity. Note that having the publish-subscribe service’s
events endpoint associated with a special scope will also prevent the publish-subscribe
service from discovering itself when discovering all events endpoints. The publish-
subscribe service can also provide an announcement endpoint to monitor subscribers.
Figure D-4 depicts this architecture.

Figure D-4. Discovery-driven publish-subscribe system

802 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

The DiscoveryPublishService<T> Class
To facilitate deploying your own publish-subscribe service, I wrote the Discovery
PublishService<T>, defined as:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public abstract class class DiscoveryPublishService<T> : IDisposable where T: class
{
 public static readonly Uri Scope;

 protected void FireEvent(params object[] args);
 //More members
}

All you need to do is to derive your publish-subscribe service from DiscoveryPublish
Service<T> and specify the events contract as the type parameter. Then, implement the
operations of the event contract by calling the FireEvent() method, as in Example D-5.

For example, consider the following events contract:

[ServiceContract]
interface IMyEvents
{
 [OperationContract(IsOneWay = true)]
 void OnEvent1();

 [OperationContract(IsOneWay = true)]
 void OnEvent2(int number);

 [OperationContract(IsOneWay = true)]
 void OnEvent3(int number,string text);
}

Example D-13 shows how to implement your publish-subscribe service using
DiscoveryPublishService<T>.

Example D-13. Implementing a publish-subscribe service

class MyPublishService : DiscoveryPublishService<IMyEvents>,IMyEvents
{
 public void OnEvent1()
 {
 FireEvent();
 }
 public void OnEvent2(int number)
 {
 FireEvent(number);
 }
 public void OnEvent3(int number,string text)
 {
 FireEvent(number,text);
 }
}

Publish-Subscribe with Discovery | 803

Download from Library of Wow! eBook <www.wowebook.com>

To host your publish-subscribe service, use the static helper method CreateHost<S>()
of DiscoveryPublishService<T>:

public class DiscoveryPublishService<T> : IDisposable where T: class
{
 public static ServiceHost<S> CreateHost<S>()
 where S : DiscoveryPublishService<T>,T;
 //More members
}

The type parameter S is your subclass of DiscoveryPublishService<T>, and T is the
events contract. CreateHost<S>() returns an instance of a service host you need to open.
There is no need to use a config file or to add the events endpoint:

ServiceHost host = DiscoveryPublishService<IMyEvents>.
 CreateHost<MyPublishService>();
host.Open();

//Sometime later

host.Close();

In addition, CreateHost<S>() will obtain an available TCP base address and add the
events endpoint. Example D-14 shows the implementation of CreateHost<S>().

Example D-14. Implementing CreateHost<S>()

public abstract class DiscoveryPublishService<T> : IDisposable where T : class
{
 public readonly static Uri Scope;

 static DiscoveryPublishService()
 {
 Scope = new Uri("net.tcp://ServiceModelEx.DiscoveryPublishService."
 + typeof(T));
 }
 static NetTcpBinding Binding
 {
 get
 {
 return new NetTcpBinding(SecurityMode.Transport,true);
 }
 }
 public static ServiceHost<S> CreateHost<S>()
 where S : DiscoveryPublishService<T>,T
 {
 ServiceHost<S> host =
 DiscoveryFactory.CreateDiscoverableHost<S>(Scope,false);

 foreach(ServiceEndpoint endpoint in host.Description.Endpoints)
 {
 if(endpoint.Address.Uri.Scheme == Uri.UriSchemeNetTcp)
 {
 endpoint.Binding = Binding;
 }

804 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

 }
 return host;
 }
}

The static constructor of DiscoveryPublishService<T> initializes the scope of the events
endpoint. Note that the scope contains the events contract type so that multiple
publish-subscribe services that use different events contracts do not conflict with each
other.

The CreateHost<S>() method largely leverages DiscoveryFactory.CreateDiscoverable
Host<S>() to create a discoverable announcing host, whose endpoints uses the desig-
nated scope. However, since CreateDiscoverableHost<S>() uses the default endpoints
which in turn use the default TCP binding, CreateHost<S>() sets explicitly the binding
for each TCP to use reliability as well.

The Publisher
The publisher needs a proxy to the events service. For that, use my DiscoveryPublish
Service<T>.CreateChannel():

public class DiscoveryPublishService<T> : IDisposable where T : class
{
 public static T CreateChannel()
 {
 EndpointAddress address = DiscoveryHelper.DiscoverAddress<T>(Scope);
 return ChannelFactory<T>.CreateChannel(Binding,address);
 }
}

DiscoveryPublishService<T>.CreateChannel() is fast, since the cardinality is one. Note
the use of the publish-subscribe endpoint scope. The code of the publisher is
straightforward:

IMyEvents proxy = DiscoveryPublishService<IMyEvents>.CreateChannel();
proxy.OnEvent1();
(proxy as ICommunicationObject).Close();

The Subscriber
There is nothing special to do with a subscriber. Simply support the events contract on
a service and add either discovery or announcements (or both) of the events endpoint.

There is little point in combining queuing with a discovery-driven
publish-subscribe system. The reason is that discovery requires the host
to be running, and that rules out disconnected publish-subscribe service
or disconnected subscribers. That said, you can easily modify my helper
classes to support queued endpoints as well.

Publish-Subscribe with Discovery | 805

Download from Library of Wow! eBook <www.wowebook.com>

More on DiscoveryPublishService<T>
Example D-15 shows the rest of the implementation of DiscoveryPublishService<T>.

Example D-15. Implementing DiscoveryPublishService <T>

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single
 UseSynchronizationContext = false)]
public class DiscoveryPublishService<T> : IDisposable where T : class
{
 AnnouncementSink<T> m_AnnouncedSubscribers;
 DiscoveredServices<T> m_DiscoveredServices;

 public DiscoveryPublishService()
 {
 m_AnnouncedSubscribers = new AnnouncementSink<T>();
 m_DiscoveredServices = new DiscoveredServices<T>();
 m_AnnouncedSubscribers.Open();
 m_DiscoveredServices.Open();
 }
 public void Dispose()
 {
 m_AnnouncedSubscribers.Close();
 m_DiscoveredServices.Close();
 }

 protected void FireEvent(params object[] args)
 {
 string action = OperationContext.Current.IncomingMessageHeaders.Action;
 string[] slashes = action.Split('/');
 string methodName = slashes[slashes.Length-1];

 FireEvent(methodName,args);
 }
 void FireEvent(string methodName,object[] args)
 {
 T[] subscribers = GetSubscribers();
 Publish(subscribers,methodName,args);
 }
 T[] GetSubscribers()
 {
 IEnumerable<string> announcedAddress = m_AnnouncedSubscribers.
 FindComplement(Scope).
 Select(address=>address.Uri.AbsoluteUri);

 IEnumerable<string> discoveredAddress = m_DiscoveredServices.
 FindComplement(Scope).
 Select(address=>address.Uri.AbsoluteUri);

 IEnumerable<string> addresses = announcedAddress.Union(discoveredAddress);

 List<T> subscribers = new List<T>();
 foreach(string address in addresses)
 {
 EndpointAddress endpointAddress = new EndpointAddress(address);

806 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

 Binding binding = GetBindingFromAddress(endpointAddress);
 T proxy = ChannelFactory<T>.CreateChannel(binding,endpointAddress);
 subscribers.Add(proxy);
 }
 return subscribers.ToArray();
 }
 static Binding GetBindingFromAddress(EndpointAddress address)
 {
 if(address.Uri.Scheme == "net.tcp")
 {
 return Binding;
 }
 if(address.Uri.Scheme == "net.pipe")
 {
 return new NetNamedPipeBinding();
 }
 Debug.Assert(false,"Unsupported binding specified");
 return null;
 }
 static void Publish(T[] subscribers,string methodName,object[] args)
 {
 WaitCallback fire = (subscriber)=>
 {
 using(subscriber as IDisposable)
 {
 Invoke(subscriber as T,methodName,args);
 }
 };
 Action<T> queueUp = (subscriber)=>
 {
 ThreadPool.QueueUserWorkItem(fire,subscriber);
 };
 subscribers.ForEach(queueUp);
 }
 static void Invoke(T subscriber,string methodName,object[] args)
 {
 Type type = typeof(T);
 MethodInfo methodInfo = type.GetMethod(methodName);
 try
 {
 methodInfo.Invoke(subscriber,args);
 }
 catch(Exception e)
 {
 Trace.WriteLine(e.Message);
 }
 }
}

DiscoveryPublishService<T> maintains two lists of subscribers. The first uses my
AnnouncementSink<T> for announced subscribers and the second uses my Discovered
Services<T> for discovered services. The FireEvent() method used by its subclasses
extracts the operation name from the message headers and calls an internal
FireEvent() method, which calls the GetSubscribers() method. GetSubscribers()

Publish-Subscribe with Discovery | 807

Download from Library of Wow! eBook <www.wowebook.com>

queries the subscribers list for all subscribers that do not support the publish-subscribe
scope (to avoid self-discovery). It then merges the lists into a union of unique entries
(this is required to deal with subscribers that both announce themselves and are dis-
coverable). For each subscriber, GetSubscribers() infers the binding from the address
scheme and creates a proxy to fire at the subscriber. Publishing the events is done
concurrently using threads from the thread pool, very similar to the technique already
described for PublishService<T> in Example D-6.

808 | Appendix D: Publish-Subscribe Service

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX E

Generic Interceptor

At its core, WCF is nothing more than an extensibility model. All the built-in attributes,
behaviors, and infrastructure are implemented using this open and public extensibility
model. In theory, every developer has as much access and power as any member of the
WCF team. As demonstrated throughout this book (with the exception of my security
extensions), as long as you are familiar with the extensibility model, with a mere few
lines of code you can inject powerful behavior and customization into your application.
In practice, however, dealing with the interception mechanism requires intimate
knowledge of the WCF architecture. To simplify matters, I wanted to provide an easy-
to-use abstraction on top of the WCF extensibility model that would, in a way, extend
the extensibility model itself, allowing for intercepting all calls to the service, both on
the client and the service side, in a general manner, and adding custom behavior, with-
out having to deal with the inner workings of WCF. This appendix presents a small
framework I call the generic interceptor, available with ServiceModelEx. It also demon-
strates some advanced WCF programming techniques, as well as the thought process
behind designing such extensions.

Intercepting Service Operations
Recall from Chapter 1 that in the abstract, all WCF does when intercepting calls is
perform pre- and post-call operations. Adding custom steps to this interception mech-
anism is probably the most common way of extending WCF.

Every endpoint dispatcher has a reference to an interface called IOperationInvoker,
defined as:

public interface IOperationInvoker
{
 object[] AllocateInputs();
 object Invoke(object instance,object[] inputs,out object[] outputs);

 //Asynchronous invocation methods
}

809

Download from Library of Wow! eBook <www.wowebook.com>

The dispatcher uses the Invoke() method to invoke the calls on the service instance. In
providing for the invocation, IOperationInvoker is the right place to plug in your code.
Specifically, assigning the dispatcher your implementation of IOperationInvoker will
enable you to hook it in.

The Generic Invoker
The first step in implementing my generic interceptor framework was to provide an
abstract implementation of IOperationInvoker that enables custom pre- and post-call
steps, as shown in Example E-1.

Example E-1. The GenericInvoker class

public abstract class GenericInvoker : IOperationInvoker
{
 readonly IOperationInvoker m_OldInvoker;

 public GenericInvoker(IOperationInvoker oldInvoker)
 {
 m_OldInvoker = oldInvoker;
 }
 public virtual object[] AllocateInputs()
 {
 return m_OldInvoker.AllocateInputs();
 }
 protected virtual void PreInvoke(object instance,object[] inputs)
 {}

 //Always called, even if operation had an exception
 protected virtual void PostInvoke(object instance,object returnedValue,
 object[] outputs,Exception exception)
 {}

 public object Invoke(object instance,object[] inputs,out object[] outputs)
 {
 PreInvoke(instance,inputs);
 object returnedValue = null;
 object[] outputParams = new object[]{};
 Exception exception = null;
 try
 {
 returnedValue = m_OldInvoker.Invoke(instance,inputs,out outputParams);
 outputs = outputParams;
 return returnedValue;
 }
 catch(Exception operationException)
 {
 exception = operationException;
 throw;
 }

810 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

 finally
 {
 PostInvoke(instance,returnedValue,outputParams,exception);
 }
 }
 // Additional asynchronous methods
}

GenericInvoker defines two virtual methods, PreInvoke() and PostInvoke().
PreInvoke() accepts the input parameters as well as the target instance, and
PostInvoke() accepts the output parameters and the returned value as well as the in-
stance and the exception (if one took place). GenericInvoker has an empty implemen-
tation for both methods. It is up to subclasses of GenericInvoker to override one or both
of these methods and add the custom steps.

GenericInvoker accepts as a construction parameter the old implementation of
IOperationInvoker that was associated with the service. This old implementation does
the heavy lifting of allocating the input parameters for the operations, as well as actually
invoking the service. GenericInvoker aims at being as nonintrusive as possible, so it
cannot interfere with that implementation; at any rate, it would not be wise to do so,
as that would entail a large amount of work. GenericInvoker therefore saves the old
invoker in a member variable, and delegates to it its implementation of
AllocateInputs(). The heart of GenericInvoker is the Invoke() method. In it,
GenericInvoker first calls the PreInvoke() method (allowing its subclass to perform
some pre-call processing) and then proceeds to invoke the operation using the old
invoker. GenericInvoker encases the invocation in a try/catch/finally block. Regard-
less of how the operation ends (with or without an exception), GenericInvoker calls the
PostInvoke() method, providing it with the retuned results and the exception, and
allowing the subclass to perform custom post-call processing.

Installing the Interceptor
I wanted to provide for a declarative way of installing the operation, both at the oper-
ation level and at the service level. The trick in doing that is implementing the work
once at the operation level, and then having the service level install all the operation-
level attributes. The IOperationBehavior interface is the operation-level extension that
lets you customize the dispatcher for an operation, in the ApplyDispatchBehavior()
method:

public interface IOperationBehavior
{
 void ApplyDispatchBehavior(OperationDescription operationDescription,
 DispatchOperation dispatchOperation);
 //More methods
}

Intercepting Service Operations | 811

Download from Library of Wow! eBook <www.wowebook.com>

Any method-level attribute that implements IOperationBehavior will be given a chance
to affect the dispatcher (in this case, setting its operation invoker) in the ApplyDispatch
Behavior() method. ApplyDispatchBehavior() provides the dispatchOperation param-
eter of the type DispatchOperation:

public sealed class DispatchOperation
{
 public IOperationInvoker Invoker
 {get;set;}

 //More members
}

Setting the Invoker property replaces the implementation of IOperationInvoker used.
It’s as simple as that.

Example E-2 shows the implementation of my OperationInterceptorBehaviorAttrib
ute.

Example E-2. The OperationInterceptorBehavior attribute

[AttributeUsage(AttributeTargets.Method)]
public abstract class OperationInterceptorBehaviorAttribute :
 Attribute,IOperationBehavior
{
 protected abstract GenericInvoker CreateInvoker(IOperationInvoker oldInvoker);

 public void ApplyDispatchBehavior(OperationDescription operationDescription,
 DispatchOperation dispatchOperation)
 {
 IOperationInvoker oldInvoker = dispatchOperation.Invoker;
 dispatchOperation.Invoker = CreateInvoker(oldInvoker);
 }
 //More methods
}

The OperationInterceptorBehaviorAttribute is an abstract class with an abstract pro-
tected method called CreateInvoker(). CreateInvoker() takes the old invoker and
returns some implementation of GenericInvoker. The implementation of Apply
DispatchBehavior() first saves the old invoker in a local variable and then calls Cre
ateInvoker() to provide a new invoker while wrapping the old invoker. The newly
created invoker is duly set on the dispatcher as the invoker to use from now on. Having
a concrete subclass of the OperationInterceptorBehavior attribute will enable you to
apply the custom invoker discretely on some, but perhaps not all, of the methods of
the service. If you wish to apply the attribute on all operations, it is better to enforce
this design decision at the service level using my ServiceIntercep
torBehaviorAttribute, defined in Example E-3.

812 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

Example E-3. The ServiceInterceptorBehavior attribute

[AttributeUsage(AttributeTargets.Class)]
public abstract class ServiceInterceptorBehaviorAttribute :
 Attribute,IServiceBehavior
{
 protected abstract OperationInterceptorBehaviorAttribute
 CreateOperationInterceptor();

 public void ApplyDispatchBehavior(ServiceDescription serviceDescription,...)
 {
 foreach(ServiceEndpoint endpoint in serviceDescription.Endpoints)
 {
 foreach(OperationDescription operation in endpoint.Contract.Operations)
 {
 if(operation.Behaviors.
 Find<OperationInterceptorBehaviorAttribute>() != null)
 {
 continue;
 }
 operation.Behaviors.Add(CreateOperationInterceptor());
 }
 }
 }
 //More members
}

ServiceInterceptorBehavior, too, is an abstract attribute. It provides the abstract pro-
tected method CreateOperationInterceptor(), which returns some implementation of
the OperationInterceptorBehavior attribute. ServiceInterceptorBehavior supports the
IServiceBehavior interface, whose ApplyDispatchBehavior() method provides the de-
scription of the service:

public interface IServiceBehavior
{
 void ApplyDispatchBehavior(ServiceDescription serviceDescription,...);
 //More methods
}

The ServiceDescription class contains a collection of service endpoints:

public class ServiceDescription
{
 public ServiceEndpointCollection Endpoints
 {get;}

 //More members
}

public class ServiceEndpointCollection : Collection<ServiceEndpoint>
{...}

Intercepting Service Operations | 813

Download from Library of Wow! eBook <www.wowebook.com>

Every endpoint has a Contract property containing the contract description:

public class ServiceEndpoint
{
 public ContractDescription Contract
 {get;}

 //More members
}

The contract description has a collection of operation descriptions:

public class ContractDescription
{
 public OperationDescriptionCollection Operations
 {get;}

 //More members
}

public class OperationDescriptionCollection : Collection<OperationDescription>
{...}

Each operation description has a collection of operation behaviors:

public class OperationDescription
{
 public KeyedByTypeCollection<IOperationBehavior> Behaviors
 {get;}

 //More members
}

The service-level attribute needs to add to this collection of behaviors an
OperationInterceptorBehavior attribute.

In its implementation of ApplyDispatchBehavior(), ServiceInterceptorBehavior iter-
ates over the collection of service endpoints. For each endpoint, it iterates over its
operation collection. For each operation, it checks to see whether its behavior collection
already contains an implementation of the OperationInterceptorBehavior attribute.
This check is required in case the developer applied (by mistake) both an operation-
and a service-level attribute. If the behavior collection does not contain the
OperationInterceptorBehavior attribute, ApplyDispatchBehavior() adds it.

Intercepting Client Calls
To intercept client-side calls, WCF provides the interface IClientMessageInspector,
defined as:

public interface IClientMessageInspector
{
 object BeforeSendRequest(ref Message request,IClientChannel channel);
 void AfterReceiveReply(ref Message reply,object correlationState);
}

814 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

The BeforeSendRequest() method is called just before the message is sent down the
wire, allowing you to affect the request message. Similarly, the AfterReceiveReply()
method is your chance to interact with the reply message for post-call processing.

The client runtime represented by the ClientRuntime class contains a collection of mes-
sage inspectors:

public sealed class ClientRuntime
{
 public SynchronizedCollection<IClientMessageInspector> MessageInspectors
 {get;}

 //More members
}

You can add your message inspector to the collection by associating the proxy with
an endpoint behavior. That behavior needs to add the inspector in the
ApplyClientBehavior() method:

public interface IEndpointBehavior
{
 void ApplyClientBehavior(ServiceEndpoint endpoint,ClientRuntime clientRuntime);
 //More members
}

To encapsulate these steps I wrote the class InterceptorClientBase<T>, defined in
Example E-4.

Example E-4. The InterceptorClientBase<T> class

public abstract class InterceptorClientBase<T> : ClientBase<T> where T : class
{
 public InterceptorClientBase()
 {
 Endpoint.Behaviors.Add(new ClientInterceptor(this));
 }
 public InterceptorClientBase(string endpointName) : base(endpointName)
 {
 Endpoint.Behaviors.Add(new ClientInterceptor(this));
 }

 //More constructors

 protected virtual void PreInvoke(ref Message request)
 {}

 protected virtual void PostInvoke(ref Message reply)
 {}

 class ClientInterceptor : IEndpointBehavior,IClientMessageInspector
 {
 InterceptorClientBase<T> Proxy
 {get;set;}

 internal ClientInterceptor(InterceptorClientBase<T> proxy)

Intercepting Client Calls | 815

Download from Library of Wow! eBook <www.wowebook.com>

 {
 Proxy = proxy;
 }
 object IClientMessageInspector.BeforeSendRequest(ref Message request,
 IClientChannel channel)
 {
 Proxy.PreInvoke(ref request);
 return null;
 }
 void IClientMessageInspector.AfterReceiveReply(ref Message reply,
 object correlationState)
 {
 Proxy.PostInvoke(ref reply);
 }

 void IEndpointBehavior.ApplyClientBehavior(ServiceEndpoint endpoint,
 ClientRuntime clientRuntime)
 {
 clientRuntime.MessageInspectors.Add(this);
 }
 //Rest of the implementation
 }
}

InterceptorClientBase<T> defines a nested private class called ClientInterceptor that
implements both IEndpointBehavior and IClientMessageInspector. The constructors
of InterceptorClientBase<T> add an instance of ClientInterceptor to the proxy’s col-
lection of endpoint behaviors. Inside ClientInterceptor, the implementation of Apply
ClientBehavior() adds itself to the collection of client runtime interceptors.
InterceptorClientBase<T> provides two virtual methods, PreInvoke() and
PostInvoke(), for the use of derived classes. The constructor of ClientInterceptor takes
a back reference to the calling InterceptorClientBase<T>, and it uses that reference to
call back to the PreInvoke() and PostInvoke() methods during the calls to
BeforeSendRequest() and AfterReceiveReply() respectively.

The Trace Interceptors
The first example I’ll show of using the generic interceptors framework is for tracing
and logging. Example E-5 shows a simple example of implementing a generic service-
side interceptor called ParameterTracerInvoker.

Example E-5. The ParameterTracerInvoker

class ParameterTracerInvoker : GenericInvoker
{
 public ParameterTracerInvoker(IOperationInvoker oldInvoker) : base(oldInvoker)
 {}

 protected override void PreInvoke(object instance,object[] inputs)
 {
 Trace.WriteLine("Input Parameters: ");

816 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

 foreach(object argument in inputs)
 {
 Trace.WriteLine(argument.ToString());
 }
 }
 protected override void PostInvoke(object instance,object returnedValue,
 object[] outputs,Exception exception)
 {

 foreach(object output in outputs)
 {
 Trace.WriteLine("Output Parameters: ");
 Trace.WriteLine(output.ToString());
 }

 Trace.WriteLine("Returned: " + returnedValue ?? String.Empty);
 }
}

ParameterTracerInvoker derives from GenericInvoker. Its constructor accepts the old
invoker and passes it to the constructor of GenericInvoker. The implementations of
PreInvoke() and PostInvoke() trace to the Output window in Visual Studio the values
of the input and output parameters, respectively. You can install the ParameterTracer
Invoker on service operations by defining the OperationParameterTracerAttribute:

public class OperationParameterTracerAttribute :
 OperationInterceptorBehaviorAttribute
{
 protected override GenericInvoker CreateInvoker(IOperationInvoker oldInvoker)
 {
 return new ParameterTracerInvoker(oldInvoker);
 }
}

All the method-level attribute needs to do is derive from OperationInterceptor
BehaviorAttribute and override the CreateInvoker() method, returning an instance of
ParameterTracerInvoker wrapping the old invoker.

Example E-6 demonstrates using the OperationParameterTracer attribute.

Example E-6. Using OperationParameterTracerAttribute

[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string MyMethod1(int number,string text);

 [OperationContract]
 string MyMethod2(int number);
}

class MyService : IMyContract
{

The Trace Interceptors | 817

Download from Library of Wow! eBook <www.wowebook.com>

 [OperationParameterTracer]
 public string MyMethod1(int number,string text)
 {
 return "Some Result 1";
 }

 public string MyMethod2(int number)
 {
 return "Some Result 2";
 }
}

Using the definitions from Example E-6, the following client code:

MyContractClient proxy = new MyContractClient();
proxy.MyMethod1(287,"Hello");
proxy.MyMethod2(42);
proxy.Close();

would trace:

Input Parameters:
287
Hello
Output Parameters:
Returned: Some Result 1

To apply the ParameterTracerInvoker at the service level, define the ServiceParameter
TracerAttribute as:

public class ServiceParameterTracerAttribute : ServiceInterceptorBehaviorAttribute
{
 protected override OperationInterceptorBehaviorAttribute
 CreateOperationInterceptor()
 {
 return new OperationParameterTracerAttribute();
 }
}

All the service-level attribute needs to do is derive from ServiceInterceptorBehavior
Attribute and override the CreateOperationInterceptor() method, returning an in-
stance of OperationParameterTracerAttribute.

Example E-7 demonstrates using the ServiceParameterTracer attribute.

Example E-7. Using ServiceParameterTracerAttribute

[ServiceParameterTracer]
class MyService : IMyContract
{
 public string MyMethod1(int number,string text)
 {
 return "Some Result 1";
 }

 public string MyMethod2(int number)
 {

818 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

 return "Some Result 2";
 }
}

Using the definitions of Example E-7, the following client code:

MyContractClient proxy = new MyContractClient();
proxy.MyMethod1(287,"Hello");
proxy.MyMethod2(42);
proxy.Close();

would trace:

Input Parameters:
287
Hello
Returned: Some Result 1
Input Parameters:
42
Returned: Some Result 2

You can use the service-side interceptor independently from the client, or you can
intercept and trace on the client using the TracerClientBase<T> class shown in
Example E-8.

Example E-8. The TracerClientBase<T> class

public class TracerClientBase<T> : InterceptorClientBase<T> where T : class
{
 protected override void PreInvoke(ref Message request)
 {
 string action = request.Headers.Action;
 string[] slashes = action.Split('/');
 string methodName = slashes[slashes.Length-1];

 Trace.WriteLine("***** Calling : " + methodName + "() *****");
 }

 protected override void PostInvoke(ref Message reply)
 {
 string action = reply.Headers.Action;
 string[] slashes = action.Split('/');
 string methodName = slashes[slashes.Length-1];

 methodName = methodName.Replace("Response","");

 Trace.WriteLine("**** Returning from : " + methodName + "() ****");
 }
}

The class TracerClientBase<T> derives from InterceptorClientBase<T>, and it overrides
the PreInvoke() and PostInvoke() methods. The overridden methods trace the invoked
operation name. You use TracerClientBase<T> just as a regular proxy base class, as
shown in Example E-9.

The Trace Interceptors | 819

Download from Library of Wow! eBook <www.wowebook.com>

Example E-9. Deriving from TracerClientBase<T>

class MyContractClient : TracerClientBase<IMyContract>,IMyContract
{
 public string MyMethod1(int number,string text)
 {
 return Channel.MyMethod1(number,text);
 }

 public string MyMethod2(int number)
 {
 return Channel.MyMethod2(number);
 }
}

Using the proxy from Example E-9 with the service from Example E-7, the following
code:

MyContractClient proxy = new MyContractClient();
proxy.MyMethod1(287,"Hello");
proxy.Close();

would trace:

**** Calling operation: MyMethod1() ****
Input Parameters:
287
Hello
Returned: Some Result 1
**** Returning from operation: MyMethod1() ****

Identity Stack Propagation
The second example of using the generic interceptor is about security identity propa-
gation. As explained in Chapter 10, impersonation as a mechanism for identity prop-
agation has many liabilities. Still, sometimes your service is required to pass the identity
of the original caller (or all callers) down to the resources or other services with which
it interacts. Instead of impersonating the callers or passing their identities as explicit
parameters, you can pass the identities out-of-band, in the message headers, and use
the generic interceptor to automate processing of those identities.

The first step is to define the stack of callers. To that end, I defined the SecurityCall
Frame, which represents a single caller identity as well as some additional information
about the caller, such as its address and the operation it invoked:

[DataContract]
public class SecurityCallFrame
{
 [DataMember(IsRequired = true)]
 public string Authentication
 {get;}

 [DataMember(IsRequired = true)]

820 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

 public string IdentityName
 {get;}

 [DataMember(IsRequired = true)]
 public string Address
 {get;}

 [DataMember(IsRequired = true)]
 public string Operation
 {get;}

 //More members
}

Next, I defined the security call stack:

[DataContract]
public class SecurityCallStack
{
 internal void AppendCall();

 public SecurityCallFrame OriginalCall
 {get;}

 public int Count
 {get;}

 public SecurityCallFrame[] Calls
 {get;}

 //More members
}

The implementation details of these types are irrelevant for this appendix.

Using the GenericContext<T> from Appendix B, I defined the security call stack context:

[DataContract]
public class SecurityCallStackContext
{
 public static SecurityCallStack Current
 {
 get
 {
 if(GenericContext<SecurityCallStack>.Current == null)
 {
 return null;
 }
 return GenericContext<SecurityCallStack>.Current.Value;
 }
 set
 {
 GenericContext<SecurityCallStack>.Current =
 new GenericContext<SecurityCallStack>(value);
 }
 }
}

Identity Stack Propagation | 821

Download from Library of Wow! eBook <www.wowebook.com>

To automate passing the call stack, I then defined the class SecurityCallStackClient
Base<T> shown in Example E-10.

Example E-10. The SecurityCallStackClientBase<T> class

public abstract partial class HeaderClientBase<T,H> : InterceptorClientBase<T>
{
 protected H Header
 {get;set;}

 protected override void PreInvoke(ref Message reply);

 //Rest of the implementation
}
public abstract class SecurityCallStackClientBase<T> :
 HeaderClientBase<T,SecurityCallStack>
{
 protected SecurityCallStackClientBase()
 {
 InitializeCallStack();
 }

 //More constructors

 void InitializeCallStack()
 {
 if(OperationContext.Current == null || Header == null)
 {
 Header = new SecurityCallStack();
 }
 else
 {
 Header = SecurityCallStackContext.Current;
 }
 }
 protected override void PreInvoke(ref Message request)
 {
 Header.AppendCall();
 base.PreInvoke(ref request);
 }
}

SecurityCallStackClientBase<T> derives from HeaderClientBase<T,H> (also defined in
Appendix B), and HeaderClientBase<T,H> in turn derives from InterceptorClient
Base<T>.

Every time the client invokes calls on the SecurityCallStackClientBase<T> proxy, the
proxy will automatically append the current identity to the call stack and pass it in the
headers. If all services down the call chain use SecurityCallStackClientBase<T> (or
manually use SecurityCallStackContext), on every call the call stack will contain the
new frame.

822 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

Security Call Stack Interceptor
To process and manage the identities stack, define a subclass of the generic interceptor.
The processing could be as simple as logging the identities, or as complex as digitally
signing the call stack to prevent spoofing by malicious intermediaries along the call
chain and validating the current call stack, as shown in Example E-11.

Example E-11. Validating and logging the call stack with an interceptor

class SecurityCallStackInterceptor : GenericInvoker
{
 public SecurityCallStackInterceptor(IOperationInvoker oldInvoker) :
 base(oldInvoker)
 {}

 protected override void PreInvoke(object instance,object[] inputs)
 {
 SecurityCallStack callStack = SecurityCallStackContext.Current;

 if(callStack != null)
 {
 LogCallChain(callStack);
 ValidateCallChain(callStack);
 SignCallChain(callStack);
 }
 }

 void LogCallChain(SecurityCallStack callStack)
 {...}

 void ValidateCallChain(SecurityCallStack callStack)
 {
 //Perform custom validation steps here
 }

 void SignCallChain(SecurityCallStack callStack)
 {
 //Digitally sign call stack here
 }
}

You can apply the SecurityCallStackInterceptor at the operation or service level using
dedicated one-liner attributes:

public class OperationSecurityCallStackAttribute :
 OperationInterceptorBehaviorAttribute
{
 protected override GenericInvoker CreateInvoker(IOperationInvoker oldInvoker)
 {
 return new SecurityCallStackInterceptor(oldInvoker);
 }
}

Identity Stack Propagation | 823

Download from Library of Wow! eBook <www.wowebook.com>

public class SecurityCallStackBehaviorAttribute :
 ServiceInterceptorBehaviorAttribute
{
 protected override OperationInterceptorBehaviorAttribute
 CreateOperationInterceptor()
 {
 return new OperationSecurityCallStackAttribute();
 }
}

824 | Appendix E: Generic Interceptor

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX F

WCF Coding Standard

A comprehensive coding standard is essential for successful product delivery: it helps
in enforcing best practices and avoiding pitfalls, and it makes knowledge dissemination
across the team easier. Traditionally, coding standards are thick, laborious documents,
spanning hundreds of pages and detailing the rationale behind every directive. While
these are better than no standard at all, such efforts are usually indigestible by the
average developer. In contrast, the WCF coding standard presented here is very thin
on the “why” and very detailed on the “what.” I believe that while fully understanding
every insight that goes into a particular programming decision may require reading
books and even years of experience, applying a standard should not. When absorbing
a new developer into your team, you should be able to simply point the newcomer at
the standard and say: “Read this first.” Being able to comply with a good standard
should come before fully understanding and appreciating it—that should come over
time, with experience. The WCF coding standard presented in this appendix captures
dos and don’ts, pitfalls, guidelines, and recommendations, drawing on the best prac-
tices and helper classes discussed throughout this book.

General Design Guidelines
1. All services must adhere to these principles:

a. Services are secure.

b. Service operations leave the system in a consistent state.

c. Services are thread-safe and can be accessed by concurrent clients.

d. Services are reliable.

e. Services are robust.

2. Services can optionally adhere to these principles:

a. Services are interoperable.

b. Services are scale-invariant.

c. Services are available.

825

Download from Library of Wow! eBook <www.wowebook.com>

d. Services are responsive.

e. Services are disciplined and do not block their clients for long.

Essentials
1. Place service code in a class library, not in any hosting EXE.

2. Do not provide parameterized constructors to a service class, unless it is a singleton
that is hosted explicitly.

3. Enable reliability in the relevant bindings.

4. Provide a meaningful namespace for contracts. For outward-facing services, use
your company’s URL or equivalent URN with a year and month to support ver-
sioning. For example:

[ServiceContract(Namespace = "http://www.idesign.net/2010/09")]
interface IMyContract
{...}

For intranet services, use any meaningful unique name, such as MyApplication. For
example:

[ServiceContract(Namespace = "MyApplication")]
interface IMyContract
{...}

5. With intranet applications, prefer self-hosting to IIS hosting when the WAS is
unavailable.

6. Do not mix and match named bindings with default bindings. Either have all your
bindings be explicitly referenced, or use only default bindings.

7. Do not mix and match named behaviors with default behaviors. Either have all
your behaviors be explicitly referenced, or use only default behaviors.

8. Always name all endpoints in the client config file.

9. Do not use SvcUtil or Visual Studio 2010 to generate a config file.

10. When using a tool such as Visual Studio 2010 to generate the proxy, do clean up
the proxy.

11. Do not duplicate proxy code. If two or more clients use the same contract, factor
the proxy to a separate class library.

12. Always close or dispose of the proxy.

13. When using discovery, prefer dynamic addresses.

14. When using discovery, do support the metadata exchange endpoint over TCP.

15. When using discovery, avoid cardinality of “some.”

826 | Appendix F: WCF Coding Standard

Download from Library of Wow! eBook <www.wowebook.com>

Service Contracts
1. Always apply the ServiceContract attribute on an interface, not a class:

//Avoid:
[ServiceContract]
class MyService
{
 [OperationContract]
 public void MyMethod()
 {...}
}
//Correct:
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

2. Prefix the service contract name with an I:

[ServiceContract]
interface IMyContract
{...}

3. Avoid property-like operations:

//Avoid:
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string GetName();

 [OperationContract]
 void SetName(string name);
}

4. Avoid contracts with one member.

5. Strive to have three to five members per service contract.

6. Do not have more than 20 members per service contract. Twelve is probably the
practical limit.

Data Contracts
1. Avoid inferred data contracts (POCO). Instead, be explicit and apply the

DataContract attribute.

Data Contracts | 827

Download from Library of Wow! eBook <www.wowebook.com>

2. Use the DataMember attribute only on properties or read-only public members.

3. Avoid explicit XML serialization on your own types.

4. Avoid message contracts.

5. When using the Order property, assign the same value to all members coming from
the same level in the class hierarchy.

6. Support IExtensibleDataObject on your data contracts. Use explicit interface
implementation.

7. Avoid setting IgnoreExtensionDataObject to true in the ServiceBehavior and
CallbackBehavior attributes. Keep the default of false.

8. Do not mark delegates and events as data members.

9. Do not pass .NET-specific types, such as Type, as operation parameters.

10. Handle known types using the generic resolver.

11. Suppress the generation of a generic type parameter hash code and provide a legible
type name instead.

Instance Management
1. Prefer the per-call instance mode when scalability is a concern.

2. If setting SessionMode.NotAllowed on the contract, always configure the service in-
stancing mode as InstanceContextMode.PerCall.

3. Do not mix sessionful contracts and sessionless contracts in the same service.

4. Avoid a singleton unless you have a natural singleton.

5. Use ordered delivery with a sessionful service.

6. Avoid instance deactivation with a sessionful service.

7. Avoid demarcating operations.

8. With durable services, always designate a completing operation.

Operations and Calls
1. Do not treat one-way calls as asynchronous calls.

2. Do not treat one-way calls as concurrent calls.

3. Expect exceptions from a one-way operation.

4. Enable reliability even on one-way calls. Use of ordered delivery is optional for one-
way calls.

828 | Appendix F: WCF Coding Standard

Download from Library of Wow! eBook <www.wowebook.com>

5. Avoid one-way operations on a sessionful service. If used, make it the terminating
operation:

[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 void MyMethod1();

 [OperationContract(IsOneWay = true,IsInitiating = false,IsTerminating =true)]
 void MyMethod2();
}

6. Name the callback contract on the service side after the service contract name,
suffixed by Callback:

interface IMyContractCallback
{...}
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{...}

7. Strive to mark callback operations as one-way.

8. Use callback contracts for callbacks only.

9. Avoid mixing regular callbacks and events on the same callback contract.

10. Event operations should be well designed:

a. void return type

b. No out-parameters

c. Marked as one-way operations

11. Avoid using raw callback contracts for event management, and prefer using the
publish-subscribe framework.

12. Always provide explicit methods for callback setup and teardown:

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();

 [OperationContract]
 void Connect();

 [OperationContract]
 void Disconnect();
}
interface IMyContractCallback
{...}

13. Use the type-safe DuplexClientBase<T,C> instead of DuplexClientBase<T>.

14. Use the type-safe DuplexChannelFactory<T,C> instead of DuplexChannelFactory<T>.

Operations and Calls | 829

Download from Library of Wow! eBook <www.wowebook.com>

15. When debugging or in intranet deployment of callbacks over the WSDualHttp
Binding, use the CallbackBaseAddressBehavior attribute with CallbackPort set to 0:

[CallbackBaseAddressBehavior(CallbackPort = 0)]
class MyClient : IMyContractCallback
{...}

Faults
1. Never use a proxy instance after an exception, even if you catch that exception.

2. Do not use the using statement on a proxy.

3. Avoid fault contracts and allow WCF to mask the error.

4. Do not reuse the callback channel after an exception even if you catch that excep-
tion, as the channel may be faulted.

5. Use the FaultContract attribute with exception classes, as opposed to mere serial-
izable types:

//Avoid:
[OperationContract]
[FaultContract(typeof(double))]
double Divide(double number1,double number2);

//Correct:
[OperationContract]
[FaultContract(typeof(DivideByZeroException))]
double Divide(double number1,double number2);

6. Avoid lengthy processing such as logging in IErrorHandler.ProvideFault().

7. With both service classes and callback classes, set IncludeExceptionDetailIn
Faults to true in debug sessions, either in the config file or programmatically:

public class DebugHelper
{
 public const bool IncludeExceptionDetailInFaults =
#if DEBUG
 true;
#else
 false;
#endif
}
[ServiceBehavior(IncludeExceptionDetailInFaults =
 DebugHelper.IncludeExceptionDetailInFaults)]
class MyService : IMyContract
{...}

8. In release builds, do not return unknown exceptions as faults except in diagnostic
scenarios.

9. Consider using the ErrorHandlerBehavior attribute on the service, both for pro-
moting exceptions to fault contracts and for automatic error logging:

830 | Appendix F: WCF Coding Standard

Download from Library of Wow! eBook <www.wowebook.com>

[ErrorHandlerBehavior]
class MyService : IMyContract
{...}

10. Consider using the CallbackErrorHandlerBehaviorAttribute on the callback client,
both for promoting exceptions to fault contracts and for automatic error logging:

[CallbackErrorHandlerBehavior(typeof(MyClient))]
class MyClient : IMyContractCallback
{
 public void OnCallabck()
 {...}
}

Transactions
1. Never manage transactions directly.

2. Apply the TransactionFlow attribute on the contract, not the service class.

3. Do not perform transactional work in the service constructor.

4. Using this book’s terminology, configure services for either Client or Client/Service
transactions. Avoid None or Service transactions.

5. Using this book’s terminology, configure callbacks for either Service or Service/
Callback transactions. Avoid None or Callback transactions.

6. When using the Client/Service or Service/Callback mode, constrain the binding to
flow transactions using the BindingRequirement attribute.

7. On the client, always catch all exceptions thrown by a service configured for None
or Service transactions.

8. Enable reliability and ordered delivery even when using transactions.

9. In a service operation, never catch an exception and manually abort the transaction:

//Avoid:
[OperationBehavior(TransactionScopeRequired = true)]
public void MyMethod()
{
 try
 {
 ...
 }
 catch
 {
 Transaction.Current.Rollback();
 }
}

10. If you catch an exception in a transactional operation, always rethrow it or another
exception.

11. Keep transactions short.

12. Always use the default isolation level of IsolationLevel.Serializable.

Transactions | 831

Download from Library of Wow! eBook <www.wowebook.com>

13. Do not call one-way operations from within a transaction.

14. Do not call nontransactional services from within a transaction.

15. Do not access nontransactional resources (such as the filesystem) from within a
transaction.

16. With a sessionful service, avoid equating the session boundary with the transaction
boundary by relying on auto-complete on session close.

17. Strive to use the TransactionalBehavior attribute to manage transactions on ses-
sionful services:

[Serializable]
[TransactionalBehavior]
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

18. When using a sessionful or transactional singleton, use volatile resource managers
to manage state and avoid explicitly state-aware programming or relying on WCF’s
instance deactivation on completion.

19. With transactional durable services, always propagate the transaction to the store
by setting SaveStateInOperationTransaction to true.

Concurrency Management
1. Always provide thread-safe access to:

a. Service in-memory state with sessionful or singleton services

b. Client in-memory state during callbacks

c. Shared resources

d. Static variables

2. Prefer ConcurrencyMode.Single (the default). It enables transactional access and
provides thread safety without any effort.

3. Keep operations on single-mode sessionful and singleton services short in order to
avoid blocking other clients for long.

4. When you are using ConcurrencyMode.Multiple, you must use transaction auto-
completion.

5. Consider using ConcurrencyMode.Multiple on per-call services to allow concurrent
calls.

6. Transactional singleton service with ConcurrencyMode.Multiple must have
ReleaseServiceInstanceOnTransactionComplete set to false:

832 | Appendix F: WCF Coding Standard

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 ConcurrencyMode = ConcurrencyMode.Multiple,
 ReleaseServiceInstanceOnTransactionComplete = false)]
class MySingleton : IMyContract
{...}

7. Never self-host on a UI thread, and have the UI application call the service.

8. Never allow callbacks to the UI application that called the service unless the call-
back posts the call using SynchronizationContext.Post().

9. When supplying the proxy with both synchronous and asynchronous methods,
apply the FaultContract attribute only to synchronous methods.

10. Keep asynchronous operations short. Do not equate asynchronous calls with
lengthy operations.

11. Do not mix transactions with asynchronous calls.

Queued Services
1. On the client, always verify that the queue (and a dead-letter queue, when

applicable) is available before calling the queued service. Use
QueuedServiceHelper.VerifyQueues() for this purpose.

2. Always verify that the queue is available when hosting a queued service (this is
done automatically by ServiceHost<T>).

3. Except in isolated scenarios, avoid designing the same service to work both queued
and non-queued.

4. The service should participate in the playback transaction.

5. When participating in the playback transaction, avoid lengthy processing in the
queued service.

6. Avoid sessionful queued services.

7. When using a singleton queued service, use a volatile resource manager to manage
the singleton state.

8. When using a per-call queued service, explicitly configure the contract and the
service to be per-call and sessionless:

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{...}

9. Always explicitly set contracts on a queued singleton to disallow sessions:

[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{...}

Queued Services | 833

Download from Library of Wow! eBook <www.wowebook.com>

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
class MyService : IMyContract
{...}

10. The client should call a queued service inside a transaction.

11. On the client side, do not store a queued service proxy in a member variable.

12. Avoid relatively short values of TimeToLive, as they negate the justification for a
queued service.

13. Avoid nontransactional queues.

14. When using a response queue, have the service participate in the playback trans-
action and queue the response in that transaction.

15. Have the response service participate in the response playback transaction.

16. Avoid lengthy processing in a queued response operation.

17. With MSMQ 3.0, prefer a response service to a poison queue service dealing with
failures of the service itself.

18. With MSMQ 4.0, use ReceiveErrorHandling.Reject for poison messages unless
you have advanced processing with ReceiveErrorHandling.Move. Avoid
ReceiveErrorHandling.Fault and ReceiveErrorHandling.Drop.

19. With MSMQ 4.0, consider the use of a response service to handle service playback
failures.

20. Unless dealing with a sessionful contract and service, never assume the order of
queued calls.

21. Avoid multiple service endpoints sharing a queue.

22. Avoid receive context.

Security
1. Always protect the message and provide for message confidentiality and integrity.

2. In an intranet, you can use Transport security as long as the protection level is set
to EncryptAndSign.

3. In an intranet, avoid impersonation. Set the impersonation level to Token
ImpersonationLevel.Identification.

4. When using impersonation, have the client use TokenImpersonationLevel.
Impersonation.

5. Use the declarative security framework and avoid manual configuration.

6. Never apply the PrincipalPermission attribute directly on the service class:

//Will always fail:
[PrincipalPermission(SecurityAction.Demand,Role = "...")]
public class MyService : IMyContract
{...}

834 | Appendix F: WCF Coding Standard

Download from Library of Wow! eBook <www.wowebook.com>

7. Avoid sensitive work that requires authorization at the service constructor.

8. Avoid demanding a particular user, with or without demanding a role:

//Avoid:
[PrincipalPermission(SecurityAction.Demand,Name = "John")]
public void MyMethod()
{...}

9. Do not rely on role-based security in the client’s callback operations.

10. With Internet clients, always use Message security.

11. Allow clients to negotiate the service certificate (the default).

12. Use the ASP.NET providers for custom credentials.

13. When developing a custom credentials store, develop it as a custom ASP.NET
provider.

14. Validate certificates using peer trust.

The Service Bus
1. Prefer the TCP relay binding.

2. Make your services be discoverable.

3. Do use discrete events, as shown in Appendix D.

4. Do not treat buffers as queues.

5. With buffers, avoid raw WCF messages and use the strongly typed, structured calls
technique of BufferedServiceBusHost<T> and BufferedServiceBusClient<T>.

6. Use message security.

7. Do not use service bus authentication for user authentication.

8. Strive for anonymous calls and let the service bus authenticate the calling
application.

The Service Bus | 835

Download from Library of Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX G

ServiceModelEx Catalog

CollectionExtensions
Category
C#

Description
Augments the LINQ collection extensions with additional methods.

See Also
ArrayExtensions

ArrayExtensions
Category
C# 3.0

Description
Provides all the LINQ extensions that return a collection except when operating on an array,
in which case they return an array. Augments the LINQ collection extensions with additional
methods for arrays.

See Also
CollectionExtensions

InProcFactory<S,I>
Category
Hosting

Description
Instantiates a .NET class over WCF. No config file or host is required.

See Also
DuplexClientBase<T,C>

837

Download from Library of Wow! eBook <www.wowebook.com>

ServiceThrottleHelper
NetNamedPipeContextBinding
ServiceHost<T>
GenericResolver

WcfWrapper<S,I>
Category
Hosting

Description
Wraps the InProcFactory<S,I> to provide regular .NET syntax for creating and managing the
service. The result is indistinguishable from plain .NET programming, yet the object is in-
stantiated and called over WCF.

See Also
InProcFactory<S,I>
NetNamedPipeContextBinding

ServiceHost<T>
Category
Hosting

Description
Adds type safety to ServiceHost, adds support for string-based base addresses, streamlines
and automates metadata publishing, automates handling known types, adds any error handler
extensions, adds the ErrorHandlerBehavior to the service, including exception details in faults,
verifies all queues, purges queues on shutdown in debug mode, enables security audits, and
reads throttle values.

See Also
GenericResolver
LogbookManager
LogbookManagerClient
ErrorHandlerHelper
DebugHelper
QueuedServiceHelper

MetadataHelper
Category
Contracts

Description
Performs type-safe contract queries of service metadata.

838 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

See Also
ServiceBusMetadataHelper

DataContractSerializer<T>
Category
Data Contracts

Description
Generic type-safe wrapper of DataContractSerializer.

GenericResolver, GenericResolverBehaviorAttribute, GenericResolverInstaller
Category
Data Contracts

Description
Automates handling known types. Can add specific known types or implicitly all types used
in the application. Installed using host or proxy extension method, or declaratively on the
service class.

See Also
ServiceHost<T>
InProcFactory<S,I>

ServiceThrottleHelper
Category
Instance Management

Description
Sets throttle extensions for ServiceHost.

IInstanceStore<ID,T>
Category
Durable Services

Description
Defines an interface for any instance store.

See Also
FileInstanceStore<ID,T>
TransactionalMemoryStore<ID,T>

ServiceModelEx Catalog | 839

Download from Library of Wow! eBook <www.wowebook.com>

FileInstanceStore<ID,T>, FilePersistenceProvider,
FilePersistenceProviderFactory
Category
Durable Services

Description
File-based store; corresponding provider and provider factory.

See Also
IInstanceStore<ID,T>
TransactionalMemoryProviderFactory
TransactionalInstanceProviderFactory

MemoryProvider, MemoryProviderFactory
Category
Durable Services

Description
Abstract provider and provider factory for in-memory store.

See Also
TransactionalMemoryProviderFactory
TransactionalInstanceProviderFactory
TransactionalMemoryProvider
TransactionalInstanceProvider

TransactionalMemoryStore<ID,T>, TransactionalMemoryProvider,
TransactionalMemoryProviderFactory
Category
Durable Services

Description
In-memory transactional store shared across clients; corresponding provider and provider
factory.

See Also
IInstanceStore<ID,T>
TransactionalInstanceProviderFactory
FilePersistenceProviderFactory

840 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

TransactionalInstanceStore<ID,T>, TransactionalInstanceProvider,
TransactionalInstanceProviderFactory
Category
Durable Services

Description
Per client session in-memory transactional store; corresponding provider and provider
factory.

See Also
IInstanceStore<ID,T>
TransactionalMemoryProviderFactory
FilePersistenceProviderFactory

InstanceContext<T>, DuplexClientBase<T,C>, DuplexChannelFactory<T,C>
Category
Operations

Description
Provide type safety for the client with callback contracts, via either a proxy class or a channel
factory.

See Also
SecureDuplexClientBase<T,C>

DebugHelper
Category
Faults

Description
Constant to include exception details in faults in debug mode only, extension for
FaultException<ExceptionDetail> to extract the CLR exception.

ErrorHandlerHelper
Category
Faults

Description
Used for promoting exceptions and logging errors to LogbookManager.

ServiceModelEx Catalog | 841

Download from Library of Wow! eBook <www.wowebook.com>

See Also

ErrorHandlerBehaviorAttribute
CallbackErrorHandlerBehaviorAttribute

ErrorHandlerBehaviorAttribute, CallbackErrorHandlerBehaviorAttribute
Category
Faults

Description
Used for declaratively promoting exceptions and logging errors to LogbookManager; attributes
for service and callback.

See Also
ServiceHost<T>
ErrorHandlerHelper

ILogbookManager, LogbookManagerClient, LogbookManager
Category
Faults

Description
Service contract for logging errors; proxy for the contract; the logbook service itself.

See Also
ErrorHandlerHelper

BindingRequirementAttribute
Category
Transactions, General

Description
Used for declaratively enforcing the Client/Service propagation mode on the service or the
callback object, declaratively insisting on an intranet-only binding, and declaratively requiring
reliability.

ResourceManager, TransactionalLock
Category
Transactions

Description
Helper classes useful when implementing a transactional resource manager.

842 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

See Also
Transactional<T>

Transactional<T>
Category
Transactions

Description
A generic volatile resource manager. Performs transactions on any serializable type without
compromising on the type programming model.

See Also
ResourceManager
TransactionalLock

TransactionalCollection<C,T>
Category
Transactions

Description
A generic abstract volatile resource manager collection, useful when implementing a custom
transactional collection.

See Also
Transactional<T>

TransactionalArray<T>, TransactionalDictionary<K,T>,
TransactionalLinkedList<T>, TransactionalList<T>, TransactionalQueue<T>,
TransactionalSortedDictionary<K,T>, TransactionalSortedList<K,T>,
TransactionalStack<T>
Category
Transactions

Description
The array and all the collections in .NET as transactional volatile resource managers. The
collections and the array are polymorphic with the nontransactional built-in collections and
are completely interchangeable.

See Also
TransactionalCollection<C,T>

ServiceModelEx Catalog | 843

Download from Library of Wow! eBook <www.wowebook.com>

TransactionalBehaviorAttribute
Category
Transactions

Description
Enables transparent transactional programming on a per-session service. Negates the need to
use a per-call service just for transactions.

See Also
TransactionalMemoryStore<ID,T>
TransactionalMemoryProvider
TransactionalMemoryProviderFactory
Transactional<T>
TransactionalDictionary<K,T>
NetNamedPipeContextBinding

AsyncOneWayClientBase<T>
Category
Concurrency management

Description
A proxy helper class that issues true asynchronous fire-and-forget one-way calls. Requires all
operations on contract to be one-way.

FormHost<F>
Category
Concurrency and Windows Forms

Description
Turns a Windows Forms form into a service, without affecting the form’s implementation.
Service calls simply update the UI.

SafeButton, SafeLabel, SafeListBox, SafeProgressBar, SafeStatusBar,
SafeTextBox, SafeTrackBar
Category
Concurrency and Windows Forms

Description
Controls that can be accessed by any service or callback call, on any thread, to update the UI.

See Also
FormHost<F>

844 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

ThreadPoolSynchronizer, ThreadPoolBehaviorAttribute,
CallbackThreadPoolBehaviorAttribute, ThreadPoolHelper
Category
Custom Synchronization Context

Description
Custom thread pool synchronization context; attributes to apply it declaratively on the service
or a callback object; helper class to close the threads in the pool.

See Also
AffinitySynchronizer
PrioritySynchronizer
ThreadAffinityBehaviorAttribute
PriorityCallsBehaviorAttribute

AffinitySynchronizer, ThreadAffinityBehaviorAttribute,
CallbackThreadAffinityBehaviorAttribute, HostThreadAffinity
Category
Custom Synchronization Context

Description
Custom synchronization context providing thread affinity; attributes to apply it on the service
and the callback; extension methods to apply at the host level.

See Also
ThreadPoolSynchronizer
ThreadPoolBehaviorAttribute
CallbackThreadPoolBehaviorAttribute

PrioritySynchronizer, PriorityClientBase<T>, PriorityContext,
PriorityCallsBehaviorAttribute
Category
Custom Synchronization Context

Description
Custom synchronization context executing calls by priority; proxy class to pass priority in
headers; helper class to extract priority from headers; attribute to apply priority processing
on service.

See Also
ThreadPoolSynchronizer
ThreadPoolBehaviorAttribute
GenericContext<T>

ServiceModelEx Catalog | 845

Download from Library of Wow! eBook <www.wowebook.com>

HeaderClientBase<T,H>

QueuedServiceHelper
Category
Queued Services

Description
Used for verifying all queues on the client, verifying a queue for an endpoint as an extension,
and purging a queue.

See Also
ServiceHost<T>

ClientResponseBase<T>, ServiceResponseBase<T>, ResponseContext
Category
Queued Services

Description
Framework for supporting a response service. Proxy class for the client to pass a response
address and method IDs; a proxy class for the service to automate calling the response service
proxy; response context for direct manipulation.

See Also
GenericContext<T>
HeaderClientBase<T,H>
ClientBufferResponseBase<T>
ServiceBufferResponseBase<T>

CredentialsManager, AspNetSqlProviderService
Category
Security and ASP.NET Providers

Description
Smart client application for managing the ASP.NET credentials store; WCF service wrapping
the ASP.NET providers.

See Also
MetadataHelper

846 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

SecureClientBase<T>, SecureDuplexClientBase<T,C>,
SecurityBehaviorAttribute, SecurityHelper, ServiceSecurity
Category
Declarative Security

Description
Declarative security framework. Declarative security proxy class for regular and duplex calls;
attribute for declarative support for the service; declarative security extension methods for
regular and duplex type-safe channel factories; declarative security extension methods for the
host; extension methods for automatic impersonation; enumeration for declarative security
scenarios.

See Also
DuplexClientBase<T,C>
DuplexChannelFactory<T,C>

IServiceBusProperties
Category
Service Bus

Description
A helper interface for providing the service bus credentials and addresses used. All service bus
hosts and proxies in ServiceModelEx support IServiceBusProperties.

See Also
DiscoverableServiceHost
ServiceBusHost
BufferedServiceBusHost<T>
ServiceBusEventsHost
ServiceBusClientBase<T>
ServiceBusDuplexClientBase<T,C>
BufferedServiceBusClient<T>
ServiceBusEventsClientBase<T>

ServiceBusHelper
Category
Service Bus

Description
A static helper class for streamlining common operations on the service bus such as extracting
the service namespace, administering buffers, and setting the service bus credentials. Used
internally by many of the ServiceModelEx classes but can be used directly as well.

ServiceModelEx Catalog | 847

Download from Library of Wow! eBook <www.wowebook.com>

ServiceBusHost, ServiceBusClientBase<T>, ServiceBusDuplexClientBase<T,C>
Category
Service Bus

Description
A dedicated host proxy class for services that use the service bus. Automate configuring Mes-
sage security, with both anonymous and authenticated client credentials. Offers type-safe
proxy for duplex callbacks.

See Also
DiscoverableServiceHost
ServiceBusEventsHost
ServiceBusEventsClientBase<T>

DiscoverableServiceHost, IServiceBusDicovery, IServiceBusDiscoveryCallback,
ServiceBusDiscoveryClient, ServiceBusDiscoveryFactory,
ServiceBusDiscoveryHelper, IServiceBusAnnouncements,
ServiceBusAnnouncementSink<T>
Category
Service Bus

Description
A small framework that adds WCF-like discovery support for the service bus. Discoverable
ServiceHost publishes the service endpoints to the service bus registry, receives client’s dis-
covery requests on IServiceBusDicovery and responds to the requests on the client’s provided
endpoint of IServiceBusDiscoveryCallback. The client uses ServiceBusDiscoveryClient to
discover the service. The client can use the helper classes of ServiceBusDiscoveryFactory and
ServiceBusDiscoveryHelper to streamline the interaction. DiscoverableServiceHost can also
notify its clients about service state, and the client uses the implementation of
IServiceBusAnnouncements in ServiceBusAnnouncementSink<T> to receive the notifications.

See Also
ServiceBusHost
DiscoveryHelper
DiscoveryFactory
AnnouncementSink<T>

OneWayClientBase<T>
Category
Service Bus

848 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

Description
A dedicated proxy class for the one-way relay binding. Specializes ServiceBusClientBase<T>
and streamlines the particular issues of configuring Message security for the one-way relay
binding.

See Also
ServiceBusClientBase

BufferedServiceBusHost<T>, BufferedServiceBusClient<T>,
BufferedServiceBusChannelFactory<T>
Category
Service Bus

Description
A small framework for supporting structured calls to and from service bus buffers, instead of
using raw WCF messages. Uses the generic interceptor technique along with message headers
for extensibility such as a response service.

See Also
InterceptorClientBase<T>
HeaderClientBase<T,H>
ServiceBufferResponseBase<T>
ClientBufferResponseBase<T>

ClientBufferResponseBase<T>, ServiceBufferResponseBase<T>
Category
Service Bus

Description
Dedicated proxies to support a response interaction over the service bus buffers.
ClientBufferResponseBase<T> is used by the client to call the service, and Service
BufferResponseBase<T> is used by the service to call the response service. Both specialize
BufferedServiceBusClient<T> and automate passing the information in the message headers.
Used just like the response service over MSMQ. Mandate the use of BufferedServiceBus
Host<T> for the buffered service that responds.

See Also
BufferedServiceBusClient<T>
BufferedServiceBusHost<T>
ClientResponseBase<T>
ServiceResponseBase<T>
ResponseContext

ServiceModelEx Catalog | 849

Download from Library of Wow! eBook <www.wowebook.com>

ServiceBusMetadataHelper
Category
Service Bus

Description
Accepts service bus credentials and performs type-safe contract queries of service metadata.

See Also
MetadataHelper

HeaderClientBase<T,H>, HeaderChannelFactory<T,H>, GenericContext<T>
Category
Message Headers

Description
Streamlines passing custom out-of-band parameters to the proxy or channel factory; helper
class for extracting and setting the information in the headers.

See Also
InterceptorClientBase<T>
InterceptorChannelFactory<T>

ContextClientBase<T>, ContextManager
Category
Context Bindings

Description
Streamlines passing custom out-of-band parameters to the proxy over the context bindings;
helper class for extracting and setting the information in the context and managing standard
IDs.

See Also
GenericContext<T>
HeaderClientBase<T,H>

NetNamedPipeContextBinding, NetNamedPipeContextBindingElement,
NetNamedPipeContextBindingCollectionElement
Category
Context Bindings

Description
Adds the context protocol to the IPC binding; helper classes (not required for direct use) for
enabling administrative configuration.

850 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

See Also
ContextClientBase<T>
ContextManager
InProcFactory<S,I>

DiscoveryHelper
Category
Discovery

Description
Helper classes for finding available base addresses, enabling discovery on the host, discovering
service addresses based on cardinality and scope.

See Also
DiscoveryFactory
ServiceBusDiscoveryFactory
ServiceBusDiscoveryHelper

DiscoveryFactory
Category
Discovery

Description
A discovery helper class. It is both a class factory for creating proxies to discovered services
and creating discoverable hosts. Can create proxies based on cardinality and scope, or discover
the MEX endpoint for address and binding.

See Also
DiscoveryFactory
DiscoveryHelper
ServiceBusDiscoveryHelper

AddressesContainer<T>
Category
Discovery

Description
Elaborate container for endpoint addresses, offers multiple indexes and enumerators.

See Also
AnnouncementSink<T>
DiscoveredServices<T>

ServiceModelEx Catalog | 851

Download from Library of Wow! eBook <www.wowebook.com>

AnnouncementSink<T>
Category
Discovery

Description
Encapsulates an announcement endpoint yet specific to contract type. Allows accessing
announced services addresses list via the base class of AddressesContainer<T> as well as sub-
scribing to events notifying of services.

See Also
AddressesContainer<T>
DiscoveredServices<T>
DiscoveryPublishService<T>
ServiceBusAnnouncementSink<T>

DiscoveredServices<T>
Category
Discovery

Description
Continuously discovers in the background services using the discovery endpoint. Allows ac-
cessing discovered services addresses list via the base class of AddressesContainer<T>.

See Also
AddressesContainer<T>
AnnouncementSink<T>
DiscoveryPublishService<T>

PersistentSubscriptionServiceClient, IPersistentSubscriptionService,
ISubscriptionService, PersistentSubscription, PublishService<T>,
SubscriptionManager<T>, PersistentSubscriptionManager
Category
Publish-Subscribe

Description
Framework for implementing publish-subscribe solution. Proxy class for adding persistent
subscribers; service contracts for the publishing and subscription services; base classes for the
implementation of the publishing and subscription services; demo application for managing
persistent subscriptions.

See Also
MetadataHelper
DuplexClientBase<T,C>

852 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

DuplexChannelFactory<T,C>

ServiceBusEventsHost, ServiceBusEventsClientBase<T>
Category
Publish-Subscribe and Service Bus

Description
A host specific to the service bus events relay binding that allows a service to subscribe to
events, and a matching proxy for the publishing clients. They work in concert to support
discrete events using the service bus as an events hub.

See Also
ServiceBusHost
OneWayClientBase<T>

DiscoveryPublishService <T>
Category
Publish-Subscribe and Discovery

Description
Base class for a discovery-enabled publish-subscribe service. DiscoveryPublishService<T>
supports a discover endpoint so that publishers can discover it. DiscoveryPublish
Service<T> provides an announcement endpoint for subscribers, and it continuously discovers
subscribers with a discovery endpoint. Also provides for helper methods for hosts and
publishers.

See Also
AnnouncementSink<T>
DiscoveredServices<T>

GenericInvoker, OperationInterceptorBehaviorAttribute,
ServiceInterceptorBehaviorAttribute
Category
Generic Interceptor

Description
Framework for easy injection of an interceptor to do pre- or post-call processing; attributes
for operation- and service-level declarative use.

See Also
InterceptorClientBase<T>
SecurityCallStackInterceptor
OperationSecurityCallStackAttribute

ServiceModelEx Catalog | 853

Download from Library of Wow! eBook <www.wowebook.com>

SecurityCallStackBehaviorAttribute

InterceptorClientBase<T>, InterceptorChannelFactory<T>
Category
Generic Interceptor

Description
Proxy base class and channel factory for easy interception of client calls.

See Also
HeaderClientBase<T,H>
OperationInterceptorBehaviorAttribute
ServiceInterceptorBehaviorAttribute

SecurityCallFrame, SecurityCallStack, SecurityCallStackContext,
SecurityCallStackClientBase<T>, SecurityCallStackInterceptor,
OperationSecurityCallStackAttribute, SecurityCallStackBehaviorAttribute
Category
Security Identities

Description
Framework for propagating the stack of callers’ identities in the message headers; definitions
of the call stack and supporting types; proxy class enabling the client to push its identity;
interceptor for managing the call stack; attributes to inject the interceptor at the operation or
service level.

See Also
GenericInvoker
OperationInterceptorBehaviorAttribute
ServiceInterceptorBehaviorAttribute
GenericContext<T>
InterceptorClientBase<T>

854 | Appendix G: ServiceModelEx Catalog

Download from Library of Wow! eBook <www.wowebook.com>

Index

A
aborted transactions, 294, 323
absolute addresses, 43
ACID properties, 295
ACS (Access Control Service), 619, 657, 670
Address structure, 119
addresses

elements of, 4
endpoints and, 29
examples, 5
format, 5
HTTP addresses, 6
IPC or named pipes addresses, 6
MSMQ addresses, 7
Service Bus addresses, 7
TCP addresses, 5
transport schemes, 4

AddressesContainer<T> class, 851
administrative configuration, 67
AffinitySynchronizer class, 423, 845
aliasing

EnumMember attribute, 155
operation overloading, 84
Serializable attribute and, 111

ambient transactions
defined, 312
setting, 314

AnnouncementClient class, 746
AnnouncementService class, 747
AnnouncementSink<T> class, 749, 852
anonymous calls, 677, 680
App.config file, 14
AppFabric

Server, 20

Service Bus, 617
ArrayExtensions class, 837
ASMX web services, 25
AspNetSqlProviderService class, 846
AsyncCallbackException, 444
asynchronous calls

completion callbacks, 447–452
concurrency management, 439–459
defined, 439
error handling, 456
invoking, 442
one-way operations, 452, 636
polling, 445–447
proxy-based, 440
requirements, 439
synchronous calls and, 457
transactions and, 457
waiting for completion, 445–447

asynchronous operation invocation, 439
AsyncOneWayClientBase<T> class, 453, 844
AsyncResult interface

AsyncWaitHandle property, 445, 456
auditing, security, 612–616
authentication

definition, 525
intranet, 544
mutual, 527
security and, 525
service bus, 657–667

authorization, 526, 558–563
auto-start services, 21
automatic synchronization, 383
Azure AppFabric Service Bus (see service bus)

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

855

Download from Library of Wow! eBook <www.wowebook.com>

B
base addresses

endpoint configuration, 31, 35
HTTP-GET considerations, 40
IIS 5/6 hosting, 12
self-hosting, 16
typical format, 5

base classes
serialization order, 144
subclasses and, 124

BasicHttpBinding class
functionality, 25
per-session services, 179, 181
reliability and, 78
selection considerations, 26
streaming support, 252
transfer security, 530, 533
transport schemes, 26

BasicHttpContextBinding class, 27
BasicHttpRelayBinding class, 633
behavior configuration, 51
behaviors

defined, 39
instance management, 169
operation, 170
service, 170

Binding class, 35, 63
BindingRequirement

attribute, 377
Attribute class, 318–320

BindingRequirementAttribute class, 842
bindings, 27

(see also context bindings)
callback operations and, 230
choosing, 26
client-side configuration, 58
default, 33
defined, 24
discovery, 736
endpoints and, 29
frequently used, 25
inferring, 38
ordered delivery, 78, 80
programmatic configuration, 34, 64
protocol mapping, 38
reliability and, 78
service bus, 626–633
specialized, 27
streaming and, 252

transaction flow and, 316–324
transaction protocols, 306
transaction-aware, 301, 302, 318
transfer modes and, 677
transport sessions and, 76
working with, 29

bounded generic types, 134
BufferedServiceBusChannelFactory<T> class,

849
BufferedServiceBusClient<T,H> class

CreateChannel() method, 652
Enqueue() method, 651

BufferedServiceBusClient<T> class, 650–652,
849

BufferedServiceBusHost<T>
CloseListeners() method, 649
SendCloseMessages() method, 649

BufferedServiceBusHost<T> class, 644–650,
849

Dequeue() method, 649
OnOpened() method, 649
OnOpening() method, 648

buffers, service bus
buffers versus queues, 635
overview, 634
response service, 652–657
working with, 636–642

C
callback operations

asynchronous calls, 447–452
bindings and, 230
callback reentrancy, 237
client safety and, 429
client setup, 232–235
connection management, 239
contract hierarchy, 246
debugging, 275
duplex, 630
DuplexChannelFactory<T,C> class, 244
events as, 247
faults and, 273–276
reentrancy and, 391
security and, 564, 593, 594
service contracts, 231
service-side invocation, 235–238
synchronization context, 431–439
thread affinity and, 431, 438
thread safety and, 448

856 | Index

Download from Library of Wow! eBook <www.wowebook.com>

transactions and, 375–381
UI synchronization context, 431–435

Callback transaction mode, 376
CallbackBehavior attribute

ConcurrencyMode property, 429
IncludeExceptionDerailInFaults property,

275
timeouts and, 377
UseSynchronizationContext property, 429

CallbackErrorHandlerBehaviorAttribute class,
290, 842

CallbackThreadAffinityBehaviorAttribute
class, 438, 845

CallbackThreadPoolBehaviorAttribute class,
436, 845

cardinality, discovery, 734
certificate, host, 570
ChannelDispatcher class, 223
ChannelFactory<T> class, 70–75, 244
channels

ChannelFactory<T> class, 70–75, 244
client-side, 68
faults and, 257–261, 266
functionality, 70
host-side, 68
InProcFactory class, 71
private-session mode, 177
transport sessions and, 173

Client transaction mode, 320
client-side declarative security, 605–612
client-side programming, 53–67
Client/Service transaction mode, 317–320
ClientBase<T> class

Channel property, 61
InnerChannel property, 184
InvokeAsync() method, 451
proxy chaining, 89
proxy classes and, 61, 184

ClientBufferResponseBase<T> class, 653, 849
ClientResponseBase<T> class, 510, 846
cloud

as interceptor, 633
relay services, 618

coding standards (see WCF coding standard)
CollectionDataContract attribute, 163
CollectionExtensions class, 837
collections

CollectionDataContract attribute, 163
concrete, 160–162

custom, 162
data contracts and, 160–167
defined, 160
IDictionary interface, 165–167
referencing, 164

common name, 568
communication exceptions, 256, 275
CommunicationObject class

OnOpening() method, 286
State property, 49, 222

CommunicationObjectFaultedException, 76,
258

completion callbacks
overview, 447
synchronization context, 450
thread safety and, 448

component-orientation, 688–693
concurrency management

asynchronous calls, 439–459
callback operations, 429–439
callback reentrancy, 237, 238
coding standards, 832
instance management and, 383, 392
per-session services, 356
queued services, 484
resource synchronization context, 396–405
service concurrency modes, 384–392
service synchronization context, 405–428
UI threads and, 415, 433

ConcurrencyMode enumeration
Multiple value, 384–389, 392, 395, 417,

424, 430
Reentrant value, 389–393, 417, 424, 431
Single value, 384, 392–394, 417, 424, 429

config file
administrative throttling, 219
behavior section, 269, 330
binding section, 64
bindingConfiguration tag, 32
client section, 59
declaring known types, 129
endpoint configuration, 30–36
endpoint section, 32
extracting service bus namespace from,

622
httpGetUrl property, 40
poison message handling, 498
providing credentials in, 662
service section, 330

Index | 857

Download from Library of Wow! eBook <www.wowebook.com>

serviceMetadata tag, 40
transactionFlow tag, 32

ConfigurationManager class, 468
context bindings

classes supporting, 27
client-side interaction, 711
creating custom, 717–722
instance IDs and, 205–209
overview, 710
server-side interaction, 712

context deactivation
durable services, 211
instance management, 193, 219, 371
sessionful services, 348

ContextClientBase<T> class, 850
instance IDs, 205
standard IDs, 209

ContextManager class, 206, 213, 850
ContractDescription class, 96
contracts, 29

(see also specific contract types)
defined, 7
endpoints and, 29
namespaces and, 11
transaction modes, 316–324
types of, 7

credentials
message security and, 533, 669
service bus management of, 619
transport security and, 532

CredentialsManager class, 846
custom synchronization contexts, 435

D
data contract resolvers, 129–141

generic, 134–141
installing, 132, 137
ResolveName() method, 130
TryResolveType() method, 130

data contracts
attributes, 111–123
coding standards, 827
collections and, 160–167
defined, 7, 103
delegates, 155
durable services, 211
enumerations, 154
equivalence, 143
event support, 119–123

generics, 156–159
hierarchy, 123–142
implicit, 110
importing, 113–116, 157
inferred, 117–118
interfaces and, 141
objects and, 141
Serializable attribute and, 116–123
serialization, 103–110
shared, 123
versioning, 146–153
via serialization, 110
XML serialization, 117

DataContract attribute
class hierarchy and, 124
CollectionDataContract attribute, 163
durable services, 211
enumerations, 154
functionality, 111
inferred data contracts, 117–118
inheritance, 123
Name property, 143, 158
Namespace property, 114
OptionalField attribute, 151

DataContractSerializer class
composite data contracts, 119
formatter support, 107–109
ReadObject() method, 108
versioning scenarios, 146–153
WriteObject() method, 108

DataContractSerializer<T> class, 108, 839
DataMember attribute, 112, 113

durable services and, 211
importing data contracts, 114
inferred data contracts, 117
IsRequired property, 149
Name property, 143
Order property, 145
properties and, 116

deactivation
explicit, 197
instance, 193–198

dead-letter queue (DLQ), 487–494
deadlocks, 237, 329, 387, 394
debugging

callback operations, 275
faults, 267–273

DebugHelper class, 841
declarative security framework, 595, 596–604

858 | Index

Download from Library of Wow! eBook <www.wowebook.com>

declarative voting, 324
default behavior, 51
default binding, 33
default endpoints, 36
delegates, data contracts, 155
delivery failures

dead-letter queue, 487–494
time to live, 487
types of, 485

DeliveryRequirements attribute, 502, 504
demarcating operations, 190–192, 191
denial of service (DOS) attacks, 527
deserialization

data contract events, 120
messages, 105

dictionaries, 165–167
DiscoverableServiceHost class, 754–760, 848

EnableDiscovery() method, 757
DiscoveredServices<T> class, 743, 852
DiscoverHelper class

DiscoverBinding<T>() method, 738
discovery

address, 723
announcements, 745–752, 764–772
binding, 736
cardinality, 734
endpoint addresses, 728
MEX endpoints and, 736
ongoing, 743–745
overview, 723
scopes, 730–733
service bus, 752–764
service configuration, 724–728
streamlining, 733–742

discovery cardinality, 734
DiscoveryClient class, 728
DiscoveryFactory class, 851

CreateChannel<T>() method, 738
CreateDiscoverableHost<T>() method,

741
DiscoveryHelper class, 726, 851

CreateFindResponse() method, 763
DiscoverAddress<T>() method, 735
DiscoverAddresses<T>() method, 733
EnableDiscovery() method, 727, 749
OnDiscoveryRequest() method, 759

DiscoveryPublishService <T> class, 853
DiscoveryRequestService class, 766
DispatchRuntime class

ChannelDispatcher property, 289
SynchronizationContext property, 422

distributed ID (distributed transaction
identifier), 313

Distributed Transaction Coordinator (DTC),
307–311, 313

distributed transactions, 299
DLQ (dead-letter queue), 487–494
DoEvents() method, 416
DOS (denial of service) attacks, 527
DTC (Distributed Transaction Coordinator),

307–311, 313
duplex callbacks, 630
duplex proxies

callback operations, 233–235
DuplexChannelFactory<T,C> class, 244
type safety and, 241–244

DuplexChannelFactory<T,C> class, 244, 841
DuplexClientBase<T,C> class, 242–244, 841
DuplexClientBase<T> class

duplex proxies, 233, 235
type safety, 241–244
VerifyCallback() method, 243

durable services
automatic behavior, 210–216
context bindings for instance IDs, 205–209
explicit instance IDs, 201
FilelnstanceStore<ID,T> class, 200
functionality, 198
initiating, 199
instance IDs and, 199
instance IDs in headers, 203
instance management, 362
instance management modes, 199
terminating, 199
transactional behavior, 365–369

DurableOperation attribute, 363, 366
DurableOperation behavior attribute

CanCreateInstance property, 212
CompletesInstance property, 212
functionality, 211

DurableOperationContext class
AbortInstance() method, 214
CompleteInstance() method, 214
InstanceId property, 214

DurableService attribute
functionality, 211
instance ID management, 363
persistence providers, 214, 365

Index | 859

Download from Library of Wow! eBook <www.wowebook.com>

SaveStateInOperationTransaction
property, 362, 367

UnknownExceptionAction property, 260
dynamic endpoint addresses, 725

E
EndpointAddress class, 64
EndpointDiscoveryBehavior class, 731
EndpointDiscoveryMetadata class, 729
EndpointNotFoundException, 256, 631
endpoints

administrative configuration, 30–34
announcements and discovery, 746
default, 36
defined, 29
MEX, 42–49, 736, 748
programmatic configuration, 34–36
proxies and, 62
queues and, 470
and service bus authentication, 658
and service bus registry, 623

EndToEndSecurityMode enum, 667
enumerations

data contracts, 154
serialization, 154

EnumMember attribute
aliasing, 155
functionality, 154
Value property, 155

equivalence, data contracts, 143
ErrorHandlerBehavior attribute, 284, 287, 288
ErrorHandlerBehaviorAttribute class, 842
ErrorHandlerHelper class, 841

exception promotion, 279
LogError() method, 281
PromoteException() method, 280, 285,

291
event publishing, 785–789
event relay binding, 632
events

collecting system service for, 21
data contracts and, 119–123
deserialization, 120
functionality, 247
serialization, 120

exception diagnostics, 269
exception promotion, 278
ExceptionDetail class, 267–276
expired messages, 493

explicit deactivation, 197
explicit instance IDs, 201
explicit voting, 326
ExtensionDataObject class, 152

F
factoring service contracts, 90–94
fault contracts

asynchronous calls, 456
callback operations and, 273–276
channels, 266
defined, 7, 263
delivery failures, 485–494
error-handling extensions, 276–291
fault debugging and, 267–273
fault handling, 265
overview, 263
playback failures, 494–501

FaultContract attribute, 263
FaultException

callback operations, 274
client-side exceptions, 256
CreateMessageFault() method, 277
exception promotion, 278
fault contracts and, 263
transaction propagation, 304
transport sessions, 257, 260

FaultException<T> class, 261, 266
exception promotion, 278
fault propagation, 266
Message property, 268

faults
callback operations and, 273–276, 289–

291
channels and, 257–261, 266
coding standards, 830
debugging, 267–273
error extensions, 289–291
error isolation and decoupling, 255–261
error masking, 256
error-handling extensions, 276–291
exception extraction, 271
exception promotion, 278
handling, 280–282
host and error extensions, 285–288
instance management and, 260
recovery challenge, 293
SOAP faults, 261
unknown, 266

860 | Index

Download from Library of Wow! eBook <www.wowebook.com>

federated security, 28
FilelnstanceStore<ID,T> class, 200, 215, 840
FilePersistenceProvider class, 215, 840
FilePersistenceProviderFactory class, 215, 840
FileStream class, 251, 252
FindCriteria class, 735
fire-and-forget semantics, 631
formatters

.NET, 106, 107
WCF, 107–109, 128

FormHost<F> class, 413, 844
forms as services, 412–415
fragmented locking, 386

G
generic data contract resolvers, 134–141
generic interceptor

generic invoker, 810
identity stack propagation, 820–823
installing, 811–814
intercepting client calls, 814–816
intercepting service operations, 809
overview, 809
trace interceptors, 816–820

GenericContext<H> class
instance IDs, 203

GenericContext<T> class, 850
functionality, 705
priority processing, 427

GenericInvoker class, 853
GenericResolver class, 839
GenericResolverBehaviorAttribute class, 839
GenericResolverInstaller class, 839
generics

data contracts and, 156–159
type safety and, 242

H
HeaderChannelFactory<T,H> class, 850
HeaderClientBase<T,H> class, 650, 850

instance IDs, 203
overview, 709
passing information, 427, 509

host factory, 19
host process

architecture, 69
defined, 11

host-side declarative security, 604

hosting
custom IIS/WAS, 19
IIS 5/6 hosting, 19
IIS support, 12
in-process, 12, 60
self-hosting, 13–18, 619
services, 11
throttling and, 220
UI threads and, 406–412
WAS hosting, 19
WAS support, 12, 19

HostThreadAffinity class, 845
HTTP addresses, 6
HTTP bridge, 518–522
HTTP protocol

binding support, 25
callback operations, 230
HTTP addresses, 6
MEX endpoints, 43

HTTP-GET protocol
binding support, 29
metadata support, 3, 39, 40, 95

HTTPS protocol
binding support, 25
MEX endpoints, 43
transport transfer security, 528

hybrid TCP connection mode, 628

I
IAsyncResult interface

AsyncWaitHandle property, 446
defined, 443
IsCompleted property, 446
passing, 444

IClientChannel interface, 184
ICollection<T> interface, 160, 165
ICommunicationObject interface

BeginClose() method, 18
BeginOpen() method, 18
Close() method, 71
InProcFactory class, 73
ServiceHost class, 17, 18
State property, 18

IContactManager interface, 110
IContextChannel interface, 184
IContractBehavior interface, 420
identity management, 533
IDisposable interface

Index | 861

Download from Library of Wow! eBook <www.wowebook.com>

Dispose() method, 62, 71, 171, 174, 178,
193

durable services, 199
IDuplexContextChannel interface, 233
IEndpointBehavior interface

ApplyClientBehavior() method, 289
callback operations, 377, 436
CallbackDispatchRuntime property, 289
generic interceptor, 816
implementing, 289, 290

IEnumerable interface
Add() method, 160, 162, 163, 164
collections and, 160

IEnumerable<T> interface
Add() method, 160, 162, 163, 164
collections and, 160, 165

IErrorHandler interface
ErrorHandlerBehavior class, 288
HandleError() method, 280
host and error extensions, 286, 287
implementing, 282, 284
ProvideFault() method, 277–280

IExtensibleDataObject interface, 152, 153
IFormatter interface

DataContractSerializer class, 107
.NET formatters, 106
NetDataContractSerializer class, 109

IInstanceStore<ID,T> class, 839
IIS (Internet Information Services)

custom hosting, 19
hosting, 12

IList<T> interface, 165
ILogbookManager class, 842
IMetadataExchange interface, 43, 49
impersonation, 550–557
implicit data contracts, 110
ImportAllEndpoints() method, 96
importing

data contracts, 113–116, 157
service contracts, 157

in-doubt transactions, 294
in-process hosting, 12, 60
inferred data contracts, 117–118
infosets, 103
inheritance

DataContract attribute, 123
service contracts, 86–90

InProcFactory class
CloseProxy() method, 74

CreateInstance() method, 72, 73
duplex proxies, 245
implementing, 72
NetNamedPipeContextBinding class, 369,

722
and ServiceHost<T>, 140
transactional behavior, 369

InProcFactory<S,I> class, 837
instance deactivation, 193–198
instance IDs

context bindings, 205–209
durable storage and, 199
explicit, 201
in headers, 203

instance management
behaviors, 169
coding standards, 828
concurrency and, 383, 392
defined, 169
demarcating operations, 190–192
durable services, 198–216, 363
exceptions and, 260
instance deactivation, 193–198
modes and transactions, 374
per-call services, 169, 171–177, 345–348
per-session services, 169, 177–185, 348–

362
programmatic, 214
queued services, 477–484
singleton services, 169, 185–189, 371–374
throttling, 217–224

InstanceContext class
callback operations, 232
ReleaseServiceInstance() method, 197
type safety, 241

InstanceContext<T> class, 241, 841
InstanceContextMode enumeration

defining, 170
PerSession value, 179
Single value, 186, 395

instanceId key, 207
Inter-Process Communication (see IPC)
InterceptorChannelFactory<T> class, 854
InterceptorClientBase<T,H> class

PreInvoke() method, 652
InterceptorClientBase<T> class, 854
interfaces, objects and, 141
Internet application scenario

authentication, 586–588

862 | Index

Download from Library of Wow! eBook <www.wowebook.com>

identity management, 584
message protection, 568–572
securing the Internet bindings, 566–568
using the ASP.NET providers, 575–593

Internet application security
overview, 566

Internet Information Services (see IIS)
intranet application security

authentication, 572
constraining message protection, 543
identities, 547–548
identity management, 563
impersonation, 550–557
securing the intranet bindings, 536–543
security call context, 548
using Windows credentials, 574

InvalidDataContractException, 116, 124
InvalidOperationException, 81, 652

bindings and, 256
callback hierarchy and, 246
callback operations and, 378
deadlocks, 237
demarcating operations, 191
duplex proxies and, 241
exception promotion, 279
explicit voting, 378
one-way operations, 227
operation overloading, 83
proxies and, 272
queued services, 477, 480, 481
session IDs and, 185
throttling and, 223
transaction propagation, 304, 318, 320
voting and, 332

IOperationBehavior interface, 319
IPC (Inter-Process Communication)

addresses, 6
binding support, 25, 183, 306, 644
discovery and, 730
MEX endpoints, 43
transaction-aware bindings, 301
transport transfer security, 528

IPersistentSubscriptionService interface, 852
IServiceBehavior interface

ApplyDispatchBehavior() method, 283,
284, 285

ErrorHandlerBehavior class, 288
host and error extensions, 286, 287
KeyedByTypeCollection<T> class, 220

metadata exchanges, 40
Validate() method, 319

IServiceBusAnnouncements interface, 764,
848

IServiceBusDiscovery interface, 753, 848
IServiceBusDiscoveryCallback interface, 848
IServiceBusProperties interface, 847
IsolationLevel enumeration

ReadCommitted value, 328
ReadUncommitted value, 328
RepeatableRead value, 328
Serializable value, 328, 329, 340
Unspecified value, 329

ISubscriptionService interface, 852

K
Kernel Transaction Manager (KTM), 308, 310,

313
KnownType attribute

applying multiple times, 128
configuring, 129
data contract hierarchy and, 126, 128
functionality, 124–126
generic resolver, 134
interfaces and, 141

KTM (Kernel Transaction Manager), 308, 310,
313

L
lightweight protocol, 305
Lightweight Transaction Manager (see LTM)
LINQ, Any() method, 49
local ID (local transaction identifier), 313
LogbookManager class, 842
LogbookManager service, 281, 285
LogbookManagerClient class, 842
LTM (Lightweight Transaction Manager)

distributed ID, 313
functionality, 308
local ID, 313
promoting transactions, 310

M
marshaling by value, 104
MemoryProvider class, 840
MemoryProviderFactory class, 365, 840
MemoryStream class, 251, 252
Message class, 277

Index | 863

Download from Library of Wow! eBook <www.wowebook.com>

message contracts, 7
message headers

client-side interaction, 702
encapsulating, 704–707
instance IDs in, 203
overview, 701
server-side interaction, 704
streamlining client, 708

message pump, 400
message reliability, 77
Message Transport Optimization Mechanism

(MTOM), 24
MessageBufferClient class, 638, 642, 649
MessageBufferPolicy class, 636
MessageQueue class, 466
messages

defined, 3
deserializing, 105
operational considerations, 24
ordered delivery, 78, 80
streaming, 251, 252
transfer security, 527–532
transport sessions and, 173, 669

metadata exchange
class hierarchy, 123
enabling administratively, 39
enabling programmatically, 40–42
fault handling, 265
Metadata Explorer tool, 49, 97, 742, 748,

772
MetadataHelper, 98
over HTTP-GET, 39
processing programmatically, 95–97
publishing considerations, 3, 39
queued calls and, 471
ServiceBusMetadataHelper, 666

metadata exchange endpoints (see MEX
(metadata exchange) endpoints)

Metadata Explorer tool, 49, 97, 742, 748, 772
MetadataExchangeBindings class, 665
MetadataExchangeClient class

functionality, 96, 97
GetMetadata() method, 96, 100
and service bus authentication, 665

MetadataHelper class, 838
functionality, 98–101
GetAddresses() method, 101
GetContracts() method, 101
GetEndpoints() method, 100, 101

GetOperations() method, 101
QueryContract() method, 98, 100
QueryMexEndpoint() method, 100

MetadataImporter class, 96
MetadataResolver class, 97
MetadataSet class, 96
MethodImpl attribute, 387
metrics, factoring, 93
MEX (metadata exchange) endpoints

adding programmatically, 46
behavior configuration, 51
discovery and, 736
Metadata Explorer tool, 49
overview, 42
ServiceHost<T> class, 47
standard endpoints, 44

MSMQ (Microsoft Message Queue)
binding support, 25, 28
MSMQ addresses, 7
poison messages, 495–501
promoting transactions, 310
transport transfer security, 528
types of queues, 464

MSMQ addresses, 7
MSMQ workgroup installation, 465
MsmqBindingBase class

DeadLetterQueue property, 488
delivery failures, 486
Durable property, 477
ExactlyOnce property, 477
playback failures, 495
TimeToLive property, 487

MsmqIntegrationBinding class, 28
MsmqMessageProperty class, 491
MTOM (Message Transport Optimization

Mechanism), 24
mutual authentication, 527

N
namespaces

configuring endpoints, 31
contracts and, 11
reserving port, 17
service bus, 620

.NET
formatters, 106
serialization, 105
synchronization context, 397–399
transactional memory, 371

864 | Index

Download from Library of Wow! eBook <www.wowebook.com>

net.msmq protocol, 7
net.pipe protocol, 6
net.tcp protocol, 5
NetDataContractSerializer class, 109
NetDispatcherFaultException, 150
NetEventRelayBinding class, 633
NetMsmqBinding class

functionality, 25
operations support, 226
queued calls, 462
reliability and, 78
response service and, 506
transfer security, 530, 533, 541
transport schemes, 26

NetNamedPipeBinding class
callback operations, 230
functionality, 25
IPC binding, 25
per-session services, 179, 181
reliability and, 78, 302
transfer security, 530, 533, 539
transport schemes, 26

NetNamedPipeContextBinding class, 369,
717–722, 850

NetNamedPipeContextBinding Element class,
850

NetNamedPipeContextBindingCollectionEle
ment class, 850

NetPeerTcpBinding class, 28, 226
NetTcpBinding class

binding configuration, 36
callback operations, 230
functionality, 25
per-session services, 179, 181
reliability and, 78, 79, 302
transfer security, 530, 533, 537
transport schemes, 26

NetTcpContextBinding class, 27
NetTcpRelayBinding class, 626
NetworkStream class, 251
None transaction mode, 322, 376
NonSerialized attribute, 105
nontransactional queues, 476

O
ObjectDisposedException, 239, 256
OleTx protocol, 305
OnDeserialized attribute/event, 120
OnDeserializing attribute/event, 120, 149

one-way operations, 676
asynchronous calls, 452
AsyncOneWayClientBase, 453
configuring, 226
exceptions and, 228
functionality, 226
per-session services and, 227
reliability and, 227
transaction propagation, 304

one-way relay bindings, 631
OneWayClientBase<T> class, 683, 849
OnSerialized attribute/event, 120
OnSerializing attribute/event, 120
OpenForms collections, 408
operation behaviors, 170
operation call context, 184
operation contracts, 302–304
operation overloading, 83–85
OperationBehavior attribute

callbacks, 376
functionality, 170
ReleaselnstanceMode property, 193
TransactionAutoComplete property, 324
TransactionScopeRequired property, 317,

320, 325
OperationContext class

Current method, 184, 232
GetCallbackChannel<T>() method, 235
Host property, 188
InstanceContext property, 197
SessionId property, 184
SetTransactionComplete() method, 326,

327
OperationContract attribute

Action property, 87, 88
AsyncPattern property, 441
callback operations, 231
functionality, 9
IsInitiating property, 191, 192
IsOneWay property, 226, 227
IsTerminating property, 191, 192
Name property, 11, 84
ReplyAction property, 87, 88
TransactionFlowEnabled property, 318

OperationInterceptorBehaviorAttribute class,
853

operations
callback, 230–247
defined, 9

Index | 865

Download from Library of Wow! eBook <www.wowebook.com>

demarcating, 190–192
events and, 247–251
one-way, 226–230
request-reply, 225
streaming, 251–254

OperationSecurityCallStackAttribute class,
854

OptionalField attribute, 151
Oracle, 310
ordered delivery

bindings and, 78
requiring, 80

out-of-band callbacks, 379
overloading, operation, 83

P
parallel task library, 403
peer networks, 28
per-call services

benefits, 171
choosing, 177
cleanup operations, 176
concurrency management, 392
configuring, 172
connection management, 240
defined, 169
designing, 174
instance management, 169, 171–177, 345–

348
performance and, 176
queued services, 478
transport sessions and, 173

per-session services
completing on session end, 357–359
concurrency management, 393
concurrent transactions, 356
configuring, 178–182
connection management, 241
defined, 169
disabling service instance release, 353
hybrid state management, 360–362
instance deactivation, 193–198
instance management, 169, 177–185
one-way operations and, 227
overview, 348
private-session mode, 177
queued services, 480–482
releasing service instance, 348–353
reliability, 182

session ID, 184, 185
state-aware services, 354
terminating, 185
transaction lifecycle, 356
transactional affinity, 359

performance, per-call services and, 176
persistence providers

custom, 215
DurableService attribute, 214, 365
FileInstanceStore<ID,T> class, 215
PersistenceProvider class, 214, 215
PersistenceProviderFactory class, 214
SQL Server, 216
SqlPersistenceProvider class, 216
SqlPersistenceProviderFactory class, 216

PersistenceProvider class, 214, 215
PersistenceProviderFactory class, 214
persistent subscribers, 777, 781–784, 790
PersistentSubscription class, 852
PersistentSubscriptionManager class, 852
PersistentSubscriptionServiceClient class, 852
plain old CLR object (POCO), 118
playback failures, 494–501
POCO (plain old CLR object), 118
poison messages, 495–501
polling asynchronous calls, 445–447
port numbers

HTTP addresses, 6
relay bindings, 633
reserving namespace, 17

priority processing, 425–428
PriorityCallsBehaviorAttribute class, 426, 845
PriorityClientBase<T> class, 427, 845
PriorityContext class, 845
PrioritySynchronizer class, 426, 845
private keys, 568
private queues, 7
private-session mode

configuring, 178–182
defined, 177

programmatic configuration, 67
promoting transactions, 310
protocol mapping, 38
proxies

Abort() method, 258
asynchronous calls, 440
call timeout, 63
ChannelFactory<T> class, 70
channels and, 67

866 | Index

Download from Library of Wow! eBook <www.wowebook.com>

ClientBase<T> class, 61, 184
closing, 62, 259
Dispose() method, 62
duplex, 233, 241–244
generating, 53–57
location transparency, 4
operation overloading, 84
proxy chaining, 89
and queued services, 511
WcfTestClient.exe, 66

proxy chaining, 89
public keys, 568
public queues, 7, 464
publisher service

background, 775
defined, 247
design pattern, 776
event management, 247–251
framework, 777–808
metadata, 3, 39

publishers, 632
PublishService<T> class, 852

Q
queued calls

architecture, 463
configuration/setup, 464–471
load balancing, 500
NetMsmgBinding class, 462
queued contracts, 463

queued services
client-side, 467, 471
coding standard, 833
concurrency management, 484
connected calls and, 501–504
delivery, 471–476
delivery failures, 485–494
disconnections, 461
HTTP bridge, 518–522
instance management, 477–484
nontransactional, 476
playback, 471–476
playback failures, 494–501
publishers and subscribers, 792
purging, 469
queued calls, 462–471
response address to proxy, 511
response service, 504–517
service-side programming, 512

throttling and, 485
transactions, 471–477, 514–517

QueuedServiceHelper class, 467, 470, 846

R
ReceiveContext class, 500
ReceiveErrorHandling enumeration

Drop value, 497
Fault value, 496
Move value, 497
Reject value, 497

reentrancy, 390
relative addresses, 43
relative URIs, 14, 32
relay service

defined, 618
RelayClientAuthenticationType enum, 663
relayed TCP connection mode, 628
ReleaseInstanceMode enumeration

AfterCall value, 195, 196
BeforeAndAfterCall value, 196, 197
BeforeCall value, 194, 196
None value, 194, 196

reliability
bindings and, 78
configuring, 79
message, 77, 78
one-way operations and, 227
service bus, 620
sessions and, 182
transactions and, 302
transport, 77

ReliableSession class, 76, 79
request-reply operations, 225
resolvers

data contract, 129–141
generic resolver, 134

resource managers, 301
resource synchronization context

.NET, 397–399
overview, 396
UI, 400

ResourceManager class, 842
resources, services and, 393–396
response services, 504
ResponseContext class, 507, 846
root transaction scope, 334

Index | 867

Download from Library of Wow! eBook <www.wowebook.com>

S
Safe controls, 844
SafeLabel class, 404
scalability, 10X golden rule, 177
scope, 730
SecureClientBase<T> class, 847
SecureDuplexClientBase<T,C> class, 847
security, 535

(see also intranet application scenario)
anonymous application scenario, 591–593
authentication, 525
authorization, 526
B2B application scenario, 585–591
callbacks and, 564, 593, 594
client-side, 605–612
coding standards, 834
federated, 28
host-side declarative, 604
identity management, 533
messages and, 24
no security scenario, 593–595
overall policy, 525, 534
queued services and, 486
scenario-driven approach, 534
SecurityBehavior attribute, 596–604
service bus, 657, 667
transfer security, 527–532

security audits, 612–616
security policy, 525, 534
security principal, 558
SecurityAccessDeniedException, 256
SecurityBehaviorAttribute class, 596–604, 847
SecurityCallFrame class, 854
SecurityCallStack class, 854
SecurityCallStackBehaviorAttribute class, 854
SecurityCallStackClientBase<T> class, 854
SecurityCallStackContext class, 854
SecurityCallStackInterceptor class, 854
SecurityHelper class, 847
SecurityNegotiationException, 256
self-hosting

base addresses, 16
choosing a host, 22
overview, 13–15
required for discovery, 724
required for relay service, 619
ServiceHost<T> class, 18
singleton, 23
Visual Studio 2010, 16

SendOrPostCallback delegate, 400
Serializable attribute

class hierarchy and, 124
concrete collections, 160
data contracts and, 116–123
functionality, 105

serialization
class hierarchy and, 144
data contract events, 120
data contracts and, 103–110
enumerations, 154
.NET, 105

service behaviors, 170
service bus

and ACS (Access Control Service), 619,
657

adding default endpoints, 626
addresses, 7
as a relay service, 619
authentication, 657–667
auto-start, 21
bindings, 27, 626–633
buffered services, 643–652
buffers versus queues, 635
buffers, working with, 636–642
connection modes, 628
connection payment plans, 620
creating a service namespace, 620
discovery, 752–764
Explorer, 625
ExtractNamespace() method, 623
Message security, 669
metadata over the, 665
overview, 617
programming the, 620
registry, 623
response service, 652–657
sending and receiving messages, 642
transfer security, 667–683
Transport security, 668

service bus security, 657, 667
service contract factoring, 91–94
service contracts

callback hierarchy, 246
callback operations, 231
client-side hierarchy, 87–90
coding standards, 827
collections and, 160
contract queries, 95–101

868 | Index

Download from Library of Wow! eBook <www.wowebook.com>

defined, 7
factoring and design, 90–94
importing, 157
inheritance, 86–90
operation overloading, 83–85
operations, 225

service synchronization context
forms as services, 412–415
hosting in UI thread, 406–412
overview, 405
parallel task library, 403
priority processing, 425–428
thread affinity, 423
thread pool synchronizer, 418–423
UI threads, 415

Service transaction mode, 321, 324, 376
service transactional callbacks, 379
service-orientation (SO)

background, 691
component-orientation, 688–693
defined, 2
history, 685
object-orientation, 687
tenets/principles, 694–696
what’s next, 696–699

service-oriented applications, 2, 693
Service/Callback transaction mode, 376
ServiceBehavior attribute

ConcurrencyMode property, 237, 350, 384
functionality, 170
IgnoreExtensionDataObject property, 153
IncludeExceptionDetailInFaults property,

268
InstanceContextMode property, 170, 172,

178, 186
ReleaseServiceInstanceOnTransactionCom

plete property, 348–355, 360, 371,
372

TransactionAutoCompleteOnSessionClose
property, 358

TransactionIsolationLevel property, 329
TransactionTimeout property, 330
UseSynchronizationContext property, 406

ServiceBufferResponseBase<T> class, 655,
849

ServiceBusAnnouncementSink<T> class, 769–
772, 848

ServiceBusClientBase<T> class, 681, 848

ServiceBusDiscoveryClient class, 760–764,
848

ServiceBusDiscoveryFactory class, 764, 848
ServiceBusDiscoveryHelper class, 764, 848
ServiceBusDualClientBase<T,C> class, 683
ServiceBusDuplexClientBase<T,C> class, 848
ServiceBusEventsClientBase<T> class, 853
ServiceBusEventsHost class, 853
ServiceBusHelper

SetServiceBusCredentials() method, 666
ServiceBusHelper class, 847

AddServiceBusDefaultEndpoints() method,
626

ConfigureBinding() method, 680, 681
ConfigureMessageSecurity() method, 680
CreateBuffer() method, 640
DeleteBuffer() method, 640
PurgeBuffer() method, 640
SetBehavior() methods, 661
SetServiceBusCredentials() methods, 660,

662
VerifyBuffer() method, 640

ServiceBusHost class, 848
ConfigureAnonymousSecurity() method,

678
ServiceBusMetadataHelper class, 666, 850
ServiceContract attribute

callback operations, 243
CallbackContract property, 231
contract queries, 100
functionality, 8, 83
inheritance, 86
Name property, 11
SessionMode property, 178, 179

ServiceDescription class, 220
ServiceEndpoint class

channel support, 71
Contract property, 96
endpoint support, 96

ServiceHost class
Abort() method, 18
AddDefaultEndpoints() method, 38
AddServiceEndpoint() method, 34, 46
Close() method, 14
endpoint configuration, 34
ICommunicationObject interface, 17, 18
Main() method, 14
Open() method, 14
self-hosting, 14–15

Index | 869

Download from Library of Wow! eBook <www.wowebook.com>

SetThreadAffinity() method, 424
Singleton property, 189
SingletonInstance property, 188, 189

ServiceHost<T> class, 838
AddAllMexEndPoints() method, 47, 49
AddErrorHandler() method, 287, 288
EnableMetadataExchange() method, 47
exception diagnostics, 270
functionality, 18
and generic resolvers, 139
HasMexEndpoint property, 47, 49
MEX endpoints, 47
queuing, 466
ServiceThrottle property, 224
SetThreadAffinity() method, 424
streamlining, 189

ServiceHostBase class
AddDefaultEndpoints() method, 626
ChannelDispatchers property, 223, 283
CloseTimeout property, 15
Description property, 40, 220

ServiceHostFactory class, 20
main() method, 20

ServiceInterceptorBehaviorAttribute class, 853
ServiceKnownType attribute

applying multiple times, 128
functionality, 126
interfaces and, 141

ServiceMetadataBehavior class, 42
ServiceModelEx library, xxii–854, 837
ServiceRegistrySettings class, 624
ServiceResponseBase<T> class, 512–514, 513,

846
ServiceSecurity class, 847
ServiceSecurity enum, 680
ServiceThrottleHelper class, 222, 839
ServiceThrottlingBehavior class, 221
session ID, 184, 185
sessionful services (see per-session services)
sessiongram, 477
SessionMode enumeration

Allowed value, 179
NotAllowed value, 181
queued services, 477–484
queued sessionful services, 482
Required value, 180, 181, 191, 358
transport sessions, 179

shared data contracts, 123
shared secret authentication, 659–663

single-phase commit protocol, 301
singleton services

auto-start, 21
choosing, 189
concurrency management, 393
configuring, 185
connection management, 240
defined, 169, 185
initializing, 187
instance management, 169, 185–189, 371–

374
queued, 483
stateful, 372
subscribers, 792

SOAP faults, 261
SoapFormatter class, 106
soft impersonation, 564
SQL Server (Microsoft)

LogbookManager service, 281
persistence provider, 216
promoting transactions, 310

SqlPersistenceProvider class, 216
SqlPersistenceProviderFactory class, 216
state identifier, 345
state objects, 449
state-aware services, 174, 354
static addresses, 725
Stream class

formatters and, 107
functionality, 251, 252
TransferMode property, 252

streaming
and binding, 252
messages, 251
transport and, 253

streaming transfer mode, 251
StreamingContext structure, 120
streams, 105
subclasses

base classes and, 124
hierarchy in, 123
serialization order, 144

subscriber
defined, 247

subscriber service
background, 775
design pattern, 776
event management, 247–251
framework, 777–808

870 | Index

Download from Library of Wow! eBook <www.wowebook.com>

subscriber types, 777
subscribers, 632
SubscriptionManager<T> class, 778, 852
.svc files

Factory tag, 19
IIS hosting, 12
WAS hosting, 19

SvcConfigEditor file editor, 60, 66
SvcUtil utility

client config file, 59
generating proxies, 56–57
importing data contracts, 113
XML serialization, 117

synchronization
automatic, 383
manual, 383

synchronization context
affinitySynchronizer, 423
callbacks and, 431–439
defined, 397
prioritySynchronizer, 426
resource, 396–405
service, 405–428
SynchronizationContext class, 397
ThreadPoolSynchronizer class, 418–423
WindowsFormsSynchronizationContext

class, 400
working with, 398

SynchronizationContext class, 397
Syndication Service Library project, 67
System.Messaging, 636, 643
System.Runtime.Serialization namespace, 107,

111, 120
System.ServiceModel namespace, 2
System.ServiceModel.Channels namespace,

491
System.ServiceModel.Description namespace,

42, 95
System.ServiceModel.Persistence namespace,

216
System.Threading namespace, 397
System.Transactions namespace, 311, 328,

331
System.WorkflowServices assembly, 216

T
TCP

addresses, 5
binding support, 25, 306

MEX endpoints, 43
relay binding support, 626–630, 670–675
transaction-aware bindings, 301
transport transfer security, 528

thread affinity
callbacks and, 431, 438
defined, 396
HostThreadAffinity, 425
service synchronization context, 423
ThreadPoolSynchronizer class, 418–423
UI synchronization context, 400, 415

thread local storage (TLS), 312, 396
ThreadAbortException, 255
ThreadAffinityBehaviorAttribute class, 423,

845
ThreadPoolBehaviorAttribute class, 419–423,

437, 845
ThreadPoolHelper class, 845

ApplyDispatchBehavior() method, 422
CloseThreads() method, 422, 423
GetSynchronizer() method, 422
HasSynchronizer() method, 422

ThreadPoolSynchronizer class, 418–423, 435,
845

threads
callback operations, 237
host process and, 15
UI, 406–412, 415

ThreadStatic attribute, 409
throttling

administrative, 220
configuring, 219–224
functionality, 217
programmatic, 220
queued services and, 485
reading values, 222
service consumption parameters, 218

time to live, 487, 635
TimeoutException

asynchronous calls, 456
call timeouts, 63
concurrency management, 385
error masking, 256
request-reply operations, 225
throttling, 218

timeouts
asynchronous calls and, 456
call, 63
queued services, 486

Index | 871

Download from Library of Wow! eBook <www.wowebook.com>

transaction, 329, 331
TransactionScope class, 339

TLS (thread local storage), 312, 396
Transaction class

ambient transactions, 312
Current property, 312, 332
defined, 311
Rollback() method, 311
TransactionInformation property, 312

transaction flow
bindings and, 301–304, 316–324
Client mode, 320
Client/Service mode, 318–320
None mode, 322
Service mode, 321, 324, 376
timeout and, 331
transaction management, 333–340

transaction management
challenges, 298
distributed transactions, 299
overview, 297
single-phase commit protocol, 301
transaction flows, 333–340
two-phase commit protocol, 300, 324

transaction managers
defined, 299
DTC, 308, 313
KTM, 308
LTM, 308
overview, 307
promoting transactions, 310, 311

transaction modes
Callback mode, 376
callbacks, 376
choosing, 324
Client mode, 320
Client/Service mode, 317–320, 376
None mode, 322, 376
overview, 316, 317
Service mode, 321, 324
Service/Callback mode, 376

transaction propagation
modes supported, 316–324
one-way calls, 304
transaction flow and bindings, 301, 302
transaction flow and operation contract,

302–304
transaction properties

ACID properties, 295

atomic property, 295
consistent property, 296
durable property, 296
isolated property, 296

transaction protocols
bindings, 306
options supported, 305

transaction-aware bindings, 301, 302, 318
TransactionAbortedException, 325, 326
transactional files system (TxF), 308
transactional programming

ambient transactions, 314
non-service clients, 340
resource requirements, 295
transaction flow management, 333–340
transaction isolation, 327
transaction propagation modes, 316–324
transaction timeouts, 329, 331
TransactionalBehavior attribute and, 369
TransactionScope class, 331
voting and completion, 324–327

transactional registry (TxR), 308
transactional resources

auto-enlisting resources, 295
enlisting resources, 295
overview, 295

Transactional<T> class, 344, 355, 843
TransactionalArray<T> class, 344, 355, 843
TransactionalBehaviorAttribute class, 844

default values and, 367
functionality, 366
transactional programming and, 369
TransactionRequiredAllOperations

property, 367
TransactionalCollection<C,T> class, 843
TransactionalDictionary<ID,T> class, 365
TransactionalDictionary<K,T> class, 344, 843
TransactionalInstanceProvider class, 841
TransactionalInstanceProviderFactory class,

366, 367, 841
TransactionalInstanceStore<ID,T> class, 841
TransactionalLinkedList<T> class, 843
TransactionalList<T> class, 344, 843
TransactionalLock class, 842
TransactionalMemoryProvider class, 840
TransactionalMemoryProviderFactory class,

365, 367, 840
TransactionalMemoryStore<ID,T> class, 840
TransactionalQueue<T> class, 843

872 | Index

Download from Library of Wow! eBook <www.wowebook.com>

TransactionalSortedDictionary<K,T> class,
843

TransactionalSortedList<K,T> class, 843
TransactionalStack<T> class, 843
TransactionFlow attribute

callback contracts, 375
Client transaction mode, 320
Client/Service transaction mode, 318
None transaction mode, 322
operation contracts, 302–304
Service transaction mode, 321

TransactionFlowOption attribute
Allowed value, 304, 315, 317, 318, 319
Mandatory value, 304, 320
NotAllowed value, 303, 305, 321, 322

TransactionInformation class, 312, 313
TransactionOptions structure, 340
TransactionProtocol class, 306
transactions

aborted, 294, 323
ambient, 312, 314
asynchronous calls and, 457
boundaries, 343
callback operations, 376–381
coding standards, 831
committed, 294, 324
concurrent, 356
defined, 294
distributed, 299
in-doubt, 294
instance management, 343–374
local versus distributed, 312–313
promoting, 310, 311
queued services, 471–477, 514–517
recovery challenge, 293
reliability and, 302
service state management, 342
terminating, 327
timeouts, 329, 331

TransactionScope class
functionality, 331
isolation level, 340
timeouts, 339, 340

TransactionScopeOption enumeration
Required value, 335, 336
RequiresNew value, 335, 338
Suppress value, 336, 338

transfer security, 527–532
transfer security, service bus, 667–683

one-way relay binding and, 676
streamlining, 678–683
TCP relay binding and, 670–675
WS relay binding and, 676

transient subscribers, 777
transport reliability, 77
transport schemes

bindings and, 26
defined, 4
HTTP addresses, 6
IPC addresses, 6
messages and, 24
MEX endpoints, 43
MSMQ addresses, 7
TCP addresses, 5
WCF support, 5

transport sessions, 383
(see also concurrency management)
bindings and, 76
defined, 75
exceptions and, 229
per-call services and, 173
private-session mode, 177
SessionMode enumeration, 179
streaming and, 253
terminating, 76

TransportClientCredentialType enum, 658,
663

TransportClientEndpointBehavior class, 658
two-phase commit protocol

defined, 300
voting, 324

TxF (transactional files system), 308
TxR (transactional registry), 308

U
UDP (User Datagram Protocol), 723
UI synchronization context

callbacks and, 431–435
concurrency management, 433
hosting UI thread, 406–412
overview, 400–405

UI thread
concurrency management, 415, 433
hosting on, 406–412
multiple, 410

unknown faults, 266
User Datagram Protocol (UDP), 723
using statement

Index | 873

Download from Library of Wow! eBook <www.wowebook.com>

closing proxies, 62, 259
ending transactions, 332

V
versioning, 146–153
versioning round-trip, 151–153
Visual Studio 2010

Add Service Reference option, 53
asynchronous proxies, 440
client config file, 59
Configure Service Reference dialog, 54
generating proxies, 53–54
IIS-hosted services, 12
importing data contracts, 113, 114
self-hosting, 16
service references, 123
shortcomings of, 579
test client, 64–67
WCF-provided host, 50
WcfTestClient support, 66

volatile resource managers (see VRMs)
voting

callback operations and, 378
committing changes, 300, 324–327
declarative, 324
explicit, 326
nested scopes and, 336
TransactionScope class and, 332

VRMs (volatile resource managers)
durable property, 297
MemoryProviderFactory class, 365
Transactional<T> class, 344, 355
TransactionalArray<T> class, 355
TransactionalBehavior attribute, 366
TransactionalDictionary<ID,T> class, 365
TransactionalDictionary<K,T> class, 344
TransactionalMemoryProviderFactory

class, 365, 367

W
WAS (Windows Activation Service)

custom hosting, 19
hosting, 12, 471

WCF (Windows Communication Foundation),
1, 67

Visual Studio 2010, 50
Windows Server AppFabric, 20

WCF coding standard

concurrency management, 832
data contracts, 827
design guidelines, 825
essentials, 826
faults, 830
instance management, 828
operations and calls, 828
queued services, 833
security, 834
service contracts, 827
transactions, 831

WCF formatters, 107–109, 128
WCF Service Libraries, 67
WcfSvcHost utility, 50
WcfTestClient.exe (test client), 64–67
WcfWrapper, 371
WcfWrapper class, 74
WcfWrapper<S,I> class, 838
Web services, binding support, 25
web.config file, 13
WebHttp Binding class

functionality, 29
WebHttpBinding

syndicated endpoints, 67
WebHttpRelayBinding class, 633
WF (Workflow)

Windows Server AppFabric, 20
Windows Activation Service (see WAS)
Windows Azure AppFabric

Service Bus addresses, 7
Windows Azure AppFabric Service Bus (see

service bus)
Windows Communication Foundation (WCF),

1, 67
Windows role localization, 564
Windows Server AppFabric

overview, 20
WindowsFormsSynchronizationContext class,

400
WindowsIdentity class, 548, 550
WS bindings, 301, 676
WS-Security, 24
WS2007FederationHttpBinding class, 28, 307
WS2007HttpBinding class, 28, 307
WS2007HttpRelayBinding class, 630
WSAT (WS-Atomic Transaction), 24, 306
WsdlImporter class, 96
WSDualHttpBinding class, 28, 230, 307
WSFederationHttpBinding class, 28, 307

874 | Index

Download from Library of Wow! eBook <www.wowebook.com>

WSHttpBinding class
call timeout, 63
derivations, 28
functionality, 25
per-session services, 179
reliability and, 78, 302
transaction protocols and, 307
transfer security, 533
transport schemes, 26

WSHttpContextBinding class, 27

X
X509 certificate, 526, 532
X509Identity, 547
XML serialization, 117
XmlSerializerFormat attribute, 117

Index | 875

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

About the Author
Juval Löwy is a software architect and the principal of IDesign, specializing in .NET
architecture consulting and advanced training. Juval is Microsoft’s Regional Director
for the Silicon Valley, working with Microsoft on helping the industry adopt .NET 4.0.
He participates in the Microsoft internal design reviews for future versions of .NET and
related technologies. Juval has published numerous articles, regarding almost every
aspect of .NET development, and he is a frequent presenter at development
conferences. Microsoft recognized Juval as a Software Legend, one of the world’s
top .NET experts and industry leaders.

Colophon
The animal on the cover of Programming WCF Services, Third Edition, is an angelfish
(genus Pterophyllum). Angelfish are found in tropical and subtropical reefs around the
world; there are at least 86 different species. The average angelfish is about 7 to 12
inches (20 to 30 cm) long, but their size varies greatly, as does their coloring, which
changes with maturity. The diet of angelfish consists of algae, worms, and various
shellfish and small sea creatures. A spine on the gill cover differentiates the angelfish
from the also-colorful butterfly fish.

Depending on the species, angelfish have different mating habits. Some mate for life in
territorial pairs, while others create harems of female fish with one dominant male. All
angelfish are protogynous hermaphrodites, which means that if the dominant male dies
or leaves the group, a female morphs into a male for mating purposes.

In some countries angelfish are used for food, but mostly they are caught for aquariums.
Rare species of angelfish can range in price from hundreds to thousands of dollars. In
addition to collectors, reef destruction and continual environmental degradation
threaten angelfish.

The cover image is from Wood’s Reptiles, Fishes, Insects, &c. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

	Table of Contents
	Foreword
	Preface
	How This Book Is Organized
	Some Assumptions About the Reader
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact O’Reilly
	Safari® Books Online
	Acknowledgments

	Chapter 1. WCF Essentials
	What Is WCF?
	Services
	Service Execution Boundaries
	WCF and Location Transparency

	Addresses
	TCP Addresses
	HTTP Addresses
	IPC Addresses
	MSMQ Addresses
	Service Bus Addresses

	Contracts
	The Service Contract
	Applying the ServiceContract attribute
	Names and namespaces

	Hosting
	IIS 5/6 Hosting
	Using Visual Studio 2010
	The Web.Config file

	Self-Hosting
	Using Visual Studio 2010
	Self-hosting and base addresses
	Advanced hosting features
	The ServiceHost<T> class

	WAS Hosting
	Custom Hosting in IIS/WAS
	Windows Server AppFabric
	Choosing a Host

	Bindings
	The Common Bindings
	Format and encoding

	Choosing a Binding
	Additional Bindings
	Using a Binding

	Endpoints
	Administrative Endpoint Configuration
	Using base addresses
	Binding configuration
	Default binding

	Programmatic Endpoint Configuration
	Binding configuration

	Default Endpoints
	Protocol mapping

	Metadata Exchange
	Metadata over HTTP-GET
	Enabling metadata exchange administratively
	Enabling metadata exchange programmatically

	The Metadata Exchange Endpoint
	Standard endpoints
	Adding MEX endpoints programmatically
	Streamlining with ServiceHost<T>

	The Metadata Explorer

	More on Behavior Configuration
	Client-Side Programming
	Generating the Proxy
	Generating the proxy using SvcUtil

	Administrative Client Configuration
	Binding configuration
	Generating the client config file
	In-proc configuration
	The SvcConfigEditor
	Working with the proxy
	Closing the proxy
	Call timeout

	Programmatic Client Configuration
	The WCF-Provided Test Client

	Programmatic Versus Administrative Configuration
	WCF Architecture
	Host Architecture

	Working with Channels
	The InProcFactory Class
	Implementing InProcFactory<T>
	The WcfWrapper

	Transport-Level Sessions
	Transport Session and Binding
	Transport Session Termination

	Reliability
	Bindings, Reliability, and Ordered Messages
	Configuring Reliability
	Requiring Ordered Delivery

	Chapter 2. Service Contracts
	Operation Overloading
	Contract Inheritance
	Client-Side Contract Hierarchy
	Restoring the hierarchy on the client

	Service Contract Factoring and Design
	Contract Factoring
	Factoring Metrics

	Contract Queries
	Programmatic Metadata Processing
	The MetadataResolver class

	The MetadataHelper Class

	Chapter 3. Data Contracts
	Serialization
	.NET Serialization
	The Serializable attribute
	The NonSerialized attribute
	The .NET formatters

	The WCF Formatters
	Data Contract via Serialization

	Data Contract Attributes
	Importing a Data Contract
	Data Contracts and the Serializable Attribute
	Inferred Data Contracts
	Composite Data Contracts
	Data Contract Events
	Using the deserializing event
	Using the deserialized event

	Shared Data Contracts

	Data Contract Hierarchy
	Known Types
	Service Known Types
	Multiple Known Types
	Configuring Known Types
	Data Contract Resolvers
	Installing the data contract resolver
	The generic resolver
	Installing the generic resolver
	GenericResolver and ServiceHost<T>
	Generic resolver attribute

	Objects and Interfaces

	Data Contract Equivalence
	Serialization Order

	Versioning
	New Members
	Missing Members
	Using the OnDeserializing event
	Required members

	Versioning Round-Trip
	Schema compatibility

	Enumerations
	Delegates and Data Contracts
	Generics
	Collections
	Concrete Collections
	Custom Collections
	The CollectionDataContract Attribute
	Referencing a Collection
	Dictionaries

	Chapter 4. Instance Management
	Behaviors
	Per-Call Services
	Benefits of Per-Call Services
	Configuring Per-Call Services
	Per-Call Services and Transport Sessions
	Designing Per-Call Services
	Per-call services and performance
	Cleanup operations

	Choosing Per-Call Services

	Per-Session Services
	Configuring Private Sessions
	SessionMode.Allowed
	SessionMode.Required
	SessionMode.NotAllowed
	Bindings, contracts, and service behavior
	Consistent configuration

	Sessions and Reliability
	The Session ID
	Session Termination

	Singleton Service
	Initializing a Singleton
	Streamlining with ServiceHost<T>

	Choosing a Singleton

	Demarcating Operations
	Instance Deactivation
	Configuring with ReleaseInstanceMode.None
	Configuring with ReleaseInstanceMode.BeforeCall
	Configuring with ReleaseInstanceMode.AfterCall
	Configuring with ReleaseInstanceMode.BeforeAndAfterCall
	Explicit Deactivation
	Using Instance Deactivation

	Durable Services
	Durable Services and Instance Management Modes
	Initiating and terminating

	Instance IDs and Durable Storage
	Explicit Instance IDs
	Instance IDs in Headers
	Context Bindings for Instance IDs
	Using the standard ID for context binding

	Automatic Durable Behavior
	The durable service behavior attribute
	The durable operation behavior attribute
	Programmatic instance management
	Persistence providers
	Custom persistence providers
	The SQL Server persistence provider

	Throttling
	Configuring Throttling
	Administrative throttling
	Programmatic throttling
	Streamlining with ServiceHost<T>
	Reading throttle values

	Chapter 5. Operations
	Request-Reply Operations
	One-Way Operations
	Configuring One-Way Operations
	One-Way Operations and Reliability
	One-Way Operations and Sessionful Services
	One-Way Operations and Exceptions

	Callback Operations
	The Callback Contract
	Client Callback Setup
	Duplex proxies

	Service-Side Callback Invocation
	Callback reentrancy

	Callback Connection Management
	Connection management and instance mode

	The Duplex Proxy and Type Safety
	The Duplex Factory
	Callback Contract Hierarchy

	Events
	Streaming
	I/O Streams
	Streaming and Binding
	Streaming and Transport

	Chapter 6. Faults
	Error Isolation and Decoupling
	Error Masking
	Channel Faulting
	Closing the proxy and the using statement
	Exceptions and instance management

	Fault Propagation
	Fault Contracts
	Fault handling
	Faults and channels

	Fault Debugging
	Including exceptions declaratively
	Host and exception diagnostics
	Exception extraction

	Faults and Callbacks
	Callback debugging

	Error-Handling Extensions
	Providing a Fault
	Using ProvideFault()
	Exception promotion

	Handling a Fault
	The logbook service

	Installing Error-Handling Extensions
	The ErrorHandlerBehavior

	The Host and Error Extensions
	Callbacks and Error Extensions
	The CallbackErrorHandlerBehavior attribute

	Chapter 7. Transactions
	The Recovery Challenge
	Transactions
	Transactional Resources
	Transaction Properties
	The atomic property
	The consistent property
	The isolated property
	The durable property

	Transaction Management
	The transaction management challenge
	Distributed transactions
	The two-phase commit protocol

	Resource Managers

	Transaction Propagation
	Transaction Flow and Bindings
	Transaction Flow and the Operation Contract
	TransactionFlowOption.NotAllowed
	TransactionFlowOption.Allowed
	TransactionFlowOption.Mandatory

	One-Way Calls

	Transaction Protocols and Managers
	Protocols and Bindings
	Transaction Managers
	The LTM
	The KTM
	The DTC

	Transaction Manager Promotion
	LTM promotion
	KTM promotion
	Resources and promotion

	The Transaction Class
	The Ambient Transaction
	Local Versus Distributed Transactions
	The local transaction identifier
	The distributed transaction identifier

	Transactional Service Programming
	Setting the Ambient Transaction
	Transaction Propagation Modes
	Client/Service transaction mode
	Requiring transaction flow
	Client transaction mode
	Service transaction mode
	None transaction mode
	Choosing a service transaction mode

	Voting and Completion
	Declarative voting
	Explicit voting
	Terminating a transaction

	Transaction Isolation
	Isolation and transaction flow

	Transaction Timeout
	Transaction flow and timeout

	Explicit Transaction Programming
	The TransactionScope Class
	TransactionScope voting

	Transaction Flow Management
	Voting inside a nested scope
	TransactionScopeOption.Required
	TransactionScopeOption.RequiresNew
	TransactionScopeOption.Suppress
	TransactionScope timeout
	TransactionScope isolation level

	Non-Service Clients

	Service State Management
	The Transaction Boundary

	Instance Management and Transactions
	Per-Call Transactional Services
	The transaction lifecycle

	Per-Session Transactional Services
	Releasing the service instance
	Disabling releasing the service instance
	State-aware per-session services
	Stateful per-session services
	Transaction lifecycle
	Concurrent transactions
	Completing on session end
	Transactional affinity
	Hybrid state management

	Transactional Durable Services
	Instance ID management

	Transactional Behavior
	In-proc transactions

	Transactional Singleton Service
	Stateful singleton service

	Instancing Modes and Transactions

	Callbacks
	Callback Transaction Modes
	Isolation and timeouts

	Callback Voting
	Using Transactional Callbacks
	Out-of-band transactional callbacks
	Service transactional callbacks

	Chapter 8. Concurrency Management
	Instance Management and Concurrency
	Service Concurrency Modes
	ConcurrencyMode.Single
	Synchronized access and transactions

	ConcurrencyMode.Multiple
	Unsynchronized access and transactions

	ConcurrencyMode.Reentrant
	Designing for reentrancy
	Reentrancy and transactions
	Callbacks and reentrancy

	Instances and Concurrent Access
	Per-Call Services
	Sessionful and Singleton Services

	Resources and Services
	Deadlocked Access
	Deadlock Avoidance

	Resource Synchronization Context
	.NET Synchronization Contexts
	The SynchronizationContext class
	Working with the synchronization context

	The UI Synchronization Context
	UI access and updates
	Safe controls

	Service Synchronization Context
	Hosting on the UI Thread
	Accessing the form
	Multiple UI threads

	A Form as a Service
	The FormHost<F> class

	The UI Thread and Concurrency Management
	UI responsiveness
	The UI thread and concurrency modes

	Custom Service Synchronization Contexts
	The Thread Pool Synchronizer
	Declaratively attaching a custom synchronization context

	Thread Affinity
	The host-installed synchronization context

	Priority Processing

	Callbacks and Client Safety
	Callbacks with ConcurrencyMode.Single
	Callbacks with ConcurrencyMode.Multiple
	Callbacks with ConcurrencyMode.Reentrant

	Callbacks and Synchronization Contexts
	Callbacks and the UI Synchronization Context
	UI thread callbacks and responsiveness
	UI thread callbacks and concurrency management

	Callback Custom Synchronization Contexts
	Callback thread affinity

	Asynchronous Calls
	Requirements for an Asynchronous Mechanism
	Proxy-Based Asynchronous Calls
	Asynchronous Invocation
	The IAsyncResult interface
	Asynchronous calls and transport sessions

	Polling or Waiting for Completion
	Completion Callbacks
	Completion callbacks and thread safety
	Passing state information
	Completion callback synchronization context

	One-Way Asynchronous Operations
	Asynchronous Error Handling
	Asynchronous calls and timeouts
	Cleaning up after End<Operation>()

	Asynchronous Calls and Transactions
	Synchronous Versus Asynchronous Calls

	Chapter 9. Queued Services
	Disconnected Services and Clients
	Queued Calls
	Queued Calls Architecture
	Queued Contracts
	Configuration and Setup
	Workgroup installation and security
	Creating the queue
	Queue purging
	Queues, services, and endpoints
	Exposing metadata
	WAS hosting

	Transactions
	Delivery and Playback
	The delivery transaction
	The playback transaction

	Service Transaction Configuration
	Participating in the playback transaction
	Ignoring the playback transaction
	Using a separate transaction

	Nontransactional Queues

	Instance Management
	Per-Call Queued Services
	Nontransactional clients
	Transactional clients
	Per-call processing

	Sessionful Queued Services
	Clients and transactions
	Services and transactions

	Singleton Service
	Calls and order

	Concurrency Management
	Throttling

	Delivery Failures
	The Dead-Letter Queue
	Time to Live
	Configuring the Dead-Letter Queue
	Custom DLQ verification

	Processing the Dead-Letter Queue
	Defining the DLQ service
	Failure properties
	Implementing a DLQ service

	Playback Failures
	Poison Messages
	Poison Message Handling in MSMQ 4.0
	Retry batches
	ReceiveErrorHandling.Fault
	ReceiveErrorHandling.Drop
	ReceiveErrorHandling.Reject
	ReceiveErrorHandling.Move
	Configuration sample
	Poison message service

	Poison Message Handling in MSMQ 3.0

	Queued Versus Connected Calls
	Requiring Queuing

	The Response Service
	Designing a Response Service Contract
	Response address and method ID
	The ResponseContext class

	Client-Side Programming
	Using ClientResponseBase<T>

	Queued Service-Side Programming
	Response Service-Side Programming
	Transactions
	Using a new transaction
	Response service and transactions

	The HTTP Bridge
	Designing the Bridge
	Transaction Configuration
	Service-Side Configuration
	Client-Side Configuration

	Chapter 10. Security
	Authentication
	Authorization
	Transfer Security
	Transfer Security Modes
	None transfer security mode
	Transport transfer security mode
	Message transfer security mode
	Mixed transfer security mode
	Both transfer security mode

	Transfer Security Mode Configuration
	Specific binding configurations

	Transport Security and Credentials
	Message Security and Credentials

	Identity Management
	Overall Policy
	Scenario-Driven Approach
	Intranet Application Scenario
	Securing the Intranet Bindings
	Transport security protection level
	NetTcpBinding configuration
	NetNamedPipeBinding configuration
	NetMsmqBinding configuration

	Constraining Message Protection
	Authentication
	Providing alternative Windows credentials

	Identities
	The IIdentity interface
	Working with WindowsIdentity

	The Security Call Context
	Impersonation
	Manual impersonation
	Declarative impersonation
	Impersonating all operations
	Restricting impersonation
	Avoiding impersonation

	Authorization
	The security principal
	Selecting an authorization mode
	Declarative role-based security
	Programmatic role-based security

	Identity Management
	Callbacks

	Internet Application Scenario
	Securing the Internet Bindings
	WSHttpBinding configuration

	Message Protection
	Configuring the host certificate
	Using the host certificate
	Service certificate validation
	Working with a test certificate

	Authentication
	Using Windows Credentials
	Authorization
	Identity management

	Using the ASP.NET Providers
	The credentials providers
	Credentials administration
	Shortcomings of Visual Studio 2010
	Credentials Manager
	Authentication
	Authorization
	Declarative role-based security

	Identity Management
	Impersonation

	Business-to-Business Application Scenario
	Securing the Business-to-Business Bindings
	Authentication
	Authorization
	Identity Management
	Impersonation

	Host Security Configuration

	Anonymous Application Scenario
	Securing the Anonymous Bindings
	Authentication
	Authorization
	Identity Management
	Impersonation

	Callbacks

	No Security Scenario
	Unsecuring the Bindings
	Authentication
	Authorization
	Identity Management
	Impersonation

	Callbacks

	Scenarios Summary
	Declarative Security Framework
	The SecurityBehaviorAttribute
	Configuring an intranet service
	Configuring an Internet service
	Configuring a business-to-business service
	Configuring an anonymous service
	Configuring a no-security service
	Implementing the SecurityBehavior attribute

	Host-Side Declarative Security
	Client-Side Declarative Security
	Implementing SecurityHelper
	The SecureClientBase<T> class
	Secure channel factory
	Duplex clients and declarative security
	Extensions for the duplex factory

	Security Auditing
	Configuring Security Audits
	Declarative Security Auditing

	Chapter 11. The Service Bus
	What Is a Relay Service?
	The Windows Azure AppFabric Service Bus

	Programming the Service Bus
	Relay Service Address
	Extracting the service namespace

	The Service Bus Registry
	The Service Bus Explorer

	The Service Bus Bindings
	The TCP Relay Binding
	Adding default endpoints
	Connection modes
	TCP relayed mode
	TCP hybrid mode
	Duplex callbacks

	The WS 2007 Relay Binding
	The One-Way Relay Binding
	Fire-and-forget semantics

	The Event Relay Binding
	Events publishing

	Cloud as Interceptor
	Service Bus Buffers
	Buffers Versus Queues
	Working with Buffers
	The buffer policy
	Administering the buffer
	Streamlining administration

	Sending and Retrieving Messages
	Buffered Services
	Buffered service host
	Buffered client base

	Response Service
	Client side
	Service side
	Response service

	Service Bus Authentication
	Configuring Authentication
	Shared Secret Authentication
	Providing the credentials on the host side
	Providing the credentials on the client side
	Providing credentials in config file

	No Authentication
	Metadata over the Service Bus
	Client-side metadata processing

	Transfer Security
	Transport Security
	Message Security
	Message security and credentials

	TCP Relay Binding and Transfer Security
	Anonymous Message security
	Message security with credentials
	Mixed security

	WS Relay Binding and Transfer Security
	Message security and Mixed security

	One-Way Relay Binding and Transfer Security
	Anonymous calls

	Bindings and Transfer Modes
	Streamlining Transfer Security
	Declarative service security
	Streamlining the client

	Appendix A. Introduction to Service Orientation
	A Brief History of Software Engineering
	Object Orientation
	Component Orientation
	Off-the-shelf plumbing

	Service Orientation
	Benefits of Service Orientation
	Service-Oriented Applications

	Tenets and Principles
	Practical Principles
	Optional Principles

	What’s Next?
	A Service-Oriented Platform
	Every class as a service

	Appendix B. Headers and Contexts
	Message Headers
	Client-Side Header Interaction
	Service-Side Header Interaction
	Encapsulating the Headers
	The GenericContext<T> helper class

	Streamlining the Client
	The HeaderClientBase<T,H> proxy class

	Context Bindings
	Client-Side Context Binding Interaction
	Service-Side Context Binding Interaction
	Streamlining the Client
	Streamlining the Service
	Creating a Custom Context Binding
	Implementing NetNamedPipeContextBinding

	Appendix C. Discovery
	Address Discovery
	Service Configuration
	Dynamic endpoint addresses
	Enabling discovery

	Client-Side Steps
	Scopes
	Assigning scopes
	Using scopes

	Streamlining Discovery
	Discovery cardinality
	Single endpoint
	Binding discovery
	Discovery factory
	Creating discoverable host
	The Metadata Explorer

	Ongoing Discovery

	Announcements
	Announcing Endpoints
	Automatic announcements

	Receiving Announcements
	Streamlining Announcements
	The announcements sink

	Service Bus Discovery
	Solution Architecture
	Discoverable Host
	Discovery Client
	More client-side helper classes

	Announcements
	Service-side announcements
	Receiving announcements

	The Metadata Explorer

	Appendix D. Publish-Subscribe Service
	The Publish-Subscribe Design Pattern
	Subscriber Types

	The Publish-Subscribe Framework
	Managing Transient Subscriptions
	Managing Persistent Subscribers
	Event Publishing
	Administering Persistent Subscribers
	Singleton subscriber

	Queued Publishers and Subscribers
	Queued publisher
	Queued subscriber

	Publish-Subscribe with the Service Bus
	The Event Relay Binding
	The ServiceBusEventsHost
	The ServiceBusEventsClientBase

	Publish-Subscribe with Discovery
	The DiscoveryPublishService<T> Class
	The Publisher
	The Subscriber
	More on DiscoveryPublishService<T>

	Appendix E. Generic Interceptor
	Intercepting Service Operations
	The Generic Invoker
	Installing the Interceptor

	Intercepting Client Calls
	The Trace Interceptors
	Identity Stack Propagation
	Security Call Stack Interceptor

	Appendix F. WCF Coding Standard
	General Design Guidelines
	Essentials
	Service Contracts
	Data Contracts
	Instance Management
	Operations and Calls
	Faults
	Transactions
	Concurrency Management
	Queued Services
	Security
	The Service Bus

	Appendix G. ServiceModelEx Catalog
	CollectionExtensions
	ArrayExtensions
	InProcFactory<S,I>
	WcfWrapper<S,I>
	ServiceHost<T>
	MetadataHelper
	DataContractSerializer<T>
	GenericResolver, GenericResolverBehaviorAttribute,
 GenericResolverInstaller
	ServiceThrottleHelper
	IInstanceStore<ID,T>
	FileInstanceStore<ID,T>, FilePersistenceProvider,
 FilePersistenceProviderFactory
	MemoryProvider, MemoryProviderFactory
	TransactionalMemoryStore<ID,T>,
 TransactionalMemoryProvider,
 TransactionalMemoryProviderFactory
	TransactionalInstanceStore<ID,T>,
 TransactionalInstanceProvider,
 TransactionalInstanceProviderFactory
	InstanceContext<T>, DuplexClientBase<T,C>,
 DuplexChannelFactory<T,C>
	DebugHelper
	ErrorHandlerHelper
	ErrorHandlerBehaviorAttribute,
 CallbackErrorHandlerBehaviorAttribute
	ILogbookManager, LogbookManagerClient, LogbookManager
	BindingRequirementAttribute
	ResourceManager, TransactionalLock
	Transactional<T>
	TransactionalCollection<C,T>
	TransactionalArray<T>,
 TransactionalDictionary<K,T>, TransactionalLinkedList<T>,
 TransactionalList<T>, TransactionalQueue<T>,
 TransactionalSortedDictionary<K,T>,
 TransactionalSortedList<K,T>,
 TransactionalStack<T>
	TransactionalBehaviorAttribute
	AsyncOneWayClientBase<T>
	FormHost<F>
	SafeButton, SafeLabel, SafeListBox, SafeProgressBar,
 SafeStatusBar, SafeTextBox, SafeTrackBar
	ThreadPoolSynchronizer, ThreadPoolBehaviorAttribute,
 CallbackThreadPoolBehaviorAttribute, ThreadPoolHelper
	AffinitySynchronizer, ThreadAffinityBehaviorAttribute,
 CallbackThreadAffinityBehaviorAttribute, HostThreadAffinity
	PrioritySynchronizer, PriorityClientBase<T>,
 PriorityContext, PriorityCallsBehaviorAttribute
	QueuedServiceHelper
	ClientResponseBase<T>, ServiceResponseBase<T>,
 ResponseContext
	CredentialsManager, AspNetSqlProviderService
	SecureClientBase<T>, SecureDuplexClientBase<T,C>,
 SecurityBehaviorAttribute, SecurityHelper, ServiceSecurity
	IServiceBusProperties
	ServiceBusHelper
	ServiceBusHost, ServiceBusClientBase<T>,
 ServiceBusDuplexClientBase<T,C>
	DiscoverableServiceHost, IServiceBusDicovery,
 IServiceBusDiscoveryCallback, ServiceBusDiscoveryClient,
 ServiceBusDiscoveryFactory, ServiceBusDiscoveryHelper,
 IServiceBusAnnouncements, ServiceBusAnnouncementSink<T>
	OneWayClientBase<T>
	BufferedServiceBusHost<T>,
 BufferedServiceBusClient<T>,
 BufferedServiceBusChannelFactory<T>
	ClientBufferResponseBase<T>,
 ServiceBufferResponseBase<T>
	ServiceBusMetadataHelper
	HeaderClientBase<T,H>, HeaderChannelFactory<T,H>,
 GenericContext<T>
	ContextClientBase<T>, ContextManager
	NetNamedPipeContextBinding, NetNamedPipeContextBindingElement,
 NetNamedPipeContextBindingCollectionElement
	DiscoveryHelper
	DiscoveryFactory
	AddressesContainer<T>
	AnnouncementSink<T>
	DiscoveredServices<T>
	PersistentSubscriptionServiceClient,
 IPersistentSubscriptionService, ISubscriptionService,
 PersistentSubscription, PublishService<T>,
 SubscriptionManager<T>, PersistentSubscriptionManager
	ServiceBusEventsHost,
 ServiceBusEventsClientBase<T>
	DiscoveryPublishService <T>
	GenericInvoker, OperationInterceptorBehaviorAttribute,
 ServiceInterceptorBehaviorAttribute
	InterceptorClientBase<T>,
 InterceptorChannelFactory<T>
	SecurityCallFrame, SecurityCallStack, SecurityCallStackContext,
 SecurityCallStackClientBase<T>, SecurityCallStackInterceptor,
 OperationSecurityCallStackAttribute,
 SecurityCallStackBehaviorAttribute

	Index

